首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A comprehensive collection of wheat aneuploids, whole chromosome substitutions (both intervarietal and interspecific) and wheat–alien addition lines, along with various introgression and near-isogenic lines, has been created over a period of years, primarily to provide the means of localizing the genes underpinning traits and to introduce novel genes into the bread wheat genome. For a time, interest in this class of genetic material was on the wane, but more recently it has revived in the context, for example, of localizing DNA-based markers, designing chromosome-specific bacterial artificial chromosome libraries, and establishing functional differences between alleles and homoeoalleles. Here, a brief review is provided of recent applications of precise genetic stocks in the field of molecular genetics, functional genetics and genomics of the Triticeae species.  相似文献   

2.
Advanced backcross quantitative trait locus (AB-QTL) analysis was used to identify QTLs for yield and yield components in a backcross population developed from a cross between hard red winter wheat (Triticum aestivum L.) variety Karl 92 and the synthetic wheat line TA 4152-4. Phenotypic data were collected for agronomic traits including heading date, plant height, kernels per spike, kernel weight, tiller number, biomass, harvest index, test weight, grain yield, protein content, and kernel hardness on 190 BC2F2:4 lines grown in three replications in two Kansas environments. Severity of wheat soilborne mosaic virus (WSBMV) reaction was evaluated at one location. The population was genotyped using 151 microsatellite markers. Of the ten putative QTLs identified, seven were located on homoeologous group 2 and group 3 chromosomes. The favorable allele was contributed by cultivated parent Karl 92 at seven QTLs including a major one for WSBMV resistance, and by the synthetic parent at three QTLs: for grain hardness, kernels per spike, and tiller number. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.  相似文献   

3.
The impact of sequential feeding of whole or ground wheat on the performance of layer hen was investigated using ISABROWN hens from 19 to 42 weeks of age. In addition, the effect of reduced dietary energy content of a complete diet was also investigated. Four treatments were tested. Whole wheat was alternated with a protein-mineral concentrate (balancer diet) in a treatment (sequential whole wheat: SWW), while another treatment alternated ground wheat (sequential ground wheat: SGW) with the same balancer diet. The control (C) was fed a complete layer diet conventionally. Another treatment (low energy: LE) was fed a complete diet conventionally. The diet contained lower energy (10.7 v. 11.6 MJ/kg) compared to the C. Each treatment was allocated 16 cages and each cage contained five birds. Light was provided 16 h daily (0400 to 2000 h). Feed offered was controlled (121 g/bird per day) and distributed twice (2 × 60.5 g) at 4 and 11 h after lights on. In the sequential treatment, only wheat (whole or ground) was fed during the first distribution and the balancer diet during the second distribution. Left over feed was always removed before the next distribution. The total feed intake was not different between SWW and SGW, but the two were lower than C (P < 0.05). Wheat intake was however, lowered with SGW compared to SWW (P < 0.05). Egg production and egg mass (EM) were not different between treatments. Egg weight was lower with SGW than with SWW (P < 0.05), but the two were similar to C. Body weight (BW) was lowered (P < 0.01) with SGW relative to SWW and C, SWW BW being also lower than the C one. The efficiency of egg production was increased (P < 0.01) with the SWW and SGW relative to the control. Birds fed LE had higher feed intake (P < 0.05) but they had similar egg production and EM compared to the two sequential treatments. The efficiency of feed utilization was also reduced (P < 0.01) with LE compared to SWW and SGW. It was concluded that sequential feeding is more efficient than conventional feeding. In addition, whole wheat appeared more efficient than ground wheat in terms of egg and BW.  相似文献   

4.
The phyllosphere, defined as the aerial parts of plants, is one of the most prevalent microbial habitats on earth. The microorganisms present on the phyllosphere can have several interactions with the plant. The phyllosphere represents then a unique niche where microorganisms have evolved through time in that stressful environment and may have acquired the ability to degrade lignocellulosic plant cell walls in order to survive to oligotrophic conditions. The dynamic lignocellulolytic potential of two phyllospheric microbial consortia (wheat straw and wheat bran) has been studied. The microbial diversity rapidly changed between the native phyllospheres and the final degrading microbial consortia after 48 h of culture. Indeed, the initial microbial consortia was dominated by the Ralstonia (35·8%) and Micrococcus (75·2%) genera for the wheat bran and wheat straw whereas they were dominated by Candidatus phytoplasma (59%) and Acinetobacter (31·8%) in the final degrading microbial consortia respectively. Culturable experiments leading to the isolation of several new lignocellulolytic isolates (belonging to Moraxella and Atlantibacter genera) and metagenomic reconstruction of the microbial consortia highlighted the existence of an unpredicted microbial diversity involved in lignocellulose fractionation but also the existence of new pathways in known genera (presence of CE2 for Acinetobacter, several AAs for Pseudomonas and several GHs for Bacillus in different metagenomes-assembled genomes). The phyllosphere from agricultural co-products represents then a new niche as a lignocellulolytic degrading ecosystem.  相似文献   

5.
Susceptible and resistance wheat cultivars, Triticum aestivum L, were presented to two biotypes of Russian wheat aphid, Diuraphis noxia (Mordvilko), in multiple choice tests to assay their relative acceptability as host plants. Both apterae (third and fourth instars) and alate adults were offered plants at the two-leaf stage in different cultivar combinations at 22±1℃ and 16:8 (L: D) hour photoperiod. Apterae were released from Petri dishes in the center of a circle of test plants, whereas alatae dispersed from a mature aphid colony to settle on plants arranged in rows. Both alatae and apterous nymphs of both biotypes readily colonized all cultivars tested:‘2137', ‘Akron',‘Ankor’,‘ Halt’ ,‘ Jagger’ ,‘ Prairie Red’ , ‘Stanton',‘TAM 107',‘TAM 110',‘Trego', ‘ Yuma', and ‘Yumar'. Fewer biotype I apterae responded (settled and fed) in the combination containing more resistant (Dn4- and Dny-expressing) cultivars, compared to the combinations that had fewer. The reverse was true for biotype 2 apterae; more aphids responded in the combination containing the largest number of Dn4 expressing cultivars. Differential colonization of cultivars was observed in only one combination, in which biotype 2 apterae colonized Akron and Yumar in larger numbers than they did Stanton and Yuma. A separate experiment confirmed that, 48 hours after infestation, more biotype 2 apterae abandoned plants of Yuma than plants of Yumar. This differential response was likely due to genetic differences between the two ' near isogenic' lines that include the lack of Dn4 expression in Yuma. Choice tests with alatae did not result in differential rates of cultivar colonization by either biotype in any combination tested. These results suggest that young wheat plants appear to lack any meaningful antixenosis toward D. noxia, even though the aphids appear to perceive, and sometimes respond to, certain differences in cultivar suitability.  相似文献   

6.
Manganese (Mn) deficiency in wheat under rice (Oryza sativa L.) and wheat (Triticum aestivum L.) rotation is an important problem in most rice-growing areas in China. A field survey, field trials and a soil column experiment were conducted to determine the relationship between Mn leaching and distribution in soil profiles and paddy rice cultivation and the effects of Mn distribution in soil profiles on wheat growth and its response to Mn fertilization. At five field sites surveyed, total Mn and active Mn concentrations in the topsoil layers under rice–wheat rotations were only 42% and 11%, respectively, of those under systems without paddy rice. Both total and available Mn increased with soil depth in soils with rice–wheat rotations, showing significant spatial variability of Mn in the soil profile. Manganese leaching was the main pathway for Mn loss in coarse-textured soil with high pH, while excessive Mn uptake was the main pathway for Mn loss in clay-textured and acid soil. When Mn was deficient in the topsoil, sufficient Mn in the subsoil contributed to better growth and Mn nutrition of wheat but insufficient Mn in the subsoil resulted in Mn deficiency in wheat.  相似文献   

7.
The complete set of unique γ-gliadin genes is described for the wheat cultivar Chinese Spring using a combination of expressed sequence tag (EST) and Roche 454 DNA sequences. Assemblies of Chinese Spring ESTs yielded 11 different γ-gliadin gene sequences. Two of the sequences encode identical polypeptides and are assumed to be the result of a recent gene duplication. One gene has a 3′ coding mutation that changes the reading frame in the final eight codons. A second assembly of Chinese Spring γ-gliadin sequences was generated using Roche 454 total genomic DNA sequences. The 454 assembly confirmed the same 11 active genes as the EST assembly plus two pseudogenes not represented by ESTs. These 13 γ-gliadin sequences represent the complete unique set of γ-gliadin genes for cv Chinese Spring, although not ruled out are additional genes that are exact duplications of these 13 genes. A comparison with the ESTs of two other hexaploid cultivars (Butte 86 and Recital) finds that the most active genes are present in all three cultivars, with exceptions likely due to too few ESTs for detection in Butte 86 and Recital. A comparison of the numbers of ESTs per gene indicates differential levels of expression within the γ-gliadin gene family. Genome assignments were made for 6 of the 13 Chinese Spring γ-gliadin genes, i.e., one assignment from a match to two γ-gliadin genes found within a tetraploid wheat A genome BAC and four genes that match four distinct γ-gliadin sequences assembled from Roche 454 sequences from Aegilops tauschii, the hexaploid wheat D-genome ancestor.  相似文献   

8.
9.
A genetic linkage map of tetraploid wheat was constructed based on a cross between durum wheat [Triticum turgidum ssp. durum (Desf.) MacKey] cultivar Langdon and wild emmer wheat [T. turgidum ssp. dicoccoides (K?rn.) Thell.] accession G18-16. One hundred and fifty-two single-seed descent derived F(6) recombinant inbred lines (RILs) were analyzed with a total of 690 loci, including 197 microsatellite and 493 DArT markers. Linkage analysis defined 14 linkage groups. Most markers were mapped to the B-genome (60%), with an average of 57 markers per chromosome and the remaining 40% mapped to the A-genome, with an average of 39 markers per chromosome. To construct a stabilized (skeleton) map, markers interfering with map stability were removed. The skeleton map consisted of 307 markers with a total length of 2,317 cM and average distance of 7.5 cM between adjacent markers. The length of individual chromosomes ranged between 112 cM for chromosome 4B to 217 cM for chromosome 3B. A fraction (30.1%) of the markers deviated significantly from the expected Mendelian ratios; clusters of loci showing distorted segregation were found on chromosomes 1A, 1BL, 2BS, 3B, and 4B. DArT markers showed high proportion of clustering, which may be indicative of gene-rich regions. Three hundred and fifty-two new DArT markers were mapped for the first time on the current map. This map provides a useful groundwork for further genetic analyses of important quantitative traits, positional cloning, and marker-assisted selection, as well as for genome comparative genomics and genome organization studies in wheat and other cereals.  相似文献   

10.
Mineral nutrient malnutrition, and particularly deficiency in zinc and iron, afflicts over 3 billion people worldwide. Wild emmer wheat, Triticum turgidum ssp. dicoccoides, genepool harbors a rich allelic repertoire for mineral nutrients in the grain. The genetic and physiological basis of grain protein, micronutrients (zinc, iron, copper and manganese) and macronutrients (calcium, magnesium, potassium, phosphorus and sulfur) concentration was studied in tetraploid wheat population of 152 recombinant inbred lines (RILs), derived from a cross between durum wheat (cv. Langdon) and wild emmer (accession G18-16). Wide genetic variation was found among the RILs for all grain minerals, with considerable transgressive effect. A total of 82 QTLs were mapped for 10 minerals with LOD score range of 3.2–16.7. Most QTLs were in favor of the wild allele (50 QTLs). Fourteen pairs of QTLs for the same trait were mapped to seemingly homoeologous positions, reflecting synteny between the A and B genomes. Significant positive correlation was found between grain protein concentration (GPC), Zn, Fe and Cu, which was supported by significant overlap between the respective QTLs, suggesting common physiological and/or genetic factors controlling the concentrations of these mineral nutrients. Few genomic regions (chromosomes 2A, 5A, 6B and 7A) were found to harbor clusters of QTLs for GPC and other nutrients. These identified QTLs may facilitate the use of wild alleles for improving grain nutritional quality of elite wheat cultivars, especially in terms of protein, Zn and Fe.  相似文献   

11.
Bioagriculture and healthy lifestyle are trends of the twenty-first century. Bioagriculture involves the breeding of crops without using modern synthetic substances. Kamut brand wheat is one of the popular biocereals grown mainly in the USA and Europe. This cereal has the status of ancient wheat, not only because it has been grown since the era of the ancient Egyptian civilization, but also for its properties favorable for modern breeding programs and modern food marketing. In spite of Kamut’s® interesting history and stable place in the market, it is not a common subject of genetic studies. It is also interesting that it has not been successfully taxonomically classified yet. There are a few studies which classify this tetraploid wheat as Triticum polonicum L., T. turanicum Jakubz., T. turgidum L. and T. durum Desf. These studies are based on cytological and comparative methods. We chose molecular (transposable element resistance gene analog polymorphism, diversity arrays technology, sequencing of genes SBEIIa, and ψLpx-A1_like) and statistical methods to classify Kamut® wheat. According to our experiments we suggest that Kamut brand wheat originated as a natural hybrid between Triticum dicoccon conv. dicoccon and T. polonicum and is not original ancient Egyptian wheat. We suggest that Etruscan wheat has the same parents as Kamut®.  相似文献   

12.
Based on segregation distortion of simple sequence repeat (SSR) molecular markers, we detected a significant quantitative trait loci (QTL) for pre-harvest sprouting (PHS) tolerance on the short arm of chromosome 2D (2DS) in the extremely susceptible population of F2 progeny generated from the cross of PHS tolerant synthetic hexaploid wheat cultivar ‘RSP’ and PHS susceptible bread wheat cultivar ‘88–1643’. To identify the QTL of PHS tolerance, we constructed two SSR-based genetic maps of 2DS in 2004 and 2005. One putative QTL associated with PHS tolerance, designatedQphs.sau-2D, was identified within the marker intervalsXgwm261-Xgwm484 in 2004 and in the next year, nearly in the same position, between markerswmc112 andXgwm484. Confidence intervals based on the LOD-drop-off method ranged from 9 cM to 15.4 cM and almost completely overlapped with marker intervalXgwm261-Xgwm484. Flanking markers near this QTL could be assigned to the C-2DS1-0.33 chromosome bin, suggesting that the gene(s) controlling PHS tolerance is located in that chromosome region. The phenotypic variation explained by this QTL was about 25.73–27.50%. Genotyping of 48 F6 PHS tolerant plants derived from the cross between PHS tolerant wheat cultivar ‘RSP’ and PHS susceptible bread wheat cultivar ‘MY11’ showed that the allele ofQphs.sau-2D found in the ‘RSP’ genome may prove useful for the improvement of PHS tolerance.  相似文献   

13.
Isolation and characterization of wheat ω-gliadin genes   总被引:1,自引:0,他引:1  
The DNA sequences of two full-length wheat ω-gliadin prolamin genes (ωF20b and ωG3) containing significant 5′ and 3′ flanking DNA sequences are reported. The ωF20b DNA sequence contains an open reading frame encoding a 30,460-Dalton protein, whereas the ωG3 sequence would encode a putative 39,210-Dalton protein except for a stop codon at amino-acid residue position 165. These two ω-gliadin genes are closely related and are of the ARQ-/ARE-variant type as categorized by the derived N-terminal amino-acid sequences and amino-acid compositions. The ω-gliadins were believed be related to the ω-secalins of rye and the C-hordeins of barley, and analyses of these complete ω-gliadin sequences confirm this close relationship. Although the ω-type sequences from all three species are closely related, in this analysis the rye and barley ω-type sequences are the most similar in a pairwise comparison. A comparison of ω-gliadin flanking sequences with respect to that of their orthologs and with respect to wheat gliadin genes suggests the conservation of flanking DNA necessary for gene function. Sequence data for members of all major wheat prolamin families are now available. Received: 24 August 2000 / Accepted: 15 December 2000  相似文献   

14.
The two translocation chromosomes in the Poso 5B/7B translocation have been isolated in separate heterozygous aneuploid stocks (19II+5B+T). The translocation breakpoints are in the long arm of chromosome 7B and the short arm of chromosome 5B. The translocation chromosome bearing the 5BL pairing inhibitor was obtained as a homozygous aneuploid (19II+T 1 II ). The heterozygous aneuploid hemizygous for the pairing inhibitor (19II+5B+T2) was used to produce intergeneric hybrids. Only a small percentage were of the high-pairing type (17%), the majority having received chromosome 5B through the egg. This indicates a strong selection against eggs containing the translocation chromosome deficient for the pairing inhibitor.  相似文献   

15.
We previously developed Hokushin wheat line as a hypoallergenic wheat lacking ω5-gliadin (1BS-18), a major allergen for wheat-dependent exercise-induced anaphylaxis. However, the allergenicity of 1BS-18 has not been understood completely. In this study, we evaluated the allergenicity of 1BS-18 such as anaphylactic elicitation ability and sensitization ability using rats sensitized with ω5-gliadin or glutens prepared from Hokushin (Hokushin gluten) or 1BS-18 (1BS-18 gluten). Rats were sensitized by intraperitoneal administration of ω5-gliadin, Hokushin gluten or 1BS-18 gluten. Immunoglobulin E-mediated systemic anaphylaxis was evaluated by measuring changes in rectal temperature for 30 min after intravenous challenge with ω5-gliadin or the test glutens in unsensitized rats or rats sensitized with ω5-gliadin or the test glutens. In ω5-gliadin-sensitized rats, intravenous challenge with ω5-gliadin or Hokushin gluten significantly decreased the rectal temperature at 30 min after challenge while challenge with 1BS-18 gluten did not reduce the rectal temperature. Furthermore, intravenous challenge with ω5-gliadin significantly decreased the rectal temperature in rats sensitized with Hokushin gluten or 1BS-18 gluten. However, the reduced degree observed in 1BS-18 gluten-sensitized rats was smaller than that in Hokushin gluten-sensitized rats. In conclusion, 1BS-18 elicited no allergic reaction in ω5-gliadin-sensitized rats and had less sensitization ability for ω5-gliadin than that of Hokushin wheat.  相似文献   

16.
 Wheat-wheat and wheat-rye homoeologous pairing at metaphase I and wheat-rye recombination at anaphase I were examined by genomic in situ hybridization (GISH) in wild-type (Ph1Ph2) and mutant ph1b and ph2b wheat×rye hybrids. The metaphase-I analysis revealed that the relative contribution of wheat-rye chromosome associations in ph2b wheat×rye was similar to that of the wild-type hybrid genotype but differed from the effect of the ph1b mutation. The greater pairing promotion effect of the ph1b mutation appears to be relatively more on distant homoeologous partner metaphase-I associations, whereas the lower promoting effect of ph2b is evenly distributed among all types of homoeologous associations. This finding reveals that distinct mechanisms are involved in the control of wheat homoeologous pairing by the two Ph genes. The frequency of wheat-rye recombination calculated from anaphase-I analysis was lower than expected from the metaphase-I data. A greater discrepancy was found in ph2b than in ph1b wheat×rye hybrids, which may suggest a more distal chiasma localization in the former hybrid genotype. Received: 20 June 1997 / Accepted: 9 December 1997  相似文献   

17.
Kernel development and maturation involve several well-characterised events, such as changes in ascorbate (ASC) metabolism, protein synthesis and storage, programmed cell death (PCD) of starchy endosperm and tissue dehydration. Despite many studies focusing on these events, whether and how they are metabolically related to each other, remains to be elucidated. In the present investigation, the changes in ASC-related metabolism, PCD occurrence, kernel filling and dehydration have been analysed during kernel maturation, over a 3-year period in plants grown under normal conditions and in plants displaying modified ASC synthesis. The obtained results suggest that ASC plays a pivotal role in the network of events characterising kernel maturation. During this process, a decrease in ASC content occurs. When ASC biosynthesis is improved in the kernel, by feeding the plants with its immediate precursor, L-galactone-γ-lactone (GL), the decrease in ASC, observed during kernel maturation, is delayed. As a consequence, ascorbate peroxidase (APX) activity is also enhanced. Moreover, a delay in the ASC decrease permits a delay in PCD occurring in kernel storage tissues and in kernel dehydration. Interestingly, the data emerging from the present investigation suggest that the delay in the decrease in ASC content and APX activity also improves kernel filling. The relevance of the ascorbate-dependent redox regulation for kernel productivity is discussed.  相似文献   

18.
Wheat curl mite (WCM, Aceria tosichella Keifer) and WCM-transmitted wheat streak mosaic virus (WSMV, genus Tritimovirus) are devastating production constraints for wheat in the US Great Plains. Breeding wheat cultivars with genetic resistance to WCM and WSMV is a viable and economically feasible way to reduce yield loss. The objectives of this study were to (a) identify tightly linked markers for WCM resistance in the wheat cultivar TAM 112 (PI 643143) using linkage and association analysis with the 90K Infinium iSelect SNP array and genotyping-by-sequencing, respectively and (b) develop and test kompetitive allele specific PCR (KASP) single-nucleotide polymorphisms (SNPs) for marker-assisted selection (MAS) of WCM resistance. We tested 124 F5:7 recombinant inbred lines (RILs) derived from the cross of TAM 112 and the WCM-susceptible cultivar TAM 111 (PI 631352). All lines were infested with a Texas WCM collection 2 (TWCMC2) that is virulent to resistance found on the wheat-rye 1AL.1RS translocation at the two-leaf stage and were rated for symptoms on the first and second week after infestation. Linkage maps were constructed with 4890 markers, including SNPs, simple sequence repeats (SSRs), and sequence-tagged site (STS) markers covering 21 chromosomes. A WCM resistance gene present in TAM 112 (CmcTAM112) was mapped onto chromosome arm 6DS. A genome-wide association study of wheat streak mosaic (WSM) symptoms from a separate experiment in Colorado showed significant marker-trait associations at the target regions on 6DS where CmcTAM112 was located, which demonstrated the effectiveness of this gene to reduce symptom severity. Four SNPs flanking CmcTAM112 were mapped within 3.6 cM in the biparental mapping population. We developed two KASP markers that are within 1.3 cM distal to CmcTAM112 and tested in diverse germplasm. These two markers can be used in MAS for improving WCM resistance in some wheat genetic backgrounds.  相似文献   

19.
Summary A study of -amylase isozyme patterns from gibberellin-induced endosperms from more than 200 wheat genotypes has revealed allelic variation at five of the six -Amy-1 and -Amy-2 structural loci. These differences will find application as genetic markers and in varietal identification. The -Amy-B1 locus on chromosome 6B was most variable and displayed eight distinct allelic forms. The nature of the allelic phenotypes, observations of segregating populations and the number of in vivo translation products of mRNAs from the -Amy-1 and -Amy-2 loci indicated that the individual loci are multigenic, each consisting of tightly linked subunits which produce several different isoforms.  相似文献   

20.
 We constructed a genetic map of a cross between the Swiss winter wheat (Triticum aestivum L.) variety Forno and the Swiss winter spelt (Triticum spelta L.) variety Oberkulmer. For the linkage analysis,176 polymorphic RFLP probes and nine microsatellites were tested on 204 F5 recombinant inbred lines (RILs) of Forno×Oberkulmer revealing 242 segregating marker loci. Thirty five percent of these loci showed significant (P>0.05) deviation from a 1 : 1 segregation, and the percentage of Forno alleles ranged from 21% to 83% for individual marker loci. Linkage analysis was performed with the program MAPMAKER using the Haldane mapping function. Using a LOD threshold of 10, we obtained 37 linkage groups. After finding the best order of marker loci within linkage groups by multi-point analysis we assembled the linkage groups into 23 larger units by lowering the LOD threshold. All except one of the 23 new linkage groups could be assigned to physical chromosomes or chromosome arms according to hybridisation patterns of nulli-tetrasomic lines of Chinese Spring and published wheat maps. This resulted in a genetic map comprising 230 marker loci and spanning 2469 cM. Since the analysed population is segregating for a wide range of agronomically important traits, this genetic map is an ideal basis for the identification of quantitative trait loci (QTLs) for these traits. Received: 3 August 1998 / Accepted: 28 November 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号