首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A human opal suppressor tRNA gene and pseudogene   总被引:14,自引:0,他引:14  
  相似文献   

2.
A Schn  A Bck  G Ott  M Sprinzl    D Sll 《Nucleic acids research》1989,17(18):7159-7165
Selenocysteine is cotranslationally incorporated into selenoproteins in a unique pathway involving tRNA mediated suppression of a UGA nonsense codon (1-3). The DNA sequence of the gene for this suppressor tRNA from Escherichia coli predicts unusual features of the gene product (4). We determined the sequence of this serine tRNA (tRNA(UCASer]. It is the longest tRNA (95 nt) known to date with an acceptor stem of 8 base pairs and lacks some of the 'invariant' nucleotides found in other tRNAs. It is the first E. coli tRNA that contains the hypermodified nucleotide i6A, adjacent to the UGA-recognizing anticodon UCA. The implications of the unusual structure and modification of this tRNA on recognition by seryl-tRNA synthetase, by tRNA modifying enzymes, and on codon recognition are discussed.  相似文献   

3.
We have used site-specific mutagenesis to change the anticodon of a Xenopus laevis tyrosine tRNA gene so that it would recognize ochre codons. This tRNA gene is expressed when amplified in monkey cells as part of a SV40 recombinant and efficiently suppresses termination at both the ochre codon separating the adenovirus 2 hexon gene from a 23-kd downstream gene and the ochre codon at the end of the NS1 gene of influenza virus A/Tex/1/68. Termination at an amber codon of a NS1 gene of another influenza virus strain was not suppressed by the (Su+) ochre gene suggesting that in mammalian cells amber codons are not recognized by ochre suppressor tRNAs. Finally, microinjection into mammalian cells of both (Su+) ochre tRNA genes and selectible genes containing ochre nonsense mutations gives rise to colonies under selective conditions. We conclude that it should be possible to isolate a wide assortment of mammalian cell lines with ochre suppressor activity.  相似文献   

4.
An additional human serine tRNA gene.   总被引:1,自引:0,他引:1       下载免费PDF全文
  相似文献   

5.
6.
R Debuchy  Y Brygoo 《The EMBO journal》1985,4(13A):3553-3556
The informational suppressors su4-1 and su8-1 of Podospora anserina were isolated by transformation of Schizosaccharomyces pombe UGA mutants. The DNA sequence revealed that they were opal (UGA) suppressor tRNAs. Wild-type alleles were also isolated by hybridization. The DNA sequence showed that they both encode species of tRNASerUGA. The gene SU8 has an 18-bp intervening sequence and its primary sequence is very different from that of SU4.  相似文献   

7.
8.
The nucleotide sequence of a human serine tRNA gene.   总被引:2,自引:3,他引:2       下载免费PDF全文
  相似文献   

9.
Most Bacillus subtilis tRNA genes have been isolated from lambda libraries by use of probes that hybridize to tRNA or rRNA sequences. None of those genes map to the region of the sup-3 mutation. By cloning of the sup-3 allele, a cluster of seven tRNA genes (the trnS operon) that had not been isolated by other methods was identified. In principle, this approach could be used to isolate at least one more predicted tRNA-containing operon in this bacterium. The trnS operon was shown to contain tRNA genes for Asn (GUU), Ser (GCU), Glu (UUC), Gln (UUG), Lys (UUU), Leu (UAG), and Leu (GAG). The sup-3 mutation was found to be a T-to-A transversion that changes the anticodon of the lysine tRNA from 5'-UUU-3' to 5'-UUA-3'. This result agrees with previous work that determined that the sup-3 mutation causes lysine to be inserted at ochre nonsense mutations.  相似文献   

10.
The rabbit genome encodes an opal suppressor tRNA gene. The coding region is strictly conserved between the rabbit gene and the corresponding gene in the human genome. The rabbit opal suppressor gene contains the consensus sequence in the 3' internal control region but like the human and chicken genes, the rabbit 5' internal control region contains two additional nucleotides. The 5' flanking sequences of the rabbit and the human opal suppressor genes contain extensive regions of homology. A subset of these homologies is also present 5' to the chicken opal suppressor gene. Both the rabbit and the human genomes also encode a pseudogene. That of the rabbit lacks the 3' half of the coding region. Neither pseudogene has homologous regions to the 5' flanking regions of the genes. The presence of 5' homologies flanking only the transcribed genes and not the pseudogenes suggests that these regions may be regulatory control elements specifically involved in the expression of the eukaryotic opal suppressor gene. Moreover the strict conservation of coding sequences indicates functional importance for the opal suppressor tRNA genes.  相似文献   

11.
The UGA suppressor tRNA produced by Schizosaccharomyces pombe strain sup3-e was purified to homogeneity. It can be aminoacylated with a serine by a crude aminoacyl-tRNA synthetase preparation from S. pombe cells. By combining post-labeling fingerprinting and gel sequencing methods the nucleotide sequence of this tRNA was determined to be: pG-U-C-A-C-U-A-U-G-U-C-ac4C-G-A-G-D-G-G-D-D-A-A-G-G-A-m2G2-psi-U-A-G-A-N-U-U-C-A-i6A-A-psi-C-U-A-A-U-G-G-G-C-U-U-U-G-C-C-C-G-m5C-G-G-C-A-G-G-T-psi-C-A-m1A-A-U-C-C-U-G-C-U-G-G-U-G-A-C-G-C-C-A OH. The anticodon sequence u ca is complementary to the UGA codon.  相似文献   

12.
13.
14.
15.
Amber suppressor tRNAs are widely used to incorporate nonnatural amino acids into proteins to serve as probes of structure, environment, and function. The utility of this approach would be greatly enhanced if multiple probes could be simultaneously incorporated at different locations in the same protein without other modifications. Toward this end, we have developed amber, opal, and ochre suppressor tRNAs derived from Escherichia coli, and yeast tRNACys that incorporate a chemically modified cysteine residue with high selectivity at the cognate UAG, UGA, and UAA stop codons in an in vitro translation system. These synthetic tRNAs were aminoacylated in vitro, and the labile aminoacyl bond was stabilized by covalently attaching a fluorescent dye to the cysteine sulfhydryl group. Readthrough efficiency (amber > opal > ochre) was substantially improved by eRF1/eRF3 inhibition with an RNA aptamer, thus overcoming an intrinsic hierarchy in stop codon selection that limits UGA and UAA termination suppression in higher eukaryotic translation systems. This approach now allows concurrent incorporation of two different modified amino acids at amber and opal codons with a combined apparent readthrough efficiency of up to 25% when compared with the parent protein lacking a stop codon. As such, it significantly expands the possibilities for incorporating nonnative amino acids for protein structure/function studies.  相似文献   

16.
supN ochre suppressor gene in Escherichia coli codes for tRNALys.   总被引:6,自引:1,他引:6       下载免费PDF全文
We describe the cloning and nucleotide sequence of a new tRNALys gene, lysV, in Escherichia coli. An ochre suppressor allele of this gene, supN, codes for a tRNALys with anticodon UUA, presumably derived by a single base change from a wild-type UUU anticodon. The sequence of the supN tRNALys is identical to the sequence of ochre suppressor tRNAs encoded by mutant alleles at the lysT locus. This locus, which contains the two previously known tRNALys genes of E. coli, is located far from the lysV locus on the chromosome.  相似文献   

17.
The nucleotide sequences of nine genes corresponding to tRNA(Ser)4 or tRNA(Ser)7 of Drosophila melanogaster were determined. Eight of the genes compose the major tRNA(Ser)4,7 cluster at 12DE on the X chromosome, while the other is from 23E on the left arm of chromosome 2. Among the eight X-linked genes, five different, interrelated, classes of sequence were found. Four of the eight genes correspond to tRNA(Ser)4 and tRNA(Ser)7 (which are 96% homologous), two appear to result from single crossovers between tRNA(Ser)4 and tRNA(Ser)7 genes, one is an apparent double crossover product, and the last differs from a tRNA(Ser)4 gene by a single C to T transition at position 50. The single autosomal gene corresponds to tRNA(Ser)7. Comparison of a pair of genes corresponding to tRNA(Ser)4 from D. melanogaster and Drosophila simulans showed that, while gene flanking sequences may diverge considerably by accumulation of point changes, gene sequences are maintained intact. Our data indicate that recombination occurs between non-allelic tRNA(Ser) genes, and suggest that at least some recombinational events may be intergenic conversions.  相似文献   

18.
We describe the generation of a complete set of orthogonal 21st synthetase-amber, ochre and opal suppressor tRNA pairs including the first report of a 21st synthetase-ochre suppressor tRNA pair. We show that amber, ochre and opal suppressor tRNAs, derived from Escherichia coli glutamine tRNA, suppress UAG, UAA and UGA termination codons, respectively, in a reporter mRNA in mammalian cells. Activity of each suppressor tRNA is dependent upon the expression of E.coli glutaminyl-tRNA synthetase, indicating that none of the suppressor tRNAs are aminoacylated by any of the twenty aminoacyl-tRNA synthetases in the mammalian cytoplasm. Amber, ochre and opal suppressor tRNAs with a wide range of activities in suppression (increases of up to 36, 156 and 200-fold, respectively) have been generated by introducing further mutations into the suppressor tRNA genes. The most active suppressor tRNAs have been used in combination to concomitantly suppress two or three termination codons in an mRNA. We discuss the potential use of these 21st synthetase-suppressor tRNA pairs for the site-specific incorporation of two or, possibly, even three different unnatural amino acids into proteins and for the regulated suppression of amber, ochre and opal termination codons in mammalian cells.  相似文献   

19.
Using synthetic oligonucleotides, we have constructed a collection of Escherichia coli amber suppressor tRNA genes. In order to determine their specificities, these tRNAs were each used to suppress an amber (UAG) nonsense mutation in the E. coli dihydrofolate reductase gene fol. The mutant proteins were purified and subjected to N-terminal sequence analysis to determine which amino acid had been inserted by the suppressor tRNAs at the position of the amber codon. The suppressors can be classified into three groups on the basis of the protein sequence information. Class I suppressors, tRNA(CUAAla2), tRNA(CUAGly1), tRNA(CUAHisA), tRNA(CUALys) and tRNA(CUAProH), inserted the predicted amino acid. The class II suppressors, tRNA(CUAGluA), tRNA(CUAGly2) and tRNA(CUAIle1) were either partially or predominantly mischarged by the glutamine aminoacyl tRNA synthetase. The class III suppressors, tRNA(CUAArg), tRNA(CUAAspM), tRNA(CUAIle2), tRNA(CUAThr2), tRNA(CUAMet(m)) and tRNA(CUAVal) inserted predominantly lysine.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号