首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ouabain-induced signaling and vascular smooth muscle cell proliferation   总被引:11,自引:0,他引:11  
The hypothesis of this study is that the sodium pump complex acts as an intracellular signal-transducing molecule in canine vascular smooth muscle cells through its interaction with other membrane and cytoskeletal proteins. We have demonstrated that 1 nm ouabain induced transactivation of the epidermal growth factor receptor (EGFR), resulting in increased proliferation and bromodeoxyuridine (BrdUrd) uptake. Immunoprecipitation and Western blotting showed that the EGFR and Src were phosphorylated within 5 min of 10(-9) m ouabain stimulation. Both ouabain-induced DNA synthesis (BrdUrd uptake) and MAPK42/44 phosphorylation were inhibited by the Src inhibitor PP2, the EGFR kinase inhibitor AG1478, the tyrosine kinase inhibitor genistein, and the MEK1 inhibitor PD98059. Ouabain concentrations higher than 1 nm had little or no stimulating effect on proliferation or BrdUrd uptake but did minimally activate ERK1/2. Thus, low concentrations of ouabain, which do not inhibit the sodium pump sufficiently to perturb the resting cellular ionic milieu, initiate a transactivational signaling cascade leading to vascular smooth muscle cell proliferation.  相似文献   

2.
Long term elevation of the intracellular Na+/K+ ratio inhibits macromolecule synthesis and proliferation in the majority of cell types studied so far, including vascular smooth muscle cells (VSMC). We report here that inhibition of the Na+,K+ pump in VSMC by ouabain or a 1-h preincubation in K+-depleted medium attenuated apoptosis triggered by serum withdrawal, staurosporine, or okadaic acid. In the absence of ouabain, both DNA degradation and Caspase-3 activation in VSMC undergoing apoptosis were insensitive to modification of the extracellular Na+/K+ ratio as well as to hyperosmotic cell shrinkage. In contrast, protection of VSMC from apoptosis by ouabain was abolished under equimolar substitution of Na+o with K+o, showing that the antiapoptotic action of Na+,K+ pump inhibition was caused by inversion of the intracellular Na+/K+ ratio. Unlike VSMC, the same level of increment of the [Na+]i/[K+]i ratio caused by a 2-h preincubation of Jurkat cells with ouabain did not affect chromatin cleavage and Caspase-3 activity triggered by treatment with Fas ligand, staurosporine, or hyperosmotic shrinkage. Thus, our results show for the first time that similar to cell proliferation, maintenance of a physiologically low intracellular Na+/K+ ratio is required for progression of VSMC apoptosis.  相似文献   

3.
1. Ouabain (2.5 x 10(-5) M) inhibited preferentially the tonic response to 40 mM K+ medium (containing enough Na+) without affecting the phasic in taenia coli. When 11 mM lactate was added to the medium (pH 6.5) in the presence of ouabain, the tonic phase to 40 mM K+ recovered markedly. 2. Ouabain (2.5 x 10(-5) M) did not affect the tonic tension in 152 mM K+ medium (Na+ 0 mM). However, ouabain inhibited the recovered tension by the addition of 50 mM Na+ in the 152 mM K+ medium. But ouabain failed to inhibit the marked recovered tension by the addition of 11 mM lactate which utilized, even in the absence of external Na+, in 152 mM K+ medium. 3. Ouabain partly inhibited the shortening to 40 mM K+ (containing enough Na+) at light load; however, it inhibited markedly the shortening at heavy load. 4. There is a possibility that ouabain inhibits active transport of glucose depending on external Na+ in taenia coli of smooth muscle. Ouabain could not inhibit the tension by lactate which utilized under conditions of independent on Na+. Furthermore, it is suggested that ouabain inhibits the contraction which depends on aerobic metabolism; however, it has only a slight effect on contraction which depends on aerobic metabolism; however, it has only a slight effect on contraction which was not so dependent on aerobic metabolism.  相似文献   

4.
Rb+ uptake, intracellular Na+ and K+ levels, and the tissue-medium distribution of the nonmetabolized glucose analog, 3-O-methyl-D-glucose (3-MG) were measured in rat diaphragms incubated with chlormadinone acetate, 6-chloro-4,6-pregnadien-17-ol-3,20-dione 17-acetate (CMA), in the presence and absence of ouabain. CMA in concentrations of 5 X 10(-7) M or higher significantly depressed 86Rb uptake, and promoted an increase in internal Na+ and a decrease in internal K+, indicating inhibition of the sodium pump. Sugar transport in resting muscle parallels the changes in internal Na+ levels and is an additional indicator of sodium pump activity. Equilibration of 3-MG between tissue and medium was accelerated by CMA, in parallel to the rise in internal Na+ level. Effects of CMA on Na+ levels and sugar transport, but not on Rb+ uptake, were additive to those of various concentrations of ouabain, suggesting interaction with sites not affected by ouabain. These results on diaphragm muscle confirm our previous studies on isolated cardiac muscle preparations showing that CMA, added to the aqueous bathing medium, inhibits the sodium pump in intact muscle tissues.  相似文献   

5.
目的:观察低浓度哇巴因对人白血病细胞株Jurkat生长的影响并初步探讨哇巴因特异性调节Jurkat细胞生长的机制。方法:分别用不同低浓度哇巴因作用于人白血病细胞株Jurkat后,采用四甲基偶氮唑盐MTT法检测细胞增殖情况、流式细胞学FCM技术检测细胞凋亡情况以及细胞内线粒体膜电位变化情况,Western blot法观察哇巴因对Jutkat细胞膜表面钠钾ATP酶的表达调节作用。结果:MTT及FCM检测结果表明随着哇巴因浓度的增高,哇巴因对Jurkat细胞的增殖抑制及促凋亡作用越明显。WesternBlot结果显示30nM及50nM哇巴因作用于Jurkat细胞株48h后引起细胞钠钾ATP酶表达下调,[3H]-哇巴因结合实验结果显示在Jurkat细胞株随着哇巴因作用浓度升高,细胞膜钠泵对哇巴因的亲和力逐渐下降。结论:低浓度哇巴因即可抑制白血病细胞株Jurkat增殖并诱导其凋亡。这种特异性细胞生长调控作用与哇巴因引起的细胞膜钠钾ATP酶表达变化相关,最终引起细胞内线粒体膜电位发生变化,释放相关凋亡蛋白,诱导细胞凋亡。  相似文献   

6.
Murine embryonal carcinoma cells (EC) can be induced to differentiate by a variety of chemical agents, including retinoid acid (RA) and dimethyl acetamide (DMA). However, it is not known how these agents exert their effects. In this study we demonstrate that murine EC cells can also be induced to differentiate by ouabain at concentrations which inhibit Na+, K+-ATPase activity as measured by inhibition of 86Rb+ uptake. Since the pharmacologic action of ouabain is thought to be specific, we investigated the role of Na+, K+-ATPase inhibition and specific metabolic consequences of this inhibition in the induction of EC differentiation, and explored whether this might be a common mode of action for a variety of structurally diverse inducers. Although the Na+, K+-ATPase maintains ion gradients in cells, our studies failed to demonstrate a consistent role for alterations of ion flux or ion concentration on the differentiation process. Ouabain inhibited cell growth, but a direct correlation between the degree of growth inhibition and the extent of differentiation could not be demonstrated. There was also no evidence that RA or DMA induces differentiation by inhibiting the Na+, K+-ATPase. The mechanism of ouabain induction may be mediated by some alternative consequence of Na+, K+-ATPase inhibition, but it appears to be specific for that inducer and cannot be generalized to that of other inducers of EC differentiation.  相似文献   

7.
Na+,K+-ATPase, the enzymatic moiety that operates as the electrogenic sodium-potassium pump of the cell plasma membrane, is inhibited by cardiac glycosides, and this specific interaction of a drug with an enzyme has been considered to be responsible for digitalis-induced vascular smooth muscle contraction. Although studies aimed at localization, isolation, and measurement of the Na+,K+-ATPase activity (or Na+, K- pump activity) indicate its presence in vascular smooth muscle sarcolemma, its characterization as the putative vasopressor receptor site for cardiac glycosides has depended on pharmacological studies of vascular response in vivo and on isolated artery contractile responses in vitro. More recently, radioligand-binding studies using [3H]ouabain have aided in the characterization of drug-enzyme interaction. Such studies indicate that in canine superior mesenteric artery (SMA), Na+,K+-ATPase is the only specific site of interaction of ouabain with resultant inhibition of the enzyme. The characteristics of [3H]ouabain binding to this site are similar to those of purified or partially purified Na+,K+-ATPase of other tissues, which suggests that if Na+,K+-ATPase inhibition is causally related to digitalis-mediated effects on vascular smooth muscle contraction, then therapeutic concentrations of cardiac glycosides could act to cause SMA vasoconstriction. The additional finding from radioligand-binding studies that Na+,K+-ATPase exists in much smaller quantities (density of sites per cell) in SMA than in either heart or kidney may have implications concerning its physiological, biochemical or pharmacological role in modulating vascular muscle tone.  相似文献   

8.
Addition of serum to density-arrested BALB/c-3T3 cells causes a rapid increase in uptake of Na+ and K+, followed 12 h later by the onset of DNA synthesis. We explored the role of intracellular univalent cation concentrations in the regulation of BALB/c-3T3 cell growth by serum growth factors. As cells grew to confluence, intracellular Na+ and K+ concentrations ([Na+]i and [K+]i) fell from 40 and 180 to 15 and 90 mmol/liter, respectively. Stimulation of growth of density-inhibited cells by the addition of serum growth factors increased [Na]i by 30% and [K+]i by 13-25% in early G0/G1, resulting in an increase in total univalent cation concentration. Addition of ouabain to stimulated cells resulted in a concentration-dependent steady decrease in [K+]i and increase in [Na+]i. Ouabain (100 microM) decreased [K+]i to approximately 60 mmol/liter by 12 h, and also prevented the serum- stimulated increase in 86Rb+ uptake. However, 100 microM ouabain did not inhibit DNA synthesis. A time-course experiment was done to determine the effect of 100 microM ouabain on [K+]i throughout G0/G1 and S phase. The addition of serum growth factors to density-inhibited cells stimulated equal rates of entry into the S phase in the presence or absence of 100 microM ouabain. However, in the presence of ouabain, there was a decrease in [K+]i. Therefore, an increase in [K+]i is not required for entry into S phase; serum growth factors do not regulate cell growth by altering [K+]i. The significance of increased total univalent cation concentration is discussed.  相似文献   

9.
Full-grown prophase-arrested oocytes of Xenopus laevis were treated with 50 nM phorbol 12-myristate 13-acetate (PMA), an activator of protein kinase C, or with 50 nM 4 alpha-phorbol 12,13-didecanoate (4 alpha PDD) that does not activate protein kinase C. The effect on membrane currents and capacitance, inulin uptake and ouabain binding, and on membrane morphology were analyzed. (i) During application of PMA, current generated by the Na+/K+ pump decreases; in addition, Cl- and K+ channels become inhibited. This general decrease in membrane conductance reaches steady state after about 60 min. 4 alpha PDD was ineffective. (ii) Ouabain binding experiments demonstrate that PMA (K1/2 = 7 nM), but not 4 alpha PPD, induces a reduction of the number of pump molecules in the surface membrane. Permeabilization of oocytes by digitonin plus 0.02% SDS renders all binding sites present prior to PMA treatment again accessible for ouabain. The KD value for ouabain binding is not influenced. 4 alpha PDD was ineffective. (iii) Exposure of oocytes to PMA reduces membrane capacitance and stimulates uptake of inulin suggesting an increase in endocytosis. Electron micrographs show that PMA reduces the number and length of microvilli, leading finally to a smooth membrane surface with a reduced surface area. From these results we conclude that stimulation of protein kinase C leads to downregulation of the sodium pump. A major portion of this inhibition is brought about by reduction in area of surface membrane with a concomitant internalization of pump molecules. In addition to this mode of downregulation, a direct effect of stimulation of protein kinase C on the pump molecule cannot be excluded.  相似文献   

10.
Transformed mouse fibroblasts, such as 3T6, exhibit an increase in plasma membrane permeability to nucleotides and other normally impermeant molecules when incubated with external ATP in an alkaline medium low in divalent cations. Increased nucleotide permeability, induced by external ATP, occurs after a 3- to 5-min lag period. Prior to this event, there is a dramatic Na+ influx and K+ efflux, a significant reduction in the levels of intracellular ATP and organic phosphates, and a reduction in the plasma membrane potential. Accordingly, we postulate that these cellular responses to external ATP play a role in the efflux of nucleotides. Ouabain, a specific inhibitor of the plasma membrane (Na+,K+)-ATPase, acts together with low concentrations of external ATP to increase nucleotide permeability in 3T6 cells. This effect occurs at concentrations of ouabain and ATP which alone do not increase nucleotide permeability. In addition, ouabain and low concentrations of ATP alone have little effect on the level of intracellular ATP. This is in contrast to energy inhibitors and uncouplers which appear to enhance nucleotide permeability by lowering the intracellular ATP concentration. Ouabain alone causes a threefold increase in intracellular Na+ levels and a similar reduction in intracellular K+ levels under our experimental conditions, supporting the idea that ion fluxes are involved in the mechanism of permeabilization.  相似文献   

11.
We have shown earlier that low concentrations of ouabain that do not perturb the ionic milieu can initiate proliferation of vascular smooth muscle cells (VSMCs) in the synthetic phenotype from three different species: canine, rodent, and human. This effect occurs by activation of Src and the epidermal growth factor receptor (EGFR), and thus supports the concept of an additional, nonionic, transducing function of the Na pump. The present study presents data suggesting that such activation occurs through specific Na pump sites localized to the caveolae, and subsequent interactions with selected signaling proteins resident within the same membrane microdomain. Our data show that at rest, 30% of the total number of Na pumps are concentrated within the caveolae. When the various VSMCs were treated with proliferating concentrations of ouabain, the key protein content in isolated caveolae was increased. However, the recruited proteins were different between the different tissues. Thus ouabain activated the recruitment of both the Na pump alpha1-subunit and EGFR in the caveolae from rat A7r5 cells, whereas in both human and canine cells, ouabain activated the recruitment of Src, with the caveolar content of the other proteins remaining constant. These data demonstrate that ouabain interacts with the alpha1-subunit of the Na pump that resides within the caveolar domain, and such interaction selectively recruits signal transducing proteins to this microdomain resulting in their activation, which is necessary for the initiation of the proliferative cascade.  相似文献   

12.
At concentrations as low as 10(-7) M, the cardiotonic glycosteroid ouabain, a specific inhibitor of the membrane Na+, K+-ATPase, is known to inhibit in vitro human lymphocyte proliferation produced in mixed lymphocyte cultures or induced by various stimulating agents (PHA, Con A, PWM, soluble antigens), while mouse lymphocyte proliferation is unaffected at this concentration. Ouabain inhibits most of proliferative response parameters at all stages of the transformation. This observation prompted us to suggest that ouabain could also act through inhibition of interleukin production which is known to occur during the first hours after T-cell stimulation in the presence of monocytes. In order to check the possible influence of ouabain on interleukin production, conditioned media from stimulated human mononuclear cells, prepared in the presence or in the absence of inhibitor, were tested for their ability to promote a mouse thymocyte response to PHA. Instead of the expected inhibition, we found that ouabain, even at high concentrations (2 X 10(-6) M) enhanced the stimulatory effect and/or the production of murine thymocyte activating factor(s). Moreover conditioned media from serum-free cultures of unstimulated human mononuclear cells exposed for 24 hr to low ouabain concentrations (10(-8) to 10(-7) M) showed a high activating effect on the response of murine thymocytes to PHA. This soluble factor produced upon ouabain treatment is produced by adherent cells and appears to be functionally similar to interleukin 1.  相似文献   

13.
Angiotensin peptides (AI, AII, AIII) increased the rate of Na+ accumulation by smooth muscle cells (SMC) cultured from rat aorta. The stimulatory effect of AII on Na+ uptake was observed when Na+ exodus via the Na+/K+ pump was blocked either by ouabain or by the removal of extracellular K+. AII was at least ten times more potent than AIII and about 100 times more potent than AI in stimulating Na+ uptake. Saralasin had little effect on Na+ uptake by itself but almost completely blocked the increase caused by AII. The stimulation of net Na+ entry by AI, but not AII, was prevented by protease inhibitors. The stimulation of Na+ uptake was almost completely blocked by amiloride. Tetrodotoxin, which prevented veratridine from increasing Na+ uptake, had no effect on the response to AII. Angiotensin increased the rate of ouabain-sensitive 86Rb+ uptake (Na+/K+ pump activity) but had no effect on ouabain-sensitive ATPase activity in frozen-thawed SMC or in microsomal membranes isolated from cultured SMC. The stimulation of ouabain-sensitive 86Rb+ uptake by AII was blocked by saralasin. Omitting Na+ from the external medium prevented AII from increasing 86Rb+ uptake. AII had no effect on cell volume or cyclic AMP levels in the cultured SMC. These results suggest that angiotensin peptides activate an amiloride-sensitive Na+ transporter which supplies the Na+/K+ pump with more Na+, its rate-limiting substrate.  相似文献   

14.
Ouabain inhibited 86RbCl uptake by 80% in rabbit gastric superficial epithelial cells (SEC), revealing the presence of a functional Na+,K+-ATPase [(Na+ + K+)-transporting ATPase] pump. Intact SEC were used to study the ouabain-sensitive Na+,K+-ATPase and K+-pNPPase (K+-stimulated p-nitrophenyl phosphatase) activities before and after lysis. Intact SEC showed no Na+,K+-ATPase and insignificant Mg2+-ATPase activity. However, appreciable K+-pNPPase activity sensitive to ouabain inhibition was demonstrated by localizing its activity to the cell-surface exterior. The lysed SEC, on the other hand, demonstrated both ouabain-sensitive Na+,K+-ATPase and K+-pNPPase activities. Thus the ATP-hydrolytic site of Na+,K+-ATPase faces exclusively the cytosol, whereas the associated K+-pNPPase is distributed equally across the plasma membrane. The study suggests that the cell-exterior-located K+-pNPPase can be used as a convenient and reliable 'in situ' marker for the functional Na+,K+-ATPase system of various isolated cells under noninvasive conditions.  相似文献   

15.
As reported previously, some dogs possess red cells characterized by low Na+, high K+ concentrations, and high activity of (Na+, K+)-ATPase, although normal dog red cells contain low K+, high Na+, and lack (Na+, K+)-ATPase. Furthermore, these red cells show increased activities of L-glutamate and L-aspartate transport, resulting in high accumulations of such amino acids in their cells. The present study demonstrated: (i) Na+ gradient-dependent L-glutamate and L-aspartate transport in the high K+ and low K+ red cells were dominated by a saturable component obeying Michaelis-Menten kinetics. Although no difference of the Km values was observed between the high K+ and low K+ cells, the Vmax values for both amino acids' transport in the high K+ cells were about three times those of low ones. (ii) L- and D-aspartate, but not D-glutamate, competitively inhibited L-glutamate transport in both types of the cells. (iii) Ouabain decreased the uptake of the amino acids in the high K+ dog red cells, whereas it was not effective on those in the low K+ cells. (iv) The ATP-treated high K+ cells [(K+]i not equal to [K+]o, [Na+]i greater than [Na+]o) showed a marked decrease of both amino acids' uptake rate, which was almost the same as that of the low K+ cells. (v) Valinomycin stimulated the amino acids' transport in both of the high K+ and the ATP-treated low K+ cells [( K+]i greater than [K+]o, [Na+]o), suggesting that the transport system of L-glutamate and L-aspartate in both types of the cells might be electrogenic. These results indicate that the increased transport activity in the high K+ dog red cells was a secondary consequence of the Na+ concentration gradient created by (Na+, K+)-ATPase.  相似文献   

16.
Cardiac glycosides stimulate phospholipase C activity in rat pinealocytes   总被引:1,自引:0,他引:1  
Ouabain and related cardiac glycosides stimulate phospholipase C activity 5-fold in rat pinealocytes. The combined treatment of ouabain and norepinephrine, which also stimulates phospholipase C, produces an additive effect. The effects of either ouabain or norepinephrine are blocked by EGTA. However, there are notable differences. The stimulatory effect of ouabain is lost when extracellular Na+ is reduced to 20 mM and is not blocked by prazosin. In contrast, the stimulatory effect of norepinephrine is not blocked when extracellular Na+ is reduced to 20 mM but is blocked by prazosin. Ouabain appears to increase phospholipase C activity through a mechanism involving inhibition of Na+,K+-ATPase, and an accumulation of intracellular Na+ and Ca2+, not involving alpha 1-adrenoceptors. These findings raise the possibility that activation of phospholipase C might be a more general effect of cardiac glycosides.  相似文献   

17.
The biochemical and pharmacological properties of the (Na+,K+)-ATPase have been studied at different stages of chick embryonic heart development in ovo and under cell culture conditions. The results show the existence of two families of ouabain binding sites: a low affinity binding site with a dissociation constant (Kd) of 2-6 microM for the ouabain-receptor complex and a high affinity binding site with a Kd of 26-48 nM. Levels of high affinity sites gradually decrease during cardiac ontogenesis to reach a plateau near 14 days of development. Conversely the number of low affinity binding sites is essentially invariant between 5 days and hatching. Cultured cardiac cells display the same binding characteristics as those found in intact ventricles. Inhibition of 86Rb+ uptake in cultured cardiac cells and an increase in intracellular Na+ concentration, due to (Na+,K+)-ATPase blockade, occur in a ouabain concentration range corresponding to the saturation of the low affinity ouabain site. Ouabain-stimulated 45Ca2+ uptake increases in parallel with the increase in the intracellular Na+ concentration. It is suppressed in Na+-free medium or when Na+ is replaced by Li+ suggesting that the increase is due to the indirect activation of the Na+/Ca2+ exchange system in the plasma membrane. Dose-response curves for the inotropic effects of ouabain on papillary muscle and on ventricular cells in culture indicate that the development of the cardiotonic properties is parallel to the saturation of the low affinity binding site for ouabain. Therefore, inhibition of the cardiac (Na+,K+)-ATPase corresponding to low affinity ouabain binding sites seems to be responsible for both the cardiotonic and cardiotoxic effects of the drug.  相似文献   

18.
HeLa cells synthesize and secrete increased levels of tissue plasminogen activator (tPA) when incubated for 18 h with 10-20 nM phorbol myristate acetate. This response was inhibited by a number of conditions which affect intracellular Na+ and K+ concentrations. Removing extracellular Na+, while maintaining isotonicity with choline+, reduced the secretion of both functional and antigenic tPA in a linear fashion. A series of cardiac glycosides and related compounds strongly inhibited tPA secretion with the following rank order of potency: digitoxin = ouabain greater than digoxin greater than digitoxigenin greater than digoxigenin greater than digitoxose greater than digitonin. These compounds also inhibited cellular Na+/K+-ATPase activity over an identical concentration range. Two compounds which selectively increase cellular permeability to K+, valinomycin, and nigericin, strongly inhibited tPA secretion, with IC50 values of approximately 50 nM. In contrast, monensin, which selectively increases cellular permeability to Na+, was much less active. Valinomycin, but not nigericin, also inhibited cellular Na+/K+-ATPase activity. Phorbol myristate acetate, 5-20 nM, increased Na+/K+-ATPase activity up to 2-fold and tPA secretion up to 15-fold. We conclude that the secretion of tPA by HeLa cells treated with phorbol myristate acetate proceeds via a mechanism which requires extracellular Na+ and a functional Na+/K+-ATPase ("sodium pump") enzyme.  相似文献   

19.
Ouabain at nanomolar concentrations stimulates total Rb+ influx by 20 +/- 2% in monolayer cultures of myocytes which were either in physiologic ionic steady-state conditions ('control') or 'loaded with Na+' following exposure to K+-free medium. The ouabain-stimulated Rb+ influx was completely abolished by 0.1 mM bumetanide both in 'control' and in 'Na+-loaded' myocytes. Thus, addition of nanomolar concentrations of ouabain to myocytes markedly stimulate the bumetanide-sensitive Rb+ influx. This influx was increased up to 3- and 4-fold in 'control' and 'Na+-loaded' myocytes, respectively. Ouabain at nanomolar concentrations had no significant effect on the component of 86Rb+ influx which is inhibited by millimolar concentrations of ouabain (the so called 'ouabain-sensitive' or 'pump-mediated' Rb+ influx) in 'control' and 'Na+-loaded' cells. It is proposed that the increased rates of bumetanide-sensitive Rb+ influx are accompanied by an increased bumetanide-sensitive Na+ influx through the Na+/K+ cotransporter and thus to a transient increase in intracellular Na+ concentrations [Na+]i. The increase in [Na+]i, subsequently causes a transient elevation in [Ca2+]i via the Na+/Ca2+ exchanger and may be involved in the regulation of cardiac cells' contractility.  相似文献   

20.
Babesia gibsoni multiplies well in canine red blood cells (RBCs) containing high concentrations of potassium (HK), reduced glutathione, and free amino acids as a result of an inherited high Na,K-ATPase activity, i.e., HK RBCs. To determine the role of Na,K-ATPase in the multiplication of B. gibsoni, the effect of ouabain on the proliferation of the parasites in HK RBCs was investigated. To determine the direct effect of ouabain on the parasites, the proliferation of the parasites in normal canine RBCs containing low potassium (LK) and high sodium concentrations, i.e., LK RBCs, which completely lack Na,K-ATPase activity, was observed. Ouabain at 0.1 mM significantly suppressed the multiplication of B. gibsoni in HK RBCs in vitro, whereas it had no effect on the parasites in LK RBCs. The results suggest that the multiplication of B. gibsoni in HK RBCs depends mainly on the presence of Na,K-ATPase in the cells. Therefore, the effects of ouabain on the intracellular cation and free amino acid composition of the HK RBCs were examined. In HK RBCs incubated with ouabain, a marked decrease in the concentration of potassium and an increase in sodium were observed, together with a decrease in the number of parasitized cells. These results suggest that the intracellular cation composition maintained by Na,K-ATPase might be advantageous to the parasites. Moreover, the concentrations of some free amino acids, i.e., asparagine, aspartate, glutamate, glutamine, glycine, and histidine, were markedly decreased in HK RBCs incubated with ouabain. Decreased concentrations of the free amino acids induced by inhibition of Na,K-ATPase seemed to affect the multiplication of B. gibsoni in HK RBCs. Based on these results, it is clear that the high Na,K-ATPase activity in HK RBCs contributes to the proliferation of B. gibsoni by maintaining high potassium and low sodium concentrations, as well as high concentrations of some free amino acids in the cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号