首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
《Carbohydrate research》1986,145(2):201-218
A galactan, isolated from the spawn of the snail Lymnaea stagnalis, contained d-galactose and 0.9% of nitrogen, but neither l-galactose nor phosphate groups. The [α]D20 values of the galactan and its first Smith-degradation product were +19.5° and +20°, respectively. During each of two consecutive Smith-degradations of the galactan, 1 mol of periodate was consumed and 0.45 mol of formic acid was liberated per mol of “anhydrogalactose” unit. Methylation analyses of the galactan and its first Smith-degradation product yielded equal proportions of 2,3,4,6-tetra-O-methyl- and 2,4-di-O-methyl-galactose. Only small quantities of 2,4,6- (4.9 mol%) and 2,3,4-tri-O-methylgalactose (0.7 mol%) were formed from the galactan, whereas the first Smith-degraded product gave 15.6 and 20.4 mol%, respectively. The product of the second Smith-degradation disintegrated and the following oligosaccharides were identified: β-d-Gal-(1→1)-l-Gro, β-d-Gal-(1→3)-β-d-Gal-(1→1)-l-Gro, β-d-Gal-(1→6)-β-d-Gal-(1→1)-l-Gro, β-d-Gal-(1→6)-d-Gal-β-d-Gal-(1→3)-β-d-Gal-(1→1)-l-Gro, β-d-Gal-(1→3)-[β-d-Gal-(1→6)]-β-d-Gal-(1→1)-l-Gro, β-d-Gal-(1→3)-β-d-Gal-(1→6)-β-d-Gal-(1→1)-l-Gro, and β-d-Gal-(1→3)-β-d-Gal-(1→3)-β-d-Gal-(1→1)-l-Gro. Thus, the galactan is highly branched with the backbone containing sequences of either exclusively (1→6)-linked or of more or less regularly alternating (1→3)- and (1→6)-linked units. The side chains vary in length and in the degree of branching. In immunoprecipitin studies, a high degree of species-specificity was seen when various snail galactans were tested with the antiserum to the Lymnaea stagnalis galactan.  相似文献   

2.
The oligosaccharide β-d-Man-(1 → 4)-α-l-Rha (1 → 3)-d-Gal-(6 ← 1)-α-d-Glc, which is the repeating unit of the O-specific polysaccharide chain of the lipopolysaccharide from Salmonella senftenberg, was obtained by glycosylation of benzyl 2,4-di-O-benzyl-6-O-(2,3,4-tri-O-benzyl-6-O-p-nitrobenzoyl-α-d-glucopyranosyl)-β-d-galactopyranoside or benzyl 2-O-acetyl-6-O-(2,3,4-tri-O-benzyl-6-O-p-nitrobenzoyl-α-d-glucopyranosyl)-β-d-galactopyranoside with 3-O-acetyl-4-O-(2,3,4,6-tetra-O-acetyl-β-d-mannopyranosyl)-β-l-rhamnopyranose 1,2-(methyl orthoacetate) followed by removal of protecting groups.  相似文献   

3.
β-d-Mannosidase (β-d-mannoside mannohydrolase EC 3.2.1.25) was purified 160-fold from crude gut-solution of Helix pomatia by three chromatographic steps and then gave a single protein band (mol. wt. 94,000) on SDS-gel electrophoresis, and three protein bands (of almost identical isoelectric points) on thin-layer iso-electric focusing. Each of these protein bands had enzyme activity. The specific activity of the purified enzyme on p-nitrophenyl β-d-mannopyranoside was 1694 nkat/mg at 40° and it was devoid of α-d-mannosidase, β-d-galactosidase, 2-acet-amido-2-deoxy-d-glucosidase, (1→4)-β-d-mannanase, and (1→4)-β-d-glucanase activities, almost devoid of α-d-galactosidase activity, and contaminated with <0.02% of β-d-glucosidase activity. The purified enzyme had the same Km for borohydride-reduced β-d-manno-oligosaccharides of d.p. 3–5 (12.5mm). The initial rate of hydrolysis of (1→4)-linked β-d-manno-oligosaccharides of d.p. 2–5 and of reduced β-d-manno-oligosaccharides of d.p. 3–5 was the same, and o-nitrophenyl, methylumbelliferyl, and naphthyl β-d-mannopyranosides were readily hydrolysed. β-d-Mannobiose was hydrolysed at a rate ~25 times that of 61-α-d-galactosyl-β-d-mannobiose and 63-α-d-galactosyl-β-d-mannotetraose, and at ~90 times the rate for β-d-mannobi-itol.  相似文献   

4.
Enzymatic synthesis of GlcNAc-terminated poly-N-acetyllactosamine β-glycosides GlcNAcβ1,3(Galβ1,4GlcNAcβ1,3)nGalβ1,4GlcNAcβ-pNP (n=1–4) was demonstrated using a transglycosylation reaction of Escherichia freundii endo-β-galactosidase. The enzyme catalyzed a transglycosylation reaction on GlcNAcβ1,3Galβ1,4GlcNAcβ-pNP (1), which served both as a donor and an acceptor, and converted 1 into p-nitrophenyl β-glycosides GlcNAcβ1,3(Galβ1,4GlcNAcβ1,3)1Galβ1,4GlcNAcβ-pNP (2), GlcNAcβ1,3(Galβ1,4GlcNAcβ1,3)2Galβ1,4GlcNAcβ-pNP (3), GlcNAcβ1,3(Galβ1,4GlcNAcβ1,3)3Galβ1,4GlcNAcβ-pNP (4) and GlcNAcβ1,3(Galβ1,4GlcNAcβ1,3)4Galβ1,4GlcNAcβ-pNP (5). When 2 was used as an initial substrate, it led to the preferential synthesis of nonasaccharide β-glycoside 4 to heptasaccharide β-glycoside 3. This suggests that 4 is directly synthesized by transferring the tetrasaccharide unit GlcNAcβ1,3Galβ1,4GlcNAcβ1,3Gal to nonreducing end GlcNAc residue of 2 itself. The efficiency of production of poly-N-acetyllactosamines by E. freundii endo-β-galactosidase was significantly enhanced by the addition of BSA and by a low-temperature condition. Resulting 2 and 3 were shown to be useful for studying endo-β-galactosidase-catalyzed hydrolytic and transglycosylation reactions.  相似文献   

5.
Sophora japonica lectin agglutinates human B erythrocytes strongly and A1 erythrocytes weakly. Bivalent metal ions such as Ca2+, Mn2+, or Mg2+ were shown to be essential for hemagglutinating and precipitating activities. At optimal concentrations of bivalent metal ions, hemagglutinating activity was highest between pH 8.5 and 9.0 and decreased sharply below pH 8.5, whereas precipitating capacity was maximal between pH 6.7 and 9.5. The combining site of the S. japonica lectin was explored by quantitative precipitin and precipitin inhibition assays. This lectin showed substantial differences in precipitation with several blood group B substances ascribable to heterogeneity resulting from incomplete biosynthesis of their carbohydrate side chains. The lectin precipitated moderately well with A1 substance and precursor blood group I fractions (OG). It precipitated weakly or not at all with A2, H, or Lea substances. In inhibition assays, glycosides of dGalNAc were about five to six times better than those of dGal; dGalNAc itself was about six times better than dGal. Nitrophenyl glycosides were all substantially better than the methyl glycosides, indicating a hydrophobic contribution to the site subterminal to the nonreducing moiety. Although nitrophenyl β-glycosides were much better than the corresponding α-glycosides, the methyl α-and βDGalNAcp were equal in activity as were methyl α- and βDGalp. Among the oligosaccharides tested, the β-linked N-tosyl-l-serine glycoside of dGalβ1 → 3dGalNAc was best and was as active as p-nitrophenyl βDGalNAcp, whereas dGalβ1 → 3dGalNAc α-N-tosyl serine and the nitrophenyl and phenyl α-glycosides of dGalβ1 → 3dGalNAc were much less active, suggesting that the hydrophobic moiety and/or a subterminal dGalNAc β-linked and substituted on carbon 3 play an important role in binding and that a β-linked glycoside of dGalβ1 → 3dGalNAc may be an essential requirement for binding. The results of inhibition studies with other oligosaccharides indicate that a subterminal dGlcNAc substituted on carbon 3 or 4 by dGalβ may contribute somewhat to binding and that whether the dGlcNAc is linked β1 → 3 or β1 → 6 to a third sugar does not contribute to or interfere with binding. The β1 → 3 linkage of the terminal dGal to the subterminal amino sugar is significant since dGalβ1 → 4dGlcNAc was one-half as active as the corresponding β1 → 3-linked compound and the subterminal sugar must be unsubstituted for optimal binding. N-Acetyllactosamine was 50% more active than lactose, indicating that the subterminal N-acetamido group was also contributing significantly to binding. A variety of other sugars, glycosides, and oligosaccharides showed little or not activity. From the oligosaccharides available, the combining size of this lectin would appear to be least as large a β-linked disaccharide and most complementary to dGalβ1 → 3dGalNAc β-linked to tosyl-l-serine the most active compound tested.  相似文献   

6.
《Carbohydrate research》1987,166(2):263-269
An arabinoxylan isolated from the bark of Cinnamomum zeylanicum was composed of l-arabinose and d-xylose in the molar ratio 1.6:1.0. Partial hydrolysis furnished oligosaccharides which were characterised as α-d-Xylp-(1→3)-d-Ara, β-dXylp-(1→4)-d-Xyl, β-d-Xylp-(1→4)-β-d-Xylp-(1→4)-d-Xyl, β-d-Xylp-(1→4)-β-d-Xylp-(1→4)-β-d-Xylp-Xylp-(1→4)-d-Xyl, xylopentaose, and xylohexaose. Mild acid hydrolysis of the arabinoxylan gave a degraded polysaccharide consisting of l-arabinose (8%) and d-xyolse (92%). Methylation analysis indicated the degraded polysaccharide to be a linear (1→4)-linked d-xlan in which some xylopyranosyl residues were substituted at O-2 or O-3 with l-arabinofuranosyl groups. These data together with the results of methylation analysis and periodate oxidation of the arabinoxylan suggested that it contained a (1→4)-linked β-d-xylan backbone in which each xylopyranosyl residue was substituted both at O-2 and O-3 with l-arabinofuranosyl, 3-O-α-d-xylopyranosyl-l-arabinofuranosyl, and 3-O-l-arabinofuranosyl-l-arabinofuranosyl groups.  相似文献   

7.
The combining site of the Erythrina cristagalli lectin was studied by quantitative precipitin and precipitin inhibition assays. The lectin precipitated best with two fractions of a precursor human ovarian cyst blood group substance with I and i activities. A1, A2, B, H, Lea, and Leb blood group substances precipitated poorly to moderately and substances of the same blood group activity precipitated to varying extents. These differences are attributable to heterogeneity resulting from incomplete biosynthesis of carbohydrate chains. Specific precipitates with the poorly reactive blood group substances were found to be more soluble than those reacting strongly. Precipitation was minimally affected by EDTA or divalent cations. Among the monosaccharides and glycosides tested for inhibition of precipitation, p-nitrophenyl βdGal was most active and was 10 times more active than methyl βdGal, indicating involvement of hydrophobic contacts in site specificity. Methyl αdGalNAc, p-nitrophenyl αdGalNAc, methyl αdGal, N-acetyl-d-galactosamine, p-nitrophenyl αdGal, methyl βdGal, and p-nitrophenyl βdGalNAc were progressively less active than p-nitrophenyl βdGal. The best disaccharide inhibitor dGalβ1 → 4dGlcNAc was 7.5 times more potent than p-nitrophenyl βdGal. A tetraantennary and triantennary oligosaccharide containing four and three dGalβ1 → 4dGlcNAcβ1 → branches, respectively, were, because of cooperative binding effects, 1.6 and 2.5 times more active than the bi- and monoantennary oligosaccharides, respectively. dGalβ1 → 4dGlcNAcβ1 → 6dGal and dGalβ1 → 4dGlcNAcβ1 → 2dMan had the same activity, being 1.5 times more active than dGalβ1 → 4dGlcNAc, which was 2.6 and 8.5 times more active than dGalβ1 → 3dGlcNAc and dGalβ1 → 3dGlc, respectively. Substitutions by N-acetyl-d-galactos-amine or l-fucose on the d-galactose of inhibitory compounds blocked activity. These results suggest that a hydrophobic interaction with the subterminal sugar is important in the binding and that the specificity of the lectin combining site involves a terminal dGalβ1 → 4dGlcNAc and the β linkage of a third sugar.  相似文献   

8.
The plant gum isolated from sap of the lac tree, Rhus vernicifera (China), was separated into two fractions having mol. wt. 84,000 and 27,700 by aqueous-phase gel-permeation chromatography. The fractions contain d-galactose (65 mol%), 4-O-methyl-d-glucuronic acid (24 mol%), d-glucuronic acid (3 mol%), l-arabinose (4 mol%), and l-rhamnose (3 mol%). Smith degradation of the carboxyl-reduced polysaccharides gives products of halved molecular weight, and these consist of a β-(1→3)-linked galactopyranan main chain and side chains made up of galactopyranose residues. Peripheral groups, such as α-d-Galp-, α-d-Galp-(1→6)-β-d-Galp-, 4-O-methyl-β-d-GlcpA-, and 4-O-methyl-β-d-GlcpA-(1→6)-β-d-Galp-, are attached to this interior core through β-(1→3)- or β-(1→6)-linkages.  相似文献   

9.
4-Methylumbelliferyl 2-acetamido-2-deoxy-β-D-glucopyranoside, 2-acetamido-4-O-(2-acetamido-2-deoxy-β-D-glucopyranosyl)-2-deoxy-β-D-glucopyranoside (di-N-acetyl-β-chitobioside), and O-(2-acetamido-2-deoxy-β-D-glucopyranosyl)-(1→4)-O-(2-acetamido-2-deoxy-β-D-glucopyranosyl)-(1→4)-2-acetamido-2-deoxy-β-D-glucopyranoside (tri-N-acetyl-β-chitotrioside) were obtained in good yield from the corresponding peracetylated glycosyl chlorides by condensation with the sodium salt of 4-methylumbelliferone in N,N-dimethylformamide. The trisaccharide glycoside is hydrolyzed by lysozyme and is, therefore, a convenient substrate for this enzyme; the 4-methylumbelliferone produced can be determined by the increase of the fluorescence intensity at 442 nm. The intensity of the fluorescence of 4-methylumbelliferyl tri-N-acetyl-β-chitotrioside is enhanced upon binding with lysozyme without modification of the position of the absorption maximum. The binding constant and the rate of hydrolysis of the trisaccharide glycoside by lysozyme are higher than those obtained with p-nitrophenyl tri-N-acetyl-β-chitotrioside.  相似文献   

10.
Thiodisaccharides having β-d-Galf or α-l-Araf units as non-reducing end have been synthesized by the SnCl4- or MoO2Cl2-promoted thioglycosylation of per-O-benzoyl-d-galactofuranose (1), its 1-O-acetyl analogue 4, or per-O-acetyl-α-l-arabinofuranose (16) with 6-thioglucose or 6-thiogalactose derivatives. After convenient removal of the protecting groups, the free thiodisaccharides having the basic structure β-d-Galf(1→6)-6-thio-α-d-Glcp-OMe (5) or β-d-Galf(1→6)-6-thio-α-d-Galp-OMe (15) were obtained. The respective α-l-Araf analogues 18 and 20 were prepared similarly from 16. Alternatively, β-d-Galf(1→4)-4-thio-3-deoxy-α-l-Xylp-OiPr was synthesized by Michael addition to a sugar enone of 1-thio-β-d-Galf derivative, generated in situ from the glycosyl isothiourea derivative of 1. The free S-linked disaccharides were evaluated as inhibitors of the β-galactofuranosidase from Penicillium fellutanum, being 15 and 20 the more active inhibitors against this enzyme.  相似文献   

11.
The sugar chains of microsomal and lysosomal β-glucuronidases of rat liver were studied by endo-β-N-acetylglucosaminidase H digestion and by hydrazinolysis. Only a part of the oligosaccharides released from microsomal β-glucuronidase was an acidic component. The acidic component was not hydrolyzed by sialidase and by calf intestinal and Escherichia coli alkaline phosphatases, but was converted to a neutral component by phosphatase digestion after mild acid treatment indicating the presence of a phosphodiester group. The neutral oligosaccharide portion of microsomal enzyme was a mixture of five high mannose-type sugar chains: (Manα1 → 2)0~4 [Manα1 → 6(Manα1 → 3)Manα1 → 6(Manα1 → 3)Manβ1 → 4GlcNAcβ1 → 4GlcNAc]. In contrast, lysosomal enzyme contains only Manα1 → 6 (Manα1 → 3) Manα1 → 6(Manα1 → 3) Manβ1 → 4GlcNAcβ1 → 4GlcNAc. The result indicates that removal of α1 → 2-linked mannosyl residues from (Manα1 → 2)4[Manα1 → 6(Manα1 → 3)Manα1 → 6(Manα1 → 3)Manβ1 → 4GlcNAcβ1 → 4GlcNAc → Asn] starts already in the endoplasmic reticulum of rat liver.  相似文献   

12.
《Carbohydrate research》1985,140(2):277-288
Condensation of 2,4,6-tri-O-acetyl-3-deoxy-3-fluoro-α-d-galactopyranosyl bromide (3) with methyl 2,3,4-tri-O-acetyl-β-d-galactopyranoside (4) gave a fully acetylated (1→6)-β-d-galactobiose fluorinated at the 3′-position which was deacetylated to give the title disaccharide. The corresponding trisaccharide was obtained by reaction of 4 with 2,3,4-tri-O-acetyl-6-O-chloroacetyl-α-d-galactopyranosyl bromide (5), dechloroacetylation of the formed methyl O-(2,3,4-tri-O-acetyl-6-O-chloroacetyl-β-d-galactopyranosyl)-(1→6)- 2,3,4-tri-O-acetyl-β-d-galactopyranoside to give methyl O-(2,3,4-tri-O-acetyl-β-d-galactopyranosyl)-(1→6)-2,3,4-tri-O-acetyl-β-d-galactopyranoside (14), condensation with 3, and deacetylation. Dechloroacetylation of methyl O-(2,3,4-tri-O-acetyl-6-O-chloroacetyl-β-d-galactopyranosyl)-(1→6)-O-(2,3,4-tri-O-acetyl- β-d-galactopyranosyl)-(1→6)-2,3,4-tri-O-acetyl-β-d-galactopyranoside, obtained by condensation of disaccharide 14 with bromide 5, was accompanied by extensive acetyl migration giving a mixture of products. These were deacetylated to give, crystalline for the first time, the methyl β-glycoside of (1→6)-β-d-galactotriose in high yield. The structures of the target compounds were confirmed by 500-MHz, 2D, 1H- and conventional 13C- and 19F-n.m.r. spectroscopy.  相似文献   

13.
《Phytochemistry》1987,26(4):1185-1188
In continuation of our chemosystematic study of Stachys (Labiatae) we have isolated the previously reported isoscutellarein 7-O-[6″'-O-acetyl-β-D-allopyranosyl-(1 → 2)-β-D-glucopyranoside] (1) and 3′-hydroxy-4′-O-methylisoscutellarein 7-O-[6″'-O-acetyl-β-D-allopyranosyl-(1 → 2)-β-D-glucopyranoside] (4) and four new allose-containing flavonoid glycosides from S. anisochila. The new glycosides are hypolaetin 7-O-[6″'-O-acetyl-β-D-allopyranosyl-(1 → 2)-β-D-glucopyranside] (6) as well as the three corresponding diacetyl analogues of 1, 4 and 6, isoscutellarein 7-O-[6″'-O-acetyl-β-D-allopyranosyl-(1 → 2)-6″-O-acetyl-β-D-glucopyranoside], 3′-hydroxy-4′-O-methylisoscutellarein 7-O-[6″'-O-acetyl-β-D-allopyranosyl-(1 → 2)-6″-O-acetyl-β-D-glucopyranoside] and hypolaetin 7-O-[6″'-O-acetyl-β-D-allopyranosyl-(1 → 2)-6″-O-acetyl-β-D-glucopyranoside]. Extensive two-dimensional NMR studies (proton-carbon correlations, COSY experiments) allowed assignment of all 1H NMR sugar signals and a correction of the 13C NMR signal assignments for C-2 and C-3 of the allose.  相似文献   

14.
The combining site of the Bauhinia purpurea alba lectin was studied by quantitative precipitin and precipitin inhibition assays. Of 45 blood group substances, glycoproteins, and polysaccharides tested, 35 precipitated over 75% of the lectin. Precursor blood group substances with I activity (Cyst OG 10% from 20% and Cyst OG 20% from 10%), desialized fetuin, and desialized ovine salivary glycoprotein, in which more than 75% of the carbohydrate side chains have dGalN Ac linked through α1 → to the OH group of Ser or Thr of a protein core, completely precipitated the lectin. The poorly reactive blood group substances after mild acid hydrolysis or Smith degradation, as well as sialic acid-containing glycoproteins after removal of sialic acid, had substantially increased activity so that more than 80% of the lectin was precipitated. Precipitability with various blood group substances and glycoproteins is ascribable to the terminal nonreducing dGalNAc, dGalβ1 → 3dGalNAc, dGalβ1 → 3 or 4dGlcNAc, and dGalβ1 → 3 or 4dGlcNAcβ1 → 3dGal determinants on the carbohydrate moiety. Of the monosaccharides tested for inhibition of precipitation, dGalNAc and its p-nitrophenyl and methyl α-glycosides were best. These compounds were four to five times better than the corresponding dGal compounds but methyl βDGalNAcp was only about 40% more active than methyl βdGalp. The α-anomers of p-nitrophenyl DGalNAcp and dGalp, were twice as active as the corresponding β-anomers. Methyl αDGalNAcp was four times as active as the β-anomer but the inhibitory power of the methyl α- and β-anomers of dGal were about equal. Among the oligosaccharides tested, dGalβ1 → 3dGalNAc and its tosyl derivatives were most active, the tosyl glycosides being about twice as active as dGalβ1 → 3dGalNAc, which was somewhat more active than dGalNAcα1 → 6dGal and dGalNAc, and 2.5 and 5 times as active as dGalNAcα1 → 3dGalβ1 → 3dGlcNAc and dGalNAcαl → 3dGa1, respectively (blood group A specific). These findings suggest that a subterminal dGalNAc β-linked and substituted on carbon 3 plays an important role in binding. Consistent with this inference are the findings that dGalβ1 → 3dGlcNAc and dGalβ1 → 6dGal were poorer inhibitors although dGalβ1 → 3dGlcNAc was two to three times as active as glycosides of dGal. Oligosaccharides with terminal nonreducing dGal and subterminal α-linked dGal were as active or less active than dGal. dGalβ1 → 3dGlcNAcβ1 → 3dGalβ1 → 4dGlc (lacto-N-tetraose) and dGalβ1 → 3dGlcNAcβ1 → 3dGal-β1-O-(CH2)8COOCH3 were equally active and 1.5 times as potent as dGalβ1 → 3dGlcNAc whereas dGalβ1 → 3dGlcNAcβ1 → 6dGal was only 40% as potent as dGalβ1 → 3dGlcNAc suggesting that a third sugar may be part of the determinant. Substitution of dGalβ1 → 3dGlcNAcβ1 → 3dGalβ1 → 4dGlc on the subterminal dGlcNAc by lFucα1 → 4 in lacto-N-fucopentaose II reduced activity fourfold; if the nonreducing dGal is substituted by lFucα1 → 3 as in lacto-N-fucopentaose I its activity is almost completely abolished. This suggests that a terminal nonreducing dGal as well as subterminal dGlcNAc are contributing to binding. The β → 3 linkage of the terminal dGal to the subterminal amino sugar is significant since dGalβ1 → 4dGlcNAc is a poorer inhibitor. Although the available data suggest that the combining site of the lectin Bauhinia purpurea alba may be most complementary to the structure dGalβ1 → 3dGalNAcβ1 → 3dGal, several other possibilities remain to be tested when suitable oligosaccharides become available.  相似文献   

15.
《Carbohydrate research》1986,149(2):347-361
Glycosylation of 1,2:3,4-di-O-isopropylidene-α-d-galactopyranose (6), as well as its 6-trimethylsilyl ether 7 with 2,3,4,6-tetra-O-acetyl-β-d-glucopyranosyl fluoride (5) was achieved stereospecifically in a mild and fast manner in the presence of Lewis acids like, e.g., titanium tetrafluoride, to give the β-(1→6)-linked disaccharide derivative 1. By use of 2,3,4,6-tetra-O-benzyl-β-d-glucopyranosyl fluoride (8) or its α anomer 10 and titanium tetrafluoride in acetonitrile with 6 or 7, a fast reaction proceeds preponderantly to yield 1,2:3,4-di-O-isopropylidene 6-O-(2,3,4,6-tetra-O-benzyl-β-d-glucopyranosyl)-α-d-galactopyranose (2). In ether, however, mainly the α-(1→6) anomer was formed. These model systems were used to elucidate the limiting conditions for this procedure, and mechanistic conceptions are discussed. By glycosylation at O-4 of 1,6:2,3-dianhydro-β-d-mannopyranose (11) with the perbenzylated α-fluoride 10 both the α- and the β-d-(1→4) disaccharide derivatives 12 and 14 were obtained, but 5 gave exclusively the β-d-(1→4) compound 16. Opening of the anhydro rings of 12 led to the synthesis of N-acetyl-maltosamine (22). 1,6-Anhydro-2-azido-4-O-benzyl-2-deoxy-β-d-glucopyranose was glycosylated with methyl (2,3,4-tri-O-acetyl-β-d-galactopyranosyl fluoride)uronate under titanium tetrafluoride catalysis to give the β-d-(1→3)-linked disaccharide 16, subsequently transformed into 29.  相似文献   

16.
For further structure–activity relationship (SAR) research of OSW saponins, a cholestane glycoside, namely 3β, 16β, 26-trihydroxycholest-5-en-22-one 16-O-(2-O-4-methoxybenzoyl-β-d-xylopyranosyl)-(1→3)-2-O-acetyl-α-l-arabinopyranoside (1) together with two 1→4-linked disaccharide analogues (2 and 3) were synthesized. Their cytotoxic activities were evaluated by the standard MTT assay. Compound 1 showed potent cytotoxicity against five types of human tumor cells, with IC50 ranging between 1.3 and 73 nM.  相似文献   

17.
When 1,2,3,4-tetra-O-acetyl-α-D-mannopyranose was fused with a catalytic amount of toluene-p-sulphonic acid, 6-O-α-D-mannopyranosyl-D-mannose and 4-O-α-D-mannopyranosyl-D-mannose were isolated after deacetylation of the reaction mixture. No β-D-linked disaccharide was detected in the reaction mixture. When the corresponding β-D-tetra-acetate was fused with zinc chloride as catalyst, higher oligomers were formed, and a D-mannan was isolated and shown to be mainly an α-(1→6)-linked polymer having d.p. of 10. With 5% of zinc chloride, the α-D-tetra-acetate showed oligosaccharide formation, and yielded a smaller proportion of a (1→6)-linked D-mannan.  相似文献   

18.
The reaction of 2,3-di-O-acetyl-4-O-benzyl-α,β-d-xylopyranosyl bromide (2) with methyl 2,3-di-O-acetyl-β-d-xylopyranoside gave methyl O-(2,3-di-O-acetyl-4-O-benzyl-β-d-xylopyranosyl)-(1→4)-2,3-di-O-acetyl-β-d-xylopyranoside (22). Catalytic hydrogenolysis of 22 exposed HO-4′ which was then condensed with 2. This sequence of reactions was repeated three more times to afford, after complete removal of protecting groups, a homologous series of methyl β-glycosides of (1→4)-β-d-xylo-oligosaccharides. 13C-N.m.r. spectra of the synthetic methyl β-glycosides (di- to hexa-saccharide) are presented together with data for six other, variously substituted, homologous series of (1→4)-d-xylo-oligosaccharides.  相似文献   

19.
The repeating disaccharide-dipeptide units of the bacterial, cell-wall peptidoglycan, one being O-(N-acetyl-β-muramoyl-l-alanyl-d-isoglutamine)-(1→4)-2-acetamido-2-deoxy-d-glucose, and the other, O-(2-acetamido-2-deoxy-β-d-glucosyl)-(1→4)-N-acetyl-muramoyl-l-alanyl-d-isoglutamine, have been synthesized. Some carbohydrate analogs, such as O-(N-acetyl-β-muramoyl-l-alanyl-d-isoglutamine)- (1→4)-N-acetylmuramoyl-l-alanyl-d-isoglutamine, O-β-d-glucosyl-(1→4)-N-acetylmuramoyl-l-alanyl-d-isoglutamine, and O-(6-acetamido-6-deoxy-β-d-glucosyl)-(1→4)-N-acetylmuramoyl-l-alanyl-d-isoglutamine, were also synthesized. Their immunoadjuvant activities were examined in guinea-pigs.  相似文献   

20.
2-Methyl-[3,6-di-O-acetyl-2-deoxy-4-O-(2,3,4,6-tetra-O-acetyl-β-d-galactopyranosyl)-α-d-glucopyrano]-[2,1-d]-2-oxazoline (4) was prepared from 2-acetamido-3,6-di-O-acetyl-2-deoxy-4-O-(2,3,4,6-tetra-O-acetyl-β-d-galactopyranosyl)-α-d- glucopyranosyl chloride. Condensation of 3,4:5,6-di-O-isopropylidene-d-mannose dimethyl acetal with 4 in the presence of a catalytic amount of p-toluenesulfonic acid afforded O-(2,3,4,6-tetra-O-acetyl-β-d-galactopyranosyl)-(1 → 4)-O-(2-acetamido-3,6-di-O-acetyl-2-deoxy-β-d-glucopyranosyl)-(1 → 2)-3,4:5,6-di-O-isopropylidene-d-mannose dimethyl acetal (6) in 8.6% yield. Catalytic deacetylation of 6 with sodium methoxide, followed by hydrolysis with dilute sulfuric acid, gave O-β-d-galactopyranosyl-(1 → 4)-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-(1 → 2)-d-mannose (7). The inhibitory activities of 7 and related sugars against the hemagglutinating activities of various lectins were assayed, and 7 was found to be a good inhibitor against Phaseolus vulgaris hemagglutinin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号