首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Key message

A novel dwarf cucumber mutant, scp-2, displays a typical BR biosynthesis-deficient phenotype, which is due to a mutation in CsDET2 for a steroid 5-alpha-reductase.

Abstract

Brassinosteroids (BRs) are a group of plant hormones that play important roles in the development of plant architecture, and extreme dwarfism is a typical outcome of BR-deficiency. Most cucumber (Cucumis sativus L.) varieties have an indeterminate growth habit, and dwarfism may have its value in manipulation of plant architecture and improve production in certain production systems. In this study, we identified a spontaneous dwarf mutant, super compact-2 (scp-2), that also has dark green, wrinkle leaves. Genetic analyses indicated that scp-2 was different from two previously reported dwarf mutants: compact (cp) and super compact-1 (scp-1). Map-based cloning revealed that the mutant phenotype was due to two single nucleotide polymorphism and a single-base insertion in the CsDET2 gene that resulted in a missense mutation in a conserved amino acid and thus a truncated protein lacking the conserved catalytic domains in the predicted steroid 5α-reductase protein. Measurement of endogenous hormone levels indicated a reduced level of brassinolide (BL, a bioactive BR) in scp-2, and the mutant phenotype could be partially rescued by the application of epibrassinolide (EBR). In addition, scp-2 mutant seedlings exhibited dark-grown de-etiolation, and defects in cell elongation and vascular development. These data support that scp-2 is a BR biosynthesis-deficient mutant, and that the CsDET2 gene plays a key role in BR biosynthesis in cucumber. We also described the systemic BR responses and discussed the specific BR-related phenotypes in cucumber plants.
  相似文献   

2.
A dominant male sterility (DGMS) line 79-399-3, developed from a spontaneous mutation in Brassica oleracea var. capitata, has been widely used in production of hybrid cultivars in China. In this line, male sterility is controlled by a dominant gene Ms-cd1. In the present study, fine mapping of Ms-cd1 was conducted by screening a segregating population Ms79-07 with 2,028 individuals developed by four times backcrossing using a male sterile Brassica oleracea var. italica line harboring Ms-cd1 as donor and Brassica oleracea var. alboglabra as the recipient. Bulked segregation analysis (BSA) was performed for the BC4 population Ms79-07 using 26,417 SRAP primer SRAPs and 1,300 SSRs regarding of male sterility and fertility. A high-resolution map surrounding Ms-cd1 was constructed with 14 SRAPs and one SSR. The SSR marker 8C0909 was closely linked to the MS-cd1 gene with a distance of 2.06 cM. Fourteen SRAPs closely linked to the target gene were identified; the closest ones on each side were 0.18 cM and 2.16 cM from Ms-cd1. Three of these SRAPs were successfully converted to dominant SCAR markers with a distance to the Ms-cd1 gene of 0.18, 0.39 and 4.23 cM, respectively. BLAST analysis with these SCAR marker sequences identified a collinear genomic region about 600 kb in scaffold 000010 on chromosomeA10 in B. rapa and on chromosome 5 in A. thaliana. These results provide additional information for map-based cloning of the Ms-cd1 gene and will be helpful for marker-assisted selection (MAS).  相似文献   

3.
Proanthocyanidins (PAs) are the end products of the flavonoid biosynthetic pathway in many seeds, but their biological function is rarely unknown during seed germination. In the present study, we observed that PAs pretreatment accelerated cucumber seeds germination with maximum efficiency at 0.15% by measuring germination percentage and radical length. Using inhibitors of abscisic acid (ABA), gibberellins (GA) and alternative oxidase (AOX) and H2O2 scavenger pretreatment and gene expression analysis, we found that the accelerated effect of 0.15% PAs on seed germination was due to the decreased ABA biogenesis and enhanced GA production. ROS are induced by PAs pretreatment. Then, the enhanced ROS contributed to GA and ethylene accumulation and ABA decrease in seeds. Moreover, the improvement of GA was involved in the further induction of antioxidant enzymes activities. Therefore, our findings uncover a novel role of PAs in seed germination and clarify the relationships between ROS, ABA, GA and ethylene during seed germination.  相似文献   

4.
The compact (dwarf) plant architecture is an important trait in cucumber (Cucumis sativus L.) breeding that has the potential to be used in once-over mechanical harvest of cucumber production. Compact growth habit is controlled by a simply inherited recessive gene cp. With 150 F2:3 families derived from two inbred cucumber lines, PI 308915 (compact vining) and PI 249561 (regular vining), we conducted genome-wide molecular mapping with microsatellite (simple sequence repeat, SSR) markers. A framework genetic map was constructed consisting of 187 SSR loci in seven linkage groups (chromosomes) covering 527.5 cM. Linkage analysis placed cp at the distal half of the long arm of cucumber Chromosome 4. Molecular markers cosegregating with the cp locus were identified through whole genome scaffold-based chromosome walking. Fine genetic mapping with 1,269 F2 plants delimited the cp locus to a 220 kb genomic DNA region. Annotation and function prediction of genes in this region identified a homolog of the cytokinin oxidase (CKX) gene, which may be a potential candidate of compact gene. Alignment of the CKX gene homologs from both parental lines revealed a 3-bp deletion in the first exon of PI 308915, which can serve as a marker for marker-assisted selection of the compact phenotype. This work also provides a solid foundation for map-based cloning of the compact gene and understanding the molecular mechanisms of the dwarfing in cucumber.  相似文献   

5.
Auxin receptors TIR1/AFBs play an essential role in a series of signaling network cascades. These F-box proteins have also been identified to participate in different stress responses via the auxin signaling pathway in Arabidopsis. Cucumber (Cucumis sativus L.) is one of the most important crops worldwide, which is also a model plant for research. In the study herein, two cucumber homologous auxin receptor F-box genes CsTIR and CsAFB were cloned and studied for the first time. The deduced amino acid sequences showed a 78% identity between CsTIR and AtTIR1 and 76% between CsAFB and AtAFB2. All these proteins share similar characteristics of an F-box domain near the N-terminus, and several Leucine-rich repeat regions in the middle. Arabidopsis plants ectopically overexpressing CsTIR or CsAFB were obtained and verified. Shorter primary roots and more lateral roots were found in these transgenic lines with auxin signaling amplified. Results showed that expression of CsTIR/AFB genes in Arabidopsis could lead to higher seeds germination rates and plant survival rates than wild-type under salt stress. The enhanced salt tolerance in transgenic plants is probably caused by maintaining root growth and controlling water loss in seedlings, and by stabilizing life-sustaining substances as well as accumulating endogenous osmoregulation substances. We proposed that CsTIR/AFB-involved auxin signal regulation might trigger auxin mediated stress adaptation response and enhance the plant salt stress resistance by osmoregulation.  相似文献   

6.
7.
The biological processes leading to sex expression in plants are of tremendous practical significance for fruit production of many agricultural and horticultural crops. Sex-expression studies in cucumber showed that the different sex types are determined by three major genes: M/m, F/f and A/a. The M/m gene in the dominant condition suppresses stamina development and thus leads to female flowers. The F/f gene in the dominant condition shifts the monoecious sex pattern downwards and promotes femaleness by causing a higher level of ethylene in the plant. To investigate the molecular character of the gene F/f, we used nearly isogenic gynoecious (MMFF) and monoecious (MMff) lines (NIL) produced by our own backcross programme. Our investigations confirmed the result of other groups that an additional genomic ACC synthase (key enzyme of ethylene biosynthesis) sequence (CsACS1G) should exist in gynoecious genotypes. A linkage was also verified between the F/f locus and the CsACS1G sequence with our plant material. After the exploration of different Southern hybridization patterns originating from different CsACS1 probes, a restriction map of the CsACS1 locus was constructed. By using this restriction map, the duplication of the CsACS1 gene and following mutation of the CsACS1G gene could be explained. The promoter regions of the genes CsACS1G and CsACS1 were amplified in a splinkerette PCR and sequenced. An exclusive amplification of the new isolated sequence (CsACS1G) in gynoecious (MMFF) and sub-gynoecious (MMFf) genotypes confirmed that the isolated gene is the dominant F allele.  相似文献   

8.
Genomic sequence of the ATP-dependent phosphoeno/pyruvate carboxykinase (CsPCK) gene has been determined first from cucumber. Several putative clones were isolated in three rounds of genomic library screening with designated cDNA probes. These clones were analyzed via restriction digests, Southern hybridization, and nucleotide sequencing to ascertain the structure of theCsPCK gene. Analysis of a selected positive clone (λcscpk-4A) demonstrated that this gene consists of 13 exons and 12 introns, spanning 9 kb in the cucumber genome. Exon 1 contains only 23 nucleotides of the 5′-noncoding region of cucumberPCK cDNA, whereas Exon 2 comprises 12 nucleotides of the S′-noncoding region with an N-terminal PEPCK coding sequence. All the exon-intron junction sequences agree with the GT/AG consensus, except for the 5 donor site of Intron 7, where GC replaces the GT consensus. As with rice (Oryza sativa), cucumber contains only one copy of theCsPCK gene in its haploid genome. The overall number of exons and the structure of this gene are similar to those for bothArabidopsis Chromosome 4 (Atg4)PCK and the rice PCX genes, which contain 13 and 12 exons, respectively. Two additionalArabidopsis PCK genes can be found in the fifth chromosome (Atg5), which contains 9 exons and 8 introns (with 628 and 670 amino acids, respectively) of the PEPCK peptide. TheCsPCK gene promoter has conserved plant-specific as-acting elements within 2 kb of the 5’ flanking region. Several common cis-acting elements of the isocitrate lyase (icl) and malate synthase(ms) gene promoters, identified in theCsPCK gene, are responsible for the sugar response during plant development, especially at germination. These conserved elements are discussed here.  相似文献   

9.
Enhanced numbers of multiple shoots were induced from shoot tip explants of cucumber. The effects of amino acids (leucine, isoleucine, methionine, threonine, and tryptophan) and polyamines (spermidine, spermine, and putrescine) along with benzyladenine (BA) on multiple shoot induction were investigated. A Murashige and Skoog (MS) medium containing a combination of BA (4.44 μM), leucine (88 μM), and spermidine (68 μM) induced the maximum number of shoots (36.6 shoots per explant) compared to BA (4.44 μM) alone or BA (4.44 μM) with leucine (88 μM). The regenerated shoots were elongated on the same medium. Elongated shoots were transferred to the MS medium fortified with BA (4.44 μM), leucine (88 μM), and putrescine (62 μM) for root induction. Rooted plants were hardened and successfully established in soil with a 90% survival rate.  相似文献   

10.
11.
One of the most important cucumber diseases is bacterial angular leaf spot (ALS), whose increased occurrence in open-field production has been observed over the last years. To map ALS resistance genes, a recombinant inbred line (RIL) mapping population was developed from a narrow cross of cucumber line Gy14 carrying psl resistance gene and susceptible B10 line. Parental lines and RILs were tested under growth chamber conditions as well as in the field for angular leaf spot symptoms. Based on simple sequence repeat and DArTseq, genotyping a genetic map was constructed, which contained 717 loci in seven linkage groups, spanning 599.7 cM with 0.84 cM on average between markers. Monogenic inheritance of the lack of chlorotic halo around the lesions, which is typical for ALS resistance and related with the presence of recessive psl resistance gene, was confirmed. The psl locus was mapped on cucumber chromosome 5. Two major quantitative trait loci (QTL) psl5.1 and psl5.2 related to disease severity were found and located next to each other on chromosome 5; moreover, psl5.1 was co-located with psl locus. Identified QTL were validated in the field experiment. Constructed genetic map and markers linked to ALS resistance loci are novel resources that can contribute to cucumber breeding programs.  相似文献   

12.
Cucumber (Cucumis sativus L.) cytokinin-independent embryogenic cell suspension cultures were derived and maintained for more than 3.5 years without losing the embryogenic potential. The preparation and the characteristics of the cucumber embryogenic cell suspension possess many similarities to that of carrot. The cultures were induced from hypocotyl explants of in vitro grown cucumber plants in liquid MS media containing 2,4-dichlorophenoxyacetic acid as the sole growth regulator during 6 weeks and they contained a heterogeneous array of several different types of single cells and cell clusters (PEMs). The established cell suspensions were subcultured in 1-week interval, while the inoculation density was optimized to 2.0 × 105 cells ml−1 using cell viability as a marker. Somatic embryos were obtained after the transfer of the proembryogenic masses to a hormone-free semisolid MS medium with a frequency of 388 ± 57 somatic embryos per 1 ml of packed cell volume of the established cucumber embryogenic culture within 7 days. The frequency of normal somatic embryos with two cotyledons was found to be 78%. Such embryos possessed the potential of spontaneous maturation and the embryo conversion rates were 87%. The yield of normally growing plants was much higher compared with that previously described for cucumber systems. Somatic embryo-derived plants were successfully transferred to the greenhouse where they flowered and fruited.  相似文献   

13.
14.
The Brassica napus oilseed rape line, 7-7365AB, is a recessive epistatic genic male sterile (RGMS) two-type line system. The sterility is controlled by two pairs of recessive duplicate genes (Bnms3 and Bnms4) and one pair of recessive epistatic inhibitor gene (Bnrf). Homozygosity at the Bnrf locus (Bnrfrf) inhibits the expression of the two recessive male sterility genes in homozygous Bnms3ms3ms4ms4 plants and produces a male fertile phenotype. This line has a good potential for heterosis utilization but it is difficult to breed heterotic hybrids without molecular markers. To develop markers linked to the BnMs3 gene, amplified fragment length polymorphism (AFLP) technology was applied to screen the bulks of sterile and fertile individuals selected randomly from a population of near-isogenic lines (NIL) consisting of 2,000 plants. From a survey of 1,024 primer combinations, we identified 17 AFLP markers linked to the BnMs3 gene. By integrating the previous markers linked to the BnMs3 gene into the genetic map of the NIL population, two markers, EA01MC12 and EA09P06, were located on either side of the BnMs3 gene at a distance of 0.1 and 0.3 cM, respectively. In order to use the markers for male sterile line breeding, five AFLP markers, P05MG05, P03MG04, P11MG02, P05MC11250, and EA09P06, were successfully converted into sequence characterized amplified region (SCAR) markers. Two of these, P06MG04 and sR12384, were subsequently mapped on to linkage group N19 using two doubled-haploid mapping populations available at our laboratory derived from the crosses Tapidor × Ningyou7 and Quantum × No2127-17. The markers found in the present study should improve our knowledge of recessive genic male sterility (RGMS), and accelerate the development of male sterile line breeding and map-based cloning.  相似文献   

15.
Owing to its diverse sex types, the cucumber plant has been studied widely as a model for sex determination. In addition to environmental factors and plant hormones, three major genes—F/f, M/m, and A/a—regulate the sex types in the cucumber plant. By combining the bulked segregant analysis (BSA) and the sequence-related amplified polymorphism (SRAP) technology, we identified eight markers linking to the M/m locus. Among them, the two closely linked SRAP markers flanking the M/m locus were the co-dominant marker ME1EM26 and the dominant marker ME1EM23. Further, the co-dominant marker ME8SA7 co-segregated with the M/m locus. With the chromosome walking method using the cucumber genomic bacterial artificial chromosome (BAC) library, we successfully developed a co-dominant SCAR marker S_ME1EM23 from the ME1EM23 sequence. Along with the other two co-dominant SCAR markers S_ME1EM26 and S_ME8SA7 (developed from ME1EM26 and ME8SA7, respectively) in a larger segregating population (900 individuals), the M/m locus was mapped between S_ME1EM26 (5.4 cM) and S_ME1EM23 (0.7 cM), and S_ME8SA7 co-segregated with it. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Z. Li and J. Pan contribute equally to this article.  相似文献   

16.
17.
Nitrogen (N) is a macronutrient essential for plant growth and development. Meanwhile, grafting is a method used to alleviate stress tolerance of various biotic and abiotic factors. This study aims to investigate how pumpkin grafting (PG) improves N use efficiency of watermelon. A commercial watermelon cultivar “Zaojia 8424” [Citrullus lanatus (Thunb.) Matsum. and Nakai.] was self-grafted and then grafted onto pumpkin (Cucurbita maximaC. moschata) rootstock cv. Qingyan Zhenmu No. 1. The grafted plants were exposed to two levels of N (9 and 0.2 mM) under hydroponic conditions. The grafted plants were harvested at days 11 and 22 after low N (0.2 mM) treatment. PG improved the N use efficiency of watermelon scion through the vigorous root system of pumpkin rootstock that enhanced the uptake and accumulation of N, P, K, Ca, Mg, B, and Mn in watermelon. Gene expressions of nitrate reductase (Cla002787, Cla002791, and Cla023145) and nitrite reductase (Cla013062) genes were increased, promoting N assimilation. Mesophyll thickness and SPAD index (relative chlorophyll measurement) were also improved. Furthermore, pumpkin rootstock also enhanced the supply of zeatine riboside (ZR) and isopentenyl adenosine (iPA) in the leaves, promoting shoot growth. All these lead to improved plant growth and nitrogen use efficiency of pumpkin rootstock-grafted watermelon plants.  相似文献   

18.
Zhang Z  Jia Y  Gao H  Zhang L  Li H  Meng Q 《Planta》2011,234(5):883-889
By simultaneously analyzing the chlorophyll a fluorescence transient and light absorbance at 820 nm as well as chlorophyll fluorescence quenching, we investigated the effects of different photon flux densities (0, 15, 200 μmol m−2 s−1) with or without 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) on the repair process of cucumber (Cucumis sativus L.) leaves after treatment with low temperature (6°C) combined with moderate photon flux density (200 μmol m−2 s−1) for 6 h. Both the maximal photochemical efficiency of Photosystem II (PSII) (F v/F m) and the content of active P700 (ΔI/I o) significantly decreased after chilling treatment under 200 μmol m−2 s−1 light. After the leaves were transferred to 25°C, F v/F m recovered quickly under both 200 and 15 μmol m−2 s−1 light. ΔI/I o recovered quickly under 15 μmol m−2 s−1 light, but the recovery rate of ΔI/I o was slower than that of F v/F m. The cyclic electron transport was inhibited by chilling-light treatment obviously. The recovery of ΔI/I o was severely suppressed by 200 μmol m−2 s−1 light, whereas a pretreatment with DCMU effectively relieved this suppression. The cyclic electron transport around PSI recovered in a similar way as the active P700 content did, and the recovery of them was both accelerated by pretreatment with DCMU. The results indicate that limiting electron transport from PSII to PSI protected PSI from further photoinhibition, accelerating the recovery of PSI. Under a given photon flux density, faster recovery of PSII compared to PSI was detrimental to the recovery of PSI or even to the whole photosystem.  相似文献   

19.
Plant height is one of the most important agronomic traits of plant architecture, and also affects grain yield in rice. In this study, we obtained a novel dwarf rice mutant of japonica variety Shennong9816, designated Shennong9816d. Compared with wild-type, the Shennong9816d plant height was significantly reduced, and the tiller number significantly increased. Additionally, the mutant yield component, and the number of large and small vascular bundles were significantly decreased compared with wild-type. Genetic analysis indicated that the Shennong9816d dwarf phenotype was controlled by a recessive nuclear gene, while the plant was shown to be sensitive to gibberellic acid. Using a large F2 population derived from a cross between Shennong9816d and the indica rice variety Habataki, the osh15(t) gene was fine mapped between RM20891 and RM20898, within a physical distance of 73.78 kb. Sequencing analysis showed that Shennong9816d carries a 1 bp mutation and a 30 bp insertion in the OSH15 region. These results suggest that osh15(t) is a novel allelic mutant originally derived from japonica variety Shennong9816, which may be useful for introducing the semi-dwarf phenotype to improve plant architecture in rice breeding practice.  相似文献   

20.
Previously, a stable cell suspension culture of cucumber tolerant to cadmium (Cd) was established (Gzyl and Gwóźdź, Plant Cell Tissue Organ Cult 80:59–67, 2005). In this study, ultrastructures of Cd-tolerant and -sensitive cells were analyzed by transmission electron microscopy (TEM). Ultrastructural differences between cell lines exposed to 100 μM CdCl2 were observed both at cellular and organelle levels. Tolerant cells exposed to Cd exhibited well-preserved cellular structures in comparison with sensitive cells. Increased numbers of osmiophilic globules in the cytoplasm and nucleolus-associated bodies as well as electron dense material in vacuoles were observed in cadmium tolerant cells. In contrast, ultrastructure of sensitive cells following exposure to Cd exhibited distinct disturbances including vacuolation, disintegration of cytoplasm, and structural changes in both mitochondria and endoplasmic reticulum. TEM observations confirmed the adaptation of tolerant cells to Cd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号