首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
至今为止,已在20多种植物体内发现了多聚半乳糖醛酸酶抑制蛋白(PGIP)。这类蛋白质主要集中于细胞壁和内膜系统,但在不同生长时间、不同品种及不同器官中其含量是不一样的,研究表明这种差异与植物的抗性强弱有着密切关系。PGIP是病原真菌分泌的endo_PG的抑制剂,因此能延缓病原真菌对植物细胞壁的降解。来自菜豆和小麦的实验证据表明病原真菌侵染植株能诱导pgip基因高水平转录、表达,但pgip基因家族对这种诱导信号应答的分子机制待于进一步研究。  相似文献   

2.
多聚半乳糖醛酸酶(PG酶)是一种在植物细胞壁降解中起重要的作用的酶。作者介绍了PG酶在果实成熟软化中的作用。概述了PG酶基因及其表达调控,评述了乙烯对PG酶合成的影响。  相似文献   

3.
【背景】肽聚糖(Peptidoglycan,PG)是细菌细胞壁的重要组成部分,而霍乱弧菌Ⅵ型分泌系统(Type Ⅵ Secretion System,T6SS)可以分泌具有肽聚糖水解酶活性的效应蛋白到受体细菌中杀死细胞,这类水解酶的作用机制尚未研究清楚。【目的】通过对细菌细胞壁的PG成分进行研究,建立细胞壁PG成分分析方法,并对霍乱弧菌T6SS分泌的2个破坏细胞壁的效应蛋白TseH和VgrG3的作用机制进行解析。【方法】使用显微镜观察TseH和VgrG3异位表达对宿主细菌生长的影响;纯化大肠杆菌细胞壁,使用透射电子显微镜(Transmission Electron Microscope,TEM)观察提纯的细胞壁形态;使用纯化的TseH和VgrG3分解消化PG,利用超高效液相色谱-飞行时间质谱(Ultra-Performance LiquidChromatography-Time-of-FlightMassSpectrometry,UPLC-TOFMS)分析鉴定消化后的产物成分;通过分析结果推导结构。【结果】通过透射电子显微镜观察,发现提纯的PG呈现半透明的薄膜泡状;通过UPLC-TOFMS的分析以及逆向推导,得到了提纯的PG被VgrG3水解酶降解之后的3种主要产物,分别是二糖二肽(Disaccharide,Di)、二糖三肽(Disaccharide Tripeptide,Tri)和二糖四肽(Disaccharide Tetrapeptide,Tetra)。【结论】建立了提纯PG和UPLC-TOFMS分析PG成分的方法,揭示了效应蛋白VgrG3而非TseH可以降解PG多糖链N-乙酰葡糖胺和N-乙酰胞壁酸之间的β(1-4)糖苷键的功能。由于攻击细胞壁的效应蛋白在革兰氏阴性细菌中广泛存在,本研究不仅为鉴定这类重要效应蛋白的功能提供了有效的方法,而且对研究靶向细胞壁的新型抗生素也有重要的指导作用。  相似文献   

4.
内切多聚半乳糖醛酸酶(endo-polygalacturonase,endo-PG)是待异水解细胞壁成分多聚半乳糖醛酸的酶,水解产生的10~13个糖基的寡聚半乳糖醛酸片段是活性诱导因子,激活植物自身防御系统.我们已研究发现单子叶植物小麦中存在多聚半乳糖醛酸酶抑制蛋白(polygalacturonaseinhibitingprotein,PGIP),并已将其分离纯化,对其性质作了初步研究[1,2]文献报导[3]PGIP是在未分化的细胞中合成的.本文报导在悬浮培养的小麦细胞中加入Endo-PG观察其PGIP的生成,比较赤霉病的高抗品种与低抗品种中PGIP的合成情况,探讨PGIP与植物防御作…  相似文献   

5.
小麦多聚半乳糖醛酸酶抑制蛋白的部分结构   总被引:4,自引:0,他引:4  
为了弄清小麦多聚半乳糖醛酸酶抑制蛋白 (polygalacturonase inhibitingprotein ,PGIP)的作用机制 ,并为其在基因工程中的应用提供依据 ,对其结构进行了研究 .用Edman降解法测得小麦PGIP的N端序列为Lys Pro Leu Leu Thr Lys Ile Thr Lys Gly Ala Ala Ser Thr .用CD谱研究其二级结构 ,发现小麦PGIP天然态含有 4 3 7%的 β折叠和 13 1%的α螺旋 .酸碱和温度变性引起了二级结构改变 .不完全变性阶段 ,二级结构的变化表现为α螺旋无明显变化 ,β折叠遭到破坏 ;活性完全丧失阶段 ,β折叠变化很小 ,α螺旋含量明显减少 .用NR R(非还原 还原 )双向对角线SDS PAGE鉴定出小麦PGIP含有链内二硫键 .用去糖基化法确证了小麦PGIP的糖含量为 2 2 %.小麦PGIP与双子叶植物PGIP相比 ,一级结构差异较大 ,同源性由 36 %变为 9%;二级结构相似 ,都是高 β 折叠的蛋白 ;均具有链内二硫键 ;在糖含量上也相似 .研究结果为进一步弄清小麦PGIP作用机理打下了基础 ,同时对于植物抗赤霉病基因工程具有重要意义 .  相似文献   

6.
植物叶片愈伤组织形成的可能机制   总被引:7,自引:5,他引:2  
分析了植物叶片在组培条件下形成愈伤组织的过程.文中提出,培养基配方中的酸性物质使植物叶片处于酸性环境中并导致植物正常细胞首先发生细胞壁酸性降解,随后出现原生质体脱离细胞壁,进一步发生细胞器重组或细胞重建,人工培养基的酸性环境使细胞壁强制性地降解后,植物原生质体失去细胞壁的包被后直接处于较酸性的环境中,可能会促使原生体出现酸性快速分裂.因此,植物细胞壁是控制植物细胞完成正常细胞周期的信号载体.  相似文献   

7.
秸秆类植物细胞壁多糖高效降解转化对我国农业经济的绿色可持续发展具有重要意义,然而植物细胞壁在长期进化过程中形成了复杂结构限制了工业化酶解转化的过程。一方面从植物细胞壁多糖合成酶系的多样性、细胞壁多糖成分的复杂性、超分子结构的异质性等方面综述了形成植物细胞壁抗降解屏障的原因;另一方面从真菌降解植物细胞壁酶系的多样性、不同菌株降解酶组成差异性等分析降解转化植物细胞壁时发挥的不同作用,从而为工业转化合理复配真菌降解酶系,提高秸秆生物质的利用效率提供理论支持。  相似文献   

8.
秸秆类植物细胞壁多糖高效降解转化对我国农业经济的绿色可持续发展具有重要意义,然而植物细胞壁在长期进化过程中形成了复杂结构限制了工业化酶解转化的过程。一方面从植物细胞壁多糖合成酶系的多样性、细胞壁多糖成分的复杂性、超分子结构的异质性等方面综述了形成植物细胞壁抗降解屏障的原因;另一方面从真菌降解植物细胞壁酶系的多样性、不同菌株降解酶组成差异性等分析降解转化植物细胞壁时发挥的不同作用,从而为工业转化合理复配真菌降解酶系,提高秸秆生物质的利用效率提供理论支持。  相似文献   

9.
一、前言植物原生质体就是除去细胞壁以后的裸露细胞。英国植物生理学家Cocking(1960)首先用酶解的方法降解番茄根尖的细胞壁,获得大量而完整的原生质体。植物原生质体可直接从植物各种器官、如根、茎、叶、花、果实的细胞中获得,也可以从培养细胞中获得。一般认为由叶肉组织分离的原生质体遗传性状较一致。而一般  相似文献   

10.
内切-1,4-β-葡聚糖酶在植物细胞生长发育中的作用   总被引:3,自引:0,他引:3  
内切-1,4-β-葡聚糖酶(EGases)可以催化水解具有1,4-β-葡聚糖主链的多聚糖,如纤维素和木葡聚糖分子,从而参与对细胞壁的修饰.植物细胞中存在一个EGase蛋白家族,且多为分泌蛋白;在植物细胞中还存在另一类跨膜EGase,是细胞壁纤维素生物合成所必需的,但植物EGases在体外具有降解纤维素人造底物羧甲基纤维素(CMC)的能力,而绝大多数植物EGases在活体细胞中并不能有效地降解结晶态纤维素分子和木葡聚糖分子.本文就EGases在细胞伸长、果实成熟和组织器官脱落等发育过程中的作用,以及EGases在植物纤维素合成与降解中的作用进行综述.  相似文献   

11.
通过抑菌及细胞壁降解酶活性试验,研究向日葵花盘(sunflower disc,SFD)水提物对引起马铃薯干腐病主要病原菌——硫色镰刀菌(Fusarium sulphureum)生长及其侵染不同马铃薯品种时分泌的多聚半乳糖醛酸酶(polygalacturonase,PG)、果胶甲基半乳糖醛酸酶(polymethyl-ga...  相似文献   

12.
乙烯对苹果果实细胞壁降解效应初探   总被引:3,自引:0,他引:3  
以陕西主栽苹果品种'秦冠'为试材,研究了不同浓度乙烯利以及加热处理下苹果果实中与细胞壁代谢相关酶的活性变化及其与细胞壁组分降解的关系.结果表明:乙烯对各细胞壁酶活性的促进效应因乙烯利施用浓度不同而异.乙烯利浓度由10 mg/L增至1 000 mg/L时,果胶甲酯酶(PME)、多聚半乳糖醛酸酶(PG)和纤维素酶(CS)的活性先逐渐增强,而后又被抑制;木聚糖(Xyl)没有受到明显影响.加热处理可增进乙烯利的作用,如在60℃时,PME、PG、CS、Xyl活性分别是对照的1.5、2.7、1.1和1.5倍.PG活性的显著增加同时引起了果实可溶性糖含量的显著升高,但其他酶活性变化与可溶性糖含量无直接相关.  相似文献   

13.
植物对抗病原菌侵入的第一道防线通常是多糖和蛋白质组成的细胞壁。大多数植物病原菌都会分泌大量的细胞壁降解酶,破坏屏障及降解植物细胞壁获得生长所需营养,进而完成侵染。果胶酶是植物病原菌侵染寄主分泌的首批细胞壁降解酶之一,数量众多且广泛存在于植物病原真菌、卵菌、细菌,是病原菌重要的致病因子。与之对应,植物细胞壁含有一系列果胶酶的抑制蛋白抵御病原菌入侵。综述了植物病原菌产生的果胶酶种类、作用机制及其与果胶酶抑制蛋白之间关系等方面的研究进展,以期为深入了解植物免疫系统和有效进行植物病害防治提供参考。  相似文献   

14.
拮抗菌通过分泌细胞壁降解酶降解病原菌细胞壁组分是其重要的拮抗方式。本研究以2个拮抗菌(绿色木霉和枯草芽孢杆菌)和7个植物病原菌为研究对象,对碳水化合物酶类CAZymes(Carbohydrate-active enzymes)进行了注释和比较分析,明确了拮抗菌相对于病原菌发生扩增的细胞壁降解酶亚家族;利用ClustalX2.0多序列比对、Mega4.0构建系统发育树和MEME软件预测保守基序的方法,分析了扩增亚家族的序列结构和进化特征。结果表明,拮抗菌中可能参与病原菌细胞壁降解酶类的亚家族CBM50、GH25和GH73发生了显著扩增,并通过序列比较和进化分析初步明确了扩增的亚家族与拮抗菌特异降解病原菌细胞壁组分之间存在关联,为拮抗菌细胞壁降解酶类亚家族CBM50、GH25和GH73参与拮抗的分子机理提供理论依据。  相似文献   

15.
利用琼胶降解菌处理坛紫菜粉末,降解其细胞壁多糖,释放内容物,并获得菌解液,研究不同稀释度坛紫菜菌解液对受体植物蚕豆出芽和生长,以及大豆和番茄幼苗抗性相关指标的影响.结果显示:(1)随琼胶降解菌处理时间的延长,菌解液中还原糖含量逐渐增高.(2)3.33%的菌解液对蚕豆种子萌芽促进效果最好,而2%的菌解液能增加蚕豆叶绿素含量,促进其幼苗生长.(3)3.33%的菌解液能有效提高大豆离体子叶的植保素含量,迅速增加番茄叶片表皮条的H2O2的释放量,提高苯丙氨酸解氨酶活性.研究表明,琼胶降解菌能使坛紫菜细胞壁中的营养物质释放,并产生某些激发物质,从而使坛紫菜菌解液能够促进受体植物的种子发芽和幼苗生长,并能有效诱导植物的抗性.  相似文献   

16.
木葡聚糖(XyG)是一种存在于所有陆生植物细胞壁中的基质多糖, 是双子叶植物初生细胞壁中含量(20%-25%, w/w)最丰富的半纤维素成分。作为细胞壁的组分, XyG不仅与植物的生长发育密切相关, 还在植物抵抗各种生物和非生物逆境过程中发挥重要作用。XyG代谢相关基因主要通过改变植物细胞壁的组成以及对细胞壁进行重排进而改变细胞壁的弹性/硬度等特性, 影响植物的抗逆性。XyG及其寡糖也可能作为信号分子, 或与其它信号分子协同作用应对逆境胁迫。该文概述了XyG的结构与类型及参与XyG生物合成与降解的相关基因, 重点阐述XyG相关基因应答生物和非生物胁迫的作用机制。  相似文献   

17.
植物叶片原生质体分离的可能机制   总被引:1,自引:1,他引:0  
分析了植物叶片在分离液环境中形成原生质体的过程,文中提出,分离液配方中的酸性物质使植物叶片处于酸性环境中并导致植物正常细胞首先发生细胞壁酸性降解,随后出现原生质体脱离细胞壁进入分离液,继而又进一步发生质膜的酸性降解,使细胞核和细胞器进入分离液中,最终分离液中的细胞器以细胞核为中心进行细胞器重组,最后产生外貌形态一致的新的原生质体。植物细胞壁和质膜是植物细胞的包被系统。植物细胞包被系统的酸性降解使植物细胞器重组并产生新的原生质体成为可能。  相似文献   

18.
一、引言高碘酸-锡夫反应(Periodic acid-Schiff reaction),简称PAS反应,系能与多糖、中性粘多糖、粘朊和糖朊、糖脂类及不饱和的脂类和磷脂类呈正反应的组织化学的方法(Pearse,1960)。该方法从McManus(1946)最早应用于组织化学后,现在动物组织化学中已被广泛利用。McManus(1961)最近对该方法进行了总结,并指出“组织的高碘酸氧化形成许多为锡夫试剂着色的物质……。最明显的这些物质是粘朊、糖原、软骨的基质、淀粉粒及植物的细胞壁”。显然,此处细胞壁系指纤维素细胞壁。大家知道,纤维素细胞壁是植物细胞的基本结构,而淀粉粒是植物最普遍和最重要的貯藏物质之一。但二者在植物显微  相似文献   

19.
为探讨1-甲基环丙烯(1-methylcyclopropene, 1-MCP)延缓采后杨桃果实软化的作用机理,本文研究了0.6 μL/L 1-MCP处理对在(15±1)℃、相对湿度90%下贮藏的‘香蜜’甜杨桃(Averrhoa carambola Linn. cv. Xiangmi)果实软化和细胞壁代谢的影响。结果表明:与对照果实相比,1-MCP处理可保持较高的杨桃果实硬度,有效降低果胶酯酶(pectinesterase, PE)、多聚半乳糖醛酸酶(polygalacturonase, PG)、纤维素酶等细胞壁降解酶活性,延缓原果胶、纤维素、半纤维素含量的下降和水溶性果胶含量的增加。因此认为,0.6 μL/L 1-MCP处理能有效控制采后‘香蜜’甜杨桃果实的软化进程,延长果实保鲜期。  相似文献   

20.
绝大多数植物细胞的质膜外都有细胞壁,这是区别予动物细胞的显著特征之一。由于细胞壁的存在,使原生质体的膨胀受到限制,细胞成熟后,使其形态和大小变为固定。细胞壁有保护作用,厚而硬的细胞壁还有支持植物器官的机械作用,同时,细胞壁能影响植物组织的吸收、蒸腾、运输和分泌等功能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号