首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.

Key message

Spelt wheat is a distinct genetic group to elite bread wheat, but heterosis for yield and protein quality is too low for spelt to be recommended as heterotic group for hybrid breeding in wheat.

Abstract

The feasibility to switch from line to hybrid breeding is currently a hot topic in the wheat community. One limitation seems to be the lack of divergent heterotic groups within wheat adapted to a certain region. Spelt wheat is a hexaploid wheat that can easily be crossed with bread wheat and that forms a divergent genetic group when compared to elite bread wheat. The aim of this study was to investigate the potential of Central European spelt as a heterotic group for Central European bread wheat. We performed two large experimental field studies comprising in total 43 spelt lines, 14 wheat lines, and 273 wheat–spelt hybrids, and determined yield, heading time, plant height, resistance against yellow rust, leaf rust, and powdery mildew, as well as protein content and sedimentation volume. Heterosis of yield was found to be lower than that of hybrids made between elite wheat lines. Moreover, heterosis of the quality trait sedimentation volume was negative. Consequently, spelt wheat does not appear suited to be used as heterotic group in hybrid wheat breeding. Nevertheless, high combining abilities of a few spelt lines with elite bread wheat lines make them interesting resources for pre-breeding in bread wheat. Thereby, the low correlation between line per se performance and combining ability of these spelt lines shows the potential to unravel the breeding value of genetic resources by crossing them to an elite tester.
  相似文献   

2.
Modern durum wheat (AABB) is more sensitive to zinc (Zn) deficiency than bread wheat (AABBDD). One strategy to increase productivity and expansion of durum wheat industry in Zn-deficient soils is to improve its ability to grow and yield in such soils. This ability is termed Zn efficiency. In a growth room experiment using soil culture, we assessed the potential of Triticum turgidum L. subsp. dicoccon (Shrank) Thell. (domesticated emmer wheat, AABB) as a genetic resource for further improvement of Zn efficiency in modern durum wheat. Twenty four accessions of domesticated emmer wheat, four durum landraces/cultivars, and two bread wheat cultivars/ advanced breeders lines of known Zn efficiency were tested under Zn deficiency and Zn sufficiency. Significant variation was observed among genotypes in Zn deficiency symptoms, dry matter production, shoot Zn concentration, shoot Zn content and Zn utilisation efficiency (physiological efficiency). We identified domesticated emmer wheat accessions with greater Zn efficiency than modern durum wheat and even bread wheat genotypes. These accessions could be used in breeding programs to improve Zn efficiency of durum wheat. The results suggest that Zn efficiency of durum or bread wheat is likely to be determined collectively by its progenitors.  相似文献   

3.

Background  

In the last hundred years, the development of improved wheat cultivars has led to the replacement of landraces and traditional varieties by modern cultivars. This has resulted in a decline in the genetic diversity of agriculturally used wheat. However, the diversity lost in the elite material is somewhat preserved in crop gene banks. Therefore, the gene bank accessions provide the basis for genetic improvement of crops for specific traits and and represent rich sources of novel allelic variation.  相似文献   

4.
A partial promoter region of the high-molecular weight (HMW) glutenin genes was studied in two wheat specimens, a 300 year-old spelt (Triticum spelta L.) and an approximately 250 year-old bread wheat (Triticum aestivum L.) from Switzerland. Sequences were compared to a recent Swiss landrace T. spelta ’Oberkulmer.’ The alleles from the historical bread wheat were most similar to those of modern T. aestivum cultivars, whereas in the historical and the recent spelt specific alleles were detected. Pairwise genetic distances up to 0.03 within 200 bp from the HMW Glu-A1-2, Glu-B1-1 and Glu-B1-2 alleles in spelt to the most-similar alleles from bread wheat suggest a polyphyletic origin. The spelt Glu-B1-1 allele, which was unlike the corresponding alleles in bread wheat, was closer related to an allele found in tetraploid wheat cultivars. The results are discussed in context of the origin of European spelt. Received: 22 July 2000 / Accepted: 27 April 2001  相似文献   

5.
Wheat genetic diversity trends during domestication and breeding   总被引:25,自引:0,他引:25  
It has been claimed that plant breeding reduces genetic diversity in elite germplasm which could seriously jeopardize the continued ability to improve crops. The main objective of this study was to examine the loss of genetic diversity in spring bread wheat during (1) its domestication, (2) the change from traditional landrace cultivars (LCs) to modern breeding varieties, and (3) 50 years of international breeding. We studied 253 CIMMYT or CIMMYT-related modern wheat cultivars, LCs, and Triticum tauschii accessions, the D-genome donor of wheat, with 90 simple sequence repeat (SSR) markers dispersed across the wheat genome. A loss of genetic diversity was observed from T. tauschii to the LCs, and from the LCs to the elite breeding germplasm. Wheats genetic diversity was narrowed from 1950 to 1989, but was enhanced from 1990 to 1997. Our results indicate that breeders averted the narrowing of the wheat germplasm base and subsequently increased the genetic diversity through the introgression of novel materials. The LCs and T. tauschii contain numerous unique alleles that were absent in modern spring bread wheat cultivars. Consequently, both the LCs and T. tauschii represent useful sources for broadening the genetic base of elite wheat breeding germplasm.  相似文献   

6.

Key message

A high level of genetic diversity was found in the A. E. Watkins bread wheat landrace collection. Genotypic information was used to determine the population structure and to develop germplasm resources.

Abstract

In the 1930s A. E. Watkins acquired landrace cultivars of bread wheat (Triticum aestivum L.) from official channels of the board of Trade in London, many of which originated from local markets in 32 countries. The geographic distribution of the 826 landrace cultivars of the current collection, here called the Watkins collection, covers many Asian and European countries and some from Africa. The cultivars were genotyped with 41 microsatellite markers in order to investigate the genetic diversity and population structure of the collection. A high level of genetic diversity was found, higher than in a collection of modern European winter bread wheat varieties from 1945 to 2000. Furthermore, although weak, the population structure of the Watkins collection reveals nine ancestral geographical groupings. An exchange of genetic material between ancestral groups before commercial wheat-breeding started would be a possible explanation for this. The increased knowledge regarding the diversity of the Watkins collection was used to develop resources for wheat research and breeding, one of them a core set, which captures the majority of the genetic diversity detected. The understanding of genetic diversity and population structure together with the availability of breeding resources should help to accelerate the detection of new alleles in the Watkins collection.  相似文献   

7.

Key message

The fungus Parastagonospora nodorum causes Septoria nodorum blotch (SNB) of wheat. A genetically diverse wheat panel was used to dissect the complexity of SNB and identify novel sources of resistance.

Abstract

The fungus Parastagonospora nodorum is the causal agent of Septoria nodorum blotch (SNB) of wheat. The pathosystem is mediated by multiple fungal necrotrophic effector–host sensitivity gene interactions that include SnToxA–Tsn1, SnTox1–Snn1, and SnTox3–Snn3. A P. nodorum strain lacking SnToxA, SnTox1, and SnTox3 (toxa13) retained wild-type-like ability to infect some modern wheat cultivars, suggesting evidence of other effector-mediated susceptibility gene interactions or the lack of host resistance genes. To identify genomic regions harbouring such loci, we examined a panel of 295 historic wheat accessions from the N. I. Vavilov Institute of Plant Genetic Resources in Russia, which is comprised of genetically diverse landraces and breeding lines registered from 1920 to 1990. The wheat panel was subjected to effector bioassays, infection with P. nodorum wild type (SN15) and toxa13. In general, SN15 was more virulent than toxa13. Insensitivity to all three effectors contributed significantly to resistance against SN15, but not toxa13. Genome-wide association studies using phenotypes from SN15 infection detected quantitative trait loci (QTL) on chromosomes 1BS (Snn1), 2DS, 5AS, 5BS (Snn3), 3AL, 4AL, 4BS, and 7AS. For toxa13 infection, a QTL was detected on 5AS (similar to SN15), plus two additional QTL on 2DL and 7DL. Analysis of resistance phenotypes indicated that plant breeders may have inadvertently selected for effector insensitivity from 1940 onwards. We identify accessions that can be used to develop bi-parental mapping populations to characterise resistance-associated alleles for subsequent introgression into modern bread wheat to minimise the impact of SNB.
  相似文献   

8.
Grain protein content in wheat has been shown to be affected by the NAM-B1 gene where the wildtype allele confers high levels of protein and micronutrients but can reduce yield. Two known non-functional alleles instead increase yield but lead to lower levels of protein and micronutrients. The wildtype allele in hexaploid bread wheat is so far mainly known from historical specimens and a few lines with an emmer wheat introgression. Here we report a screening for the wildtype allele in wheats of different origin. First, a worldwide core collection of 367 bread wheats with worldwide origin was screened and five accessions carrying the wildtype NAM-B1 allele were found. Several of these could be traced to a Fennoscandian origin and the wildtype allele was more frequent in spring wheat. These findings, together with the late maturation of spring wheat, suggested that the faster maturation caused by the wildtype allele might have preserved it in areas with a short growing season. Thus a second set consisting of 138 spring wheats of a northern origin was screened and as many as 33?% of the accessions had the wildtype allele, all of a Fennoscandian origin. The presence of the wildtype allele in landraces and cultivars is in agreement with the use of landraces in Fennoscandian wheat breeding. Last, 22 spelt wheats, a wheat type previously suggested to carry the wildtype allele, were screened and five wildtype accessions found. The wildtype NAM-B1 accessions found could be a suitable material for plant breeding efforts directed towards increasing the nutrient content of bread wheat.  相似文献   

9.
Chinese wolfberry (Lycium spp.) is an important edible and medicinal plant, with a long cultivation history. The genetic relationships among wild Lycium species and landraces have been unclear for a number of reasons, which has hindered the breeding of modern Chinese wolfberry cultivars. In this study, we collected 19 accessions of Chinese wolfberry germplasm, and constructed the genetic relationship based on RAD-seq markers. We obtained 30.32 Gb of clean data, with the average value of each sample being 1.596 Gb. The average mapping rate was 85.7%, and the average coverage depth was 6.76 X. The phylogeny results distinguished all accessions clearly. All the studied landraces shared their most recent common ancestor with L. barbarum, which indicated that L. barbarum may be involved in cultivation of these landraces. The relationship of some landraces, namely the ‘Ningqi’ series, ‘Qingqi-1’ and ‘Mengqi-1,’ has been supported by the phylogeny results, while the triploid wolfberry was shown to be based on a hybrid between ‘Ningqi-1’ and a tetraploid wolfberry. This study uncovered the genetic background of Chinese wolfberry, and developed the foundation for species classification, accession identification and protection, and the production of hybrid cultivars of wolfberry.  相似文献   

10.

Key message

The multiple synthetic derivatives platform described in this study will provide an opportunity for effective utilization of Aegilops tauschii traits and genes for wheat breeding.

Abstract

Introducing genes from wild relatives is the best option to increase genetic diversity and discover new alleles necessary for wheat improvement. A population harboring genomic fragments from the diploid wheat progenitor Aegilops tauschii Coss. in the background of bread wheat (Triticum aestivum L.) was developed by crossing and backcrossing 43 synthetic wheat lines with the common wheat cultivar Norin 61. We named this population multiple synthetic derivatives (MSD). To validate the suitability of this population for wheat breeding and genetic studies, we randomly selected 400 MSD lines and genotyped them by using Diversity Array Technology sequencing markers. We scored black glume as a qualitative trait and heading time in two environments in Sudan as a quantitative trait. Our results showed high genetic diversity and less recombination which is expected from the nature of the population. Genome-wide association (GWA) analysis showed one QTL at the short arm of chromosome 1D different from those alleles reported previously indicating that black glume in the MSD population is controlled by new allele at the same locus. For heading time, from the two environments, GWA analysis revealed three QTLs on the short arms of chromosomes 2A, 2B and 2D and two on the long arms of chromosomes 5A and 5D. Using the MSD population, which represents the diversity of 43 Ae. tauschii accessions representing most of its natural habitat, QTLs or genes and desired phenotypes (such as drought, heat and salinity tolerance) could be identified and selected for utilization in wheat breeding.
  相似文献   

11.

Key message

BayesR and MLM association mapping approaches in common wheat landraces were used to identify genomic regions conferring resistance to Yr, Lr, and Sr diseases.

Abstract

Deployment of rust resistant cultivars is the most economically effective and environmentally friendly strategy to control rust diseases in wheat. However, the highly evolving nature of wheat rust pathogens demands continued identification, characterization, and transfer of new resistance alleles into new varieties to achieve durable rust control. In this study, we undertook genome-wide association studies (GWAS) using a mixed linear model (MLM) and the Bayesian multilocus method (BayesR) to identify QTL contributing to leaf rust (Lr), stem rust (Sr), and stripe rust (Yr) resistance. Our study included 676 pre-Green Revolution common wheat landrace accessions collected in the 1920–1930s by A.E. Watkins. We show that both methods produce similar results, although BayesR had reduced background signals, enabling clearer definition of QTL positions. For the three rust diseases, we found 5 (Lr), 14 (Yr), and 11 (Sr) SNPs significant in both methods above stringent false-discovery rate thresholds. Validation of marker–trait associations with known rust QTL from the literature and additional genotypic and phenotypic characterisation of biparental populations showed that the landraces harbour both previously mapped and potentially new genes for resistance to rust diseases. Our results demonstrate that pre-Green Revolution landraces provide a rich source of genes to increase genetic diversity for rust resistance to facilitate the development of wheat varieties with more durable rust resistance.
  相似文献   

12.
Hybrid necrosis genotypes have been identified in 125 Russian cultivars of winter bread wheat. More than half of them (56%) carry the Ne2 gene (genotype ne1ne1Ne2Ne2); others are free of necrosis genes (genotype ne1ne1ne2ne2). The possible causes of the increase in the Ne2 allele frequency and the loss of the Ne1Ne1ne2ne2 genotype in modern Russian cultivars of winter wheat are discussed. The principal component method has been used to compare the structures of the genetic diversity of cultivars differing in the hybrid necrosis genotype. It has been found that the Ne2 allele in winter wheat cultivars from northern Russia has originated from the cultivar Mironovskaya 808, whereas the cultivar Bezostaya 1 is not a source of this gene. In cultivars from southern Russia, the presence of the Ne2 allele is also mainly accounted for by the use of Mironovskaya 808 wheat in their breeding. The recessive genotype is explained by the presence of descendants of the cultivar Odesskaya 16 in the pedigrees of southern Russian winter wheats. The genetic relationship of cultivars with identical and different necrosis genotypes has been analyzed in nine regions of the Russian Federation.  相似文献   

13.
Spelt and common wheat constitute two of the six groups of the hexaploid wheats with an AABBDD genome. Spelt culture has been progressively replaced by that of common wheat which out-yields spelt under high-input conditions. In the last decades, spelt breeders intended to introduce the yield-potential and bread-making qualities of common wheat into spelt, by frequent crossings between accessions of these two different groups. The present study aims at determining the genetic basis of modern spelt cultivars in terms of intra-group variability and inter-group (spelt vs common wheat) distances, by using microsatellite markers developed for common wheat. The allelic composition of 30 spelt and nine common wheat accessions was determined at 17 microsatellite loci. The coefficient of co-ancestry (ƒ) and the genetic distances (1 - proportion of shared alleles) based upon allelic composition were calculated for all pairs of accessions. Two dendrograms were constructed using the UPGMA method. Amplification products were found for all loci on most accessions. A total of 113 alleles was identified, of which 60.2% were specific to spelt or common wheat. The correlation between (1 –ƒ ) and the genetic distance was high (0.701***). The mean pairwise genetic distance was 0.656 ± 0.181 over the 39 accessions, 0.706 ± 0.14 among common wheat and 0.573 ± 0.172 among spelt. The mean genetic distance between spelt and wheat was 0.782 ± 0.113. The two dendrograms were in accordance with each other and clearly separated the spelt from the common wheat accessions. It is concluded that microsatellites developed for common wheat and distances based on the proportion of shared alleles are powerful tools for reconstructing phylogenies in spelt, and that the genetic basis of modern spelt cultivars is narrow despite frequent crosses made with bread wheat. Received: 26 January 2000 / Accepted: 26 May 2000  相似文献   

14.
Pre-harvest sprouting (PHS) in bread wheat is a major abiotic constraint reducing yield and influencing the production of high quality grain. In China both spring and winter wheat regions are affected by PHS. Sichuan lies in southwest China, where the most of rainfall occurs during April to September when wheat is harvested. The present investigation was conducted to identify the allelic variability of Vp1, a gene that plays a role in maintenance and induction of dormancy, among Sichuan landraces and recent cultivars with different dormancy levels and to find potential sources of PHS resistance for breeding. Sichuan landrace and cultivar wheat accessions had a wide range of dormancy levels. The average germination index (GI) of Sichuan landrace accessions was 0.232, whereas at 0.674 it was much higher for cultivars. The different dormancy levels between landraces and cultivars indicated that pre-harvest sprouting resistance might have been neglected in recent Sichuan wheat breeding programs. The average GI of white grained accessions was higher than for red grained accessions. Particular Vp-1B gene fragments were specific in landraces or cultivars and in white or red grained accessions. The results indicated that Vp-1B markers could be used to distinguish cultivars and landraces. Significant relationships between certain Vp-1B allelesand GI of Sichuan wheat accessions were shown by Spearman’s rank correlation analysis.  相似文献   

15.
Durum wheat (Triticum turgidum var. durum Desf.) is a major world crop that is grown primarily in areas of the world that experience periodic drought, and therefore, breeding climate-resilient durum wheat is a priority. High-throughput single nucleotide polymorphism (SNP) genotyping techniques have greatly increased the power of linkage and association mapping analyses for bread wheat, but as yet there is no durum wheat-specific platform available. In this study, we evaluate the new 384HT Wheat Breeders Array for its usefulness in tetraploid wheat breeding by genotyping a breeding population of F6 hybrids, derived from multiple crosses between T. durum cultivars and wild and cultivated emmer wheat accessions. Using a combined linkage and association mapping approach, we generated a genetic map including 1345 SNP markers, and identified markers linked to 6 QTLs for coleoptile length (2), heading date (1), anthocyanin accumulation (1) and osmotic stress tolerance (2). We also developed a straightforward approach for combining genetic data from multiple families of limited size that will be useful for evaluating and mapping pre-existing breeding material.  相似文献   

16.

Background and Aims

Waxy proteins are responsible for amylose synthesis in wheat seeds, being encoded by three waxy genes (Wx-A1, Wx-B1 and Wx-D1) in hexaploid wheat. In addition to their role in starch quality, waxy loci have been used to study the phylogeny of wheat. The origin of European spelt (Triticum aestivum ssp. spelta) is not clear. This study compared waxy gene sequences of a Spanish spelt collection with their homologous genes in emmer (T. turgidum ssp. dicoccum), durum (T. turgidum ssp. durum) and common wheat (T. aestivum ssp. aestivum), together with other Asian and European spelt that could be used to determine the origin of European spelt.

Methods

waxy genes were amplified and sequenced. Geneious Pro software, DNAsp and MEGA5 were used for sequence, nucleotide diversity and phylogenetic analysis, respectively.

Key Results

Three, four and three new alleles were described for the Wx-A1, Wx-B1 and Wx-D1 loci, respectively. Spelt accessions were classified into two groups based on the variation in Wx-B1, which suggests that there were two different origins for the emmer wheat that has been found to be part of the spelt genetic make-up. One of these groups was only detected in Iberian material. No differences were found between the rest of the European spelt and the Asiatic spelt, which suggested that the Iberian material had a different origin from the other spelt sources.

Conclusions

The results suggested that the waxy gene variability present in wheat is undervalued. The evaluation of this variability has permitted the detection of ten new waxy alleles that could affect starch quality and thus could be used in modern wheat breeding. In addition, two different classes of Wx-B1 were detected that could be used for evaluating the phylogenetic relationships and the origins of different types of wheat.  相似文献   

17.
The primary aim of this study was to estimate genetic diversity among Secale cereale L. accessions using 22 previously published simple sequence repeat (SSR) markers. The plant material included 367 rye accessions comprising historical and contemporary cultivars, cultivated materials, landraces, and breeding strains from the Polish breeding company Danko. The studied accessions represented a wide geographical diversity. Several methods were employed to analyze genetic diversity among the Secale cereale L. accessions and to determine population structure: principal coordinate analysis (PCoA), neighbor-joining (NJ), and Bayesian clustering. We also defined a core collection of 25 rye accessions representing over 93 % of SSR alleles. The results of these analyses showed that accessions from the rye gene bank are clearly divergent in comparison with materials received directly from European breeding companies. Our findings suggest also that the genetic pool of current rye cultivars is becoming narrower during breeding processes. The selected panel of SSR markers performed well in detection of genetic diversity patterns and can be recommended for future germplasm characterization studies in rye.  相似文献   

18.
The inheritance of the spring growth habit was studied in 63 old local cultivars and landraces of common wheat from Eastern and Western Siberia and the Tyva Republic. Minimal polymorphism was observed for the dominant Vrn genes, controlling the spring growth habit in landraces of these regions. The control was digenic and involved the Vrn1 and Vrn2 dominant genes in the majority (95%) of cultivars and was monogenic in three cultivars. None of the cultivars had the Vrn3 dominant gene, characteristic of the neighboring regions of China and Central Asia. Among 137 old local cultivars and landraces of Siberia, only one (cultivar Sibirskaya (K-23347) from Irkutsk oblast, was comparable in the response to the natural short day (photoperiod) to Chinese cultivars. Comparison of the results and the data reported for commercial cultivars revealed that the genotype frequencies of the dominant Vrn genes in Siberian landraces and commercial cultivars of common wheat remained essentially unchanged at least for the past 100 years. At the same time, Siberian landraces significantly differed in Vrn dominant gene frequencies from cultivars of the adjacent regions. It was assumed that the control of the spring growth habit by the two Vrn dominant genes is optimal for the climatic conditions of Siberia.  相似文献   

19.
Genomic prediction for rust resistance in diverse wheat landraces   总被引:1,自引:0,他引:1  

Key message

We have demonstrated that genomic selection in diverse wheat landraces for resistance to leaf, stem and strip rust is possible, as genomic breeding values were moderately accurate. Markers with large effects in the Bayesian analysis confirmed many known genes, while also discovering many previously uncharacterised genome regions associated with rust scores.

Abstract

Genomic selection, where selection decisions are based on genomic estimated breeding values (GEBVs) derived from genome-wide DNA markers, could accelerate genetic progress in plant breeding. In this study, we assessed the accuracy of GEBVs for rust resistance in 206 hexaploid wheat (Triticum aestivum) landraces from the Watkins collection of phenotypically diverse wheat genotypes from 32 countries. The landraces were genotyped for 5,568 SNPs using an Illumina iSelect 9 K bead chip assay and phenotyped for field-based leaf rust (Lr), stem rust (Sr) and stripe rust (Yr) responses across multiple years. Genomic Best Linear Unbiased Prediction (GBLUP) and a Bayesian Regression method (BayesR) were used to predict GEBVs. Based on fivefold cross-validation, the accuracy of genomic prediction averaged across years was 0.35, 0.27 and 0.44 for Lr, Sr and Yr using GBLUP and 0.33, 0.38 and 0.30 for Lr, Sr and Yr using BayesR, respectively. Inclusion of PCR-predicted genotypes for known rust resistance genes increased accuracy more substantially when the marker was diagnostic (Lr34/Sr57/Yr18) for the presence-absence of the gene rather than just linked (Sr2). Investigation of the impact of genetic relatedness between validation and reference lines on accuracy of genomic prediction showed that accuracy will be higher when each validation line had at least one close relationship to the reference lines. Overall, the prediction accuracies achieved in this study are encouraging, and confirm the feasibility of genomic selection in wheat. In several instances, estimated marker effects were confirmed by published literature and results of mapping experiments using Watkins accessions.  相似文献   

20.

Key message

The rice local population was clearly differentiated into six groups over the 100-year history of rice breeding programs in the northern limit of rice cultivation over the world.

Abstract

Genetic improvements in plant breeding programs in local regions have led to the development of new cultivars with specific agronomic traits under environmental conditions and generated the unique genetic structures of local populations. Understanding historical changes in genome structures and phenotypic characteristics within local populations may be useful for identifying profitable genes and/or genetic resources and the creation of new gene combinations in plant breeding programs. In the present study, historical changes were elucidated in genome structures and phenotypic characteristics during 100-year rice breeding programs in Hokkaido, the northern limit of rice cultivation in the world. We selected 63 rice cultivars to represent the historical diversity of this local population from landraces to the current breeding lines. The results of the phylogenetic analysis demonstrated that these cultivars clearly differentiated into six groups over the history of rice breeding programs. Significant differences among these groups were detected in five of the seven traits, indicating that the differentiation of the Hokkaido rice population into these groups was correlated with these phenotypic changes. These results demonstrated that breeding practices in Hokkaido have created new genetic structures for adaptability to specific environmental conditions and breeding objectives. They also provide a new strategy for rice breeding programs in which such unique genes in local populations in the world can explore the genetic potentials of the local populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号