首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The NADH-quinone oxidoreductase from Paracoccus denitrificans consists of 14 subunits (Nqo1-14) and contains one FMN and eight iron-sulfur clusters. The Nqo3 subunit possesses fully conserved 11 Cys and 1 His in its N-terminal region and is considered to harbor three iron-sulfur clusters; however, only one binuclear (N1b) and one tetranuclear (N4) were previously identified. In this study, the Nqo3 subunit containing 1x[2Fe-2S] and 2x[4Fe-4S] clusters was expressed in Escherichia coli. The second [4Fe-4S](1+) cluster is detected by EPR spectroscopy below 6 K, exhibiting very fast spin relaxation. The resolved EPR spectrum of this cluster is broad and nearly axial. The subunit exhibits an absorption-type EPR signal around g approximately 5 region below 6 K, most likely arising from an S = 3/2 ground state of the fast-relaxing [4Fe-4S](1+) species. The substitution of the conserved His(106) with Cys specifically affected the fast-relaxing [4Fe-4S](1+) cluster, suggesting that this cluster is coordinated by His(106). In the cholate-treated NDH-1-enriched P. denitrificans membranes, we observed EPR signals arising from a [4Fe-4S] cluster below 6 K, exhibiting properties similar to those of cluster N5 detected in other complex I/NDH-1 and of the fast-relaxing [4Fe-4S](1+) cluster in the expressed Nqo3 subunit. Hence, we propose that the His-coordinated [4Fe-4S] cluster corresponds to cluster N5.  相似文献   

2.
Molecular properties of the NQO9 subunit of Paracoccus denitrificans NDH-1, which is predicted to contain 2x[4Fe-4S] clusters, were investigated using recombinant expression techniques and EPR spectroscopy. The full-length form of NQO9 subunit co-expressed with thioredoxin in Escherichia coli at ambient temperature was found dominantly in the cytoplasmic membrane with low amplification. Genetic deletion of relatively hydrophobic and less conserved N-terminal stretches (30 or 40 amino acid residues long) of the NQO9 subunit resulted in the overexpression of the truncated soluble form of the subunit in a high yield in the cytoplasm. The purified soluble form of the NQO9 subunit contained only a small quantity of Fe and S(2-) (2.0-2.2 mol each per mol of subunit). However, the iron-sulfur content was considerably increased by in vitro reconstitution. The reconstituted NQO9 subunit contained 7.6-7.7 mol each of Fe and S(2-) per molecule and exhibited optical absorption spectra similar to those of 2x[4Fe-4S] ferredoxins. Two sets of relatively broad axial-type EPR signals with different temperature dependence and power saturation profile were detected in the dithionite-reduced preparations at a low temperature range (8-18 K). Due to a negative shift (<600 mV) of the apparent redox midpoint potential of the iron-sulfur clusters in the soluble form of the truncated NQO9 subunit, the following two possible cases could not be discriminated: (i) two sets of EPR signals arise from two distinct species of tetranuclear iron-sulfur clusters with two intrinsically different spectral parameters g(, perpendicular) = 2.05, approximately 1.93, and g(parallel, perpendicular) = 2.08, approximately 1.90, and respective slow (P((1)/(2)) = 8 milliwatts) and fast (P((1)/(2)) = 342 milliwatts) spin relaxation; (ii) two clusters exhibit similar intrinsic EPR spectra (g(parallel, perpendicular) = 2.05, approximately 1.93) with slow spin relaxation. When both clusters in the same subunit are concomitantly paramagnetic, their spin-spin interactions cause a shift of spectra to g(parallel, perpendicular) = 2.08, approximately 1.90, with enhanced spin relaxation. In either case, our EPR data provide the first experimental evidence for the presence of two [4Fe-4S] iron-sulfur clusters in the NQO9 subunit.  相似文献   

3.
Kao MC  Matsuno-Yagi A  Yagi T 《Biochemistry》2004,43(12):3750-3755
The proton-translocating NADH-quinone oxidoreductase (NDH-1) of Paracoccus denitrificans is composed of 14 different subunits (designated Nqo1-14), seven of which are located in the membrane domain and the other seven in the peripheral domain. It has been previously reported that membrane domain subunit Nqo7 (ND3) directly interacts with peripheral subunit Nqo6 (PSST) by using a cross-linker, m-maleimidobenzoyl-N-hydrosuccinimide ester, and heterologous expression [Di Bernardo, S., and Yagi, T. (2001) FEBS Lett. 508, 385-388]. To further explore the near-neighbor relationship of the subunits, a zero-length cross-linker, 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC), and the Paracoccus membranes were used, and the cross-linked products were examined with antibodies specific to subunits Nqo1-11. The Nqo6 subunit was cross-linked to subunit Nqo9 (TYKY). In addition, a ternary product of Nqo3 (75k), Nqo6, and Nqo7 and binary products of Nqo3 and Nqo6 and of Nqo6 and Nqo7 were observed, but a binary product of Nqo3 and Nqo7 was not detected. The Nqo4 (49k) subunit was found to be associated with the Nqo7 subunit. Furthermore, Paracoccus subunits Nqo3, Nqo6, and Nqo7 were heterologously coexpressed in Escherichia coli, and EDC cross-linking experiments were carried out using the E. coli membranes expressing these three subunits. The results were the same as those obtained with Paracoccus membranes. On the basis of the data, subunit arrangements of NDH-1 were discussed.  相似文献   

4.
The proton-translocating NADH-quinone oxidoreductase (NDH-1) of Paracoccus denitrificans is composed of 14 different subunits (Nqo1-Nqo14). Of these, seven subunits (Nqo7, Nqo8, and Nqo10-14) which are equivalent to the mitochondrial DNA-encoded subunits of complex I constitute the membrane segment of the enzyme complex; the remaining subunits make up the peripheral part of the enzyme. We report here on the biochemical characterization and heterologus expression of the Nqo10 subunit. The Nqo10 subunit could not be extracted from the Paracoccus membranes by NaI or alkaline treatment, which is consistent with the presumed membrane localization. By using the maltose-binding protein (MBP) fusion system, the Nqo10 subunit was overexpressed in Escherichia coli. The MBP-fused Nqo10 was expressed in membrane fractions of the host cell and was extractable by Triton X-100. The extracted fusion protein was then isolated by one-step affinity purification through an amylose column. By using immunochemical methods in conjunction with cysteine-scanning mutagenesis and chemical modification techniques, the topology of the Nqo10 subunit expressed in E. coli membranes was determined. The data indicate that the Nqo10 subunit consists of five transmembrane segments with the N- and C-terminal regions facing the periplasmic and cytoplasmic sides of the membrane, respectively. In addition, the data also suggest that the proposed topology of the MBP-fused Nqo10 subunit expressed in E. coli membranes is consistent with that of the Nqo10 subunit in the native Paracoccus membranes. From the experimentally determined topology together with computer prediction programs, a topological model for the Nqo10 subunit is proposed.  相似文献   

5.
Bernardo SD  Yano T  Yagi T 《Biochemistry》2000,39(31):9411-9418
The proton-translocating reduced nicotinamide adenine dinucleotide- (NADH-) quinone oxidoreductase (NDH-1) of Paracoccus denitrificans is composed of at least 14 different subunits (NQO1-14). In addition, this enzyme complex houses one flavin mononucleotide (FMN) and 7-8 iron-sulfur clusters as cofactors. The expression and partial characterization of the NQO7 subunit, one of the seven subunits that constitute the hydrophobic sector of the enzyme complex, have been performed and are reported here. Expression of the NQO7 subunit was achieved by use of the glutathione-S-transferase (GST) fusion system together with Escherichia coli strains BLR(DE3)pLysS and BL21(DE3)pLysS. The GST-fused NQO7 subunit was expressed in the membrane fraction of the host cells and was extracted from the membranes by nonionic detergents (Triton X-100, dodecyl maltoside). The extracted polypeptide was purified by glutathione affinity column chromatography and characterized. The isolated GST-fused NQO7 subunit (but not the GST alone) was determined to interact with phospholipid vesicles and suppress the membrane fluidity. Antibodies against both the N- and C-terminal regions of the deduced primary structure of the NQO7 subunit reacted with a single band (15 kDa) of the Paracoccus membranes. By use of immunochemical and cysteine residue modification techniques, the topology of the Paracoccus NQO7 subunit in the membranes has been examined. The data suggest that the Paracoccus NQO7 subunit contains three transmembrane segments and that its N- and C-terminal regions are directed toward the cytoplasmic and periplasmic phases of the membrane, respectively. The proposed topology of the GST-fused NQO7 subunit expressed in E. coli membranes is consistent with that of the NQO7 subunit in the Paracoccus membranes.  相似文献   

6.
X Xu  A Matsuno-Yagi  T Yagi 《Biochemistry》1992,31(30):6925-6932
In previous reports from our laboratory, the three structural genes (NQO1, NQO2, and NQO3) of the energy-transducing NADH-quinone oxidoreductase of Paracoccus denitrificans were characterized [Xu, X., Matsuno-Yagi, A., & Yagi, T. (1991) Biochemistry 30, 6422-6428; (1991) Biochemistry 30, 8678-8684; (1992) Arch. Biochem. Biophys. 296, 40-48]. In this report, the four structural genes NQO4, NQO5, NQO6, and NQO7 of the same Paracoccus denitrificans oxidoreductase were cloned and sequenced. On the basis of sequence homology and immunological cross-reactivity, these genes encode counterparts of the 49-, 30-, and 20-kDa polypeptides and the mitochondrial DNA ND3 polypeptides of bovine mitochondrial complex I. These seven structural genes were found to be located in the same gene cluster. The order of the seven structural genes of the Paracoccus NADH-quinone oxidoreductase in the gene cluster is NQO7, NQO6, NQO5, NQO4, NQO2, NQO1, and NQO3. Upstream of the NQO7 gene, an open reading frame encoding a predicted polypeptide homologous to the UV repair enzyme A of Escherichia coli and Micrococcus lysodeikticus was detected. The 5'-terminus of the gene cluster carrying the Paracoccus NADH-quinone oxidoreductase was studied, and the possible promoter region is discussed. The NQO4 and NQO5 genes appear to code for the M(r) 48,000 and 21,000 polypeptides of the isolated Paracoccus NADH dehydrogenase complex [Yagi, T. (1986) Arch. Biochem. Biophys. 250, 302-311] on the basis of amino acid analyses and N-terminal protein sequence analyses. The antisera to the bovine complex I 49- and 30-kDa polypeptides cross-reacted with the Paracoccus 48- and 21-kDa subunits, respectively.  相似文献   

7.
The structural gene of the Paracoccus denitrificans NADH-ubiquinone oxidoreductase encoding a homologue of the 75-kDa subunit of bovine complex I (NQO3) has been located and sequenced. It is located approximately 1 kbp downstream of the gene coding for the NADH-binding subunit (NQO1) [Xu, X., Matsuno-Yagi, A., and Yagi, T. (1991) Biochemistry 30, 6422-6428] and is composed of 2019 base pairs and codes for 673 amino acid residues with a calculated molecular weight of 73,159. The M(r) 66,000 polypeptide of the isolated Paracoccus NADH dehydrogenase complex is assigned the NQO3 designation on the basis of N-terminal protein sequence analysis, amino acid analysis, and immuno-cross-reactivity. The encoded protein contains a putative tetranuclear iron-sulfur cluster (probably cluster N4) and possibly a binuclear iron-sulfur cluster. An unidentified reading frame (URF3) which is composed of 396 base pairs and possibly codes for 132 amino acid residues was found between the NQO1 and NQO3 genes. When partial DNA sequencing of the regions downstream of the NQO3 gene was performed, sequences homologous to the mitochondrial ND-1, ND-5, and ND-2 gene products of bovine complex I were found, suggesting that the gene cluster carrying the Paracoccus NADH dehydrogenase complex contains not only structural genes encoding water-soluble subunits but also structural genes encoding hydrophobic subunits.  相似文献   

8.
The proton-translocating NADH-quinone oxidoreductase (NDH-1) of Paracoccus denitrificans consists of at least 14 unlike subunits (designated Nqo1-14). The NDH-1 is composed of two segments (the peripheral and membrane segments). The membrane domain segment appears to be made up of seven subunits (Nqo7, -8, -10-14). In this report, the characterization of the Paracoccus Nqo11 subunit has been investigated. An antibody against the C-terminal 12 amino acid residues of the Paracoccus Nqo11 subunit (Nqo11c) has been raised. The Nqo11c antibody reacted with a single band (11 kDa) of the Paracoccus membranes and cross-reacted with Rhodobactor capsulatus membranes. The Nqo11 subunit was not able to be extracted from the Paracoccus membranes by NaI or alkaline treatment, unlike the peripheral subunits (Nqo1 and Nqo6). The C-terminal region of the Paracoccus Nqo11 is exposed to the cytoplasmic phase. For further characterization of the Paracoccus Nqo11 subunit, the subunit was overexpressed in Escherichia coli by using the maltose-binding protein (MBP) fusion system. The MBP-fused Nqo11 subunit was expressed in the E. coli membranes (but not in soluble phase) and was extracted by Triton X-100. The isolated MBP-fused Nqo11 subunit interacted with the phospholipid vesicles and suppressed their membrane fluidity. Topological studies of the Nqo11 subunit expressed in E. coli membranes have been performed by using cysteine mapping and immunochemical analyses. The data suggest that the Nqo11 subunit has three transmembrane segments and its C-terminus protrudes into the cytoplasmic phase.  相似文献   

9.
The proton-translocating NADH-quinone oxidoreductase (NDH-1) of Thermus thermophilus HB-8 is composed of 14 subunits (designated Nqo1-14). This NDH-1 houses nine putative iron-sulfur binding sites, eight of which are generally found in bacterial NDH-1 and its mitochondrial counterpart (complex I). The extra site contains a CXXCXXXCX(27)C motif and is located in the Nqo3 subunit. This motif was originally found in Escherichia coli NDH-1 and was assigned to a binuclear cluster (g(z, y, x) = 2.00, 1.95, 1.92) and named N1c. In this report, the Thermus Nqo3 fragment containing this motif was heterologously overexpressed, using a glutathione S-transferase fusion system. This fragment contained a small amount of iron-sulfur cluster, whose content was significantly increased by in vitro reconstitution. The UV-visible and EPR spectroscopic properties of this fragment indicate that the ligated iron-sulfur cluster is tetranuclear with nearly axial symmetry (g( parallel, perpendicular) = 2.045, approximately 1.94). Site-directed mutants show that all four cysteines participate in the ligation of a [4Fe-4S] cluster. Considering the fact that the same motif coordinates only tetranuclear clusters in other enzymes so far known, we propose that the CXXCXXXCX(27)C motif in the Nqo3 subunit most likely ligates the [4Fe-4S] cluster.  相似文献   

10.
Azospirillum brasilense glutamate synthase (GltS) is a complex iron-sulfur flavoprotein whose catalytically active alphabeta protomer (alpha subunit, 162kDa; beta subunit, 52.3 kDa) contains one FAD, one FMN, one [3Fe-4S](0,+1), and two [4Fe-4S](+1,+2) clusters. The structure of the alpha subunit has been determined providing information on the mechanism of ammonia transfer from L-glutamine to 2-oxoglutarate through a 30 A-long intramolecular tunnel. On the contrary, details of the electron transfer pathway from NADPH to the postulated 2-iminoglutarate intermediate through the enzyme flavin co-factors and [Fe-S] clusters are largely indirect. To identify the location and role of each one of the GltS [4Fe-4S] clusters, we individually substituted the four cysteinyl residues forming the first of two conserved C-rich regions at the N-terminus of GltS beta subunit with alanyl residues. The engineered genes encoding the beta subunit variants (and derivatives carrying C-terminal His6-tags) were co-expressed with the wild-type alpha subunit gene. In all cases the C/A substitutions prevented alpha and beta subunits association to yield the GltS alphabeta protomer. This result is consistent with the fact that these residues are responsible for the formation of glutamate synthase [4Fe-4S](+1,+2) clusters within the N-terminal region of the beta subunit, and that these clusters are implicated not only in electron transfer between the GltS flavins, but also in alphabeta heterodimer formation by structuring an N-terminal [Fe-S] beta subunit interface subdomain, as suggested by the three-dimensional structure of dihydropyrimidine dehydrogenase, an enzyme containing an N-terminal beta subunit-like domain.  相似文献   

11.
The hyperthermophilic bacterium, Thermotoga maritima, grows up to 90 degrees C by fermenting carbohydrates and it disposes of excess reductant by H(2) production. The H(2)-evolving cytoplasmic hydrogenase of this organism was shown to consist of three different subunits of masses 73 (alpha), 68 (beta) and 19 (gamma) kDa and to contain iron as the only metal. The genes encoding the subunits were clustered in a single operon in the order hydC (gamma), hydB (beta), and hydA (alpha). Sequence analyses indicated that: (a) the enzyme is an Fe-S-cluster-containing flavoprotein which uses NADH as an electron donor; and (b) the catalytic Fe-S cluster resides within the alpha-subunit, which is equivalent to the single subunit that constitutes most mesophilic Fe-hydrogenases. The alpha- and beta-subunits of the purified enzyme were separated by chromatography in the presence of 4 M urea. As predicted, the H(2)-dependent methyl viologen reduction activity of the holoenzyme (45-70 U mg(-1)) was retained in the alpha-subunit (130-160 U mg(-1)) after subunit separation. However, the holoenzyme did not contain flavin and neither it nor the alpha-subunit used NAD(P)(H) or T. maritima ferredoxin as an electron carrier. The holoenzyme, but not the alpha-subunit, reduced anthraquinone-2,6-disulfonate (apparent K(m), 690 microM) with H(2). The EPR properties of the reduced holoenzyme, when compared with those of the separated and reduced subunits, indicate the presence of a catalytic 'H-cluster' and three [4Fe-4S] and one [2Fe-2S] cluster in the alpha-subunit, together with one [4Fe-4S] and two [2Fe-2S] clusters in the beta-subunit. Sequence analyses predict that the alpha-subunit should contain an additional [2Fe-2S] cluster, while the beta-subunit should contain one [2Fe-2S] and three [4Fe-4S] clusters. The latter cluster contents are consistent with the measured Fe contents of about 32, 20 and 14 Fe mol(-1) for the holoenzyme and the alpha- and beta-subunits, respectively. The T. maritima enzyme is the first 'complex' Fe-hydrogenase to be purified and characterized, although the reason for its complexity remains unclear.  相似文献   

12.
Complex II from the thermoacidophilic archaeon Acidianus ambivalens, an archetype of an emerging class of succinate dehydrogenases (SDH), was extracted from intact membranes and purified to homogeneity. The complex contains one molecule of covalently bound FAD and 10 Fe atoms. EPR studies showed that the complex contains the canonical centres S1 ([2Fe-2S]2+/1+) and S2 ([4Fe-4S]+2/+1) but lacks centre S3 ([3Fe-4S]+1/0); these observations agree with the fact that the iron-sulfur subunit contains an extra cysteine that may allow the binding of a new centre, most probably a tetranuclear one. Succinate-driven oxygen consumption is observed in intact membranes indicating that in vivo, complex II operates as a succinate:quinone oxidoreductase, despite missing the typical anchor domain subunits. The pure complex was found to contain bound caldariella quinone, the enzyme physiological partner. An alternative membrane anchoring for this new type of SDHs, based on the amphipathic nature of the putative helices found in SdhC, is suggested.  相似文献   

13.
Iron-sulphur clusters in fumarate reductase from Vibrio succinogenes   总被引:1,自引:0,他引:1  
(1) The fumarate reductase complex from Vibrio succinogenes contains one FAD molecule, one [4Fe-4S]3+(3+,2+) and one [2Fe-2S]2+(2+,1+) cluster per enzyme molecule. Both clusters can be partly reduced by succinate. In the presence of excess Na2S2O4 and fumarate, the [2Fe-2S] cluster is completely oxidized, whereas the other cluster is largely reduced. (2) The [2Fe-2S] cluster is localized in the Mr, 31,000 subunit. The EPR spectrum of the reduced cluster in the isolated subunit differs slightly in line width, but not in g-value, from the spectrum of reduced, intact enzyme complex. The demonstrates that the immediate environment of th cluster is little perturbed by dissociating this subunit from the FAD-containing Mr 79,000 subunit. The temperature dependence of the power-saturation behaviour has, however, greatly decreased in the isolated subunit, the saturation at 11 K of the paramagnetic cluster being much less than in the enzyme complex. Moreover, the temperature dependence of th power-saturation behaviour of this cluster in the enzyme is greater with succinate as reducing agent, than with dithionite. (3) The [4Fe-4S] cluster is located on the Mr 79,000 subunit. This cluster is unstable in air when the subunit has been dissociated from the enzyme complex.  相似文献   

14.
The subunit location of the [2Fe-2S], [3Fe-4S], and [4Fe-4S] clusters in Escherichia coli fumarate reductase has been investigated by EPR studies of whole cells or whole cells extracts of a fumarate reductase deletion mutant with plasmid amplified expression of discrete fumarate reductase subunits or groups of subunits. The results indicate that both the [2Fe-2S] and [3Fe-4S] clusters are located entirely in the iron-sulfur protein subunit. Information concerning the specific cysteine residues that ligate these clusters has been obtained by investigating the EPR characteristics of cells of the deletion mutant amplified with a plasmid coding for the flavoprotein subunit and a truncated iron-sulfur protein subunit. While the results are not definitive with respect to the location of the [4Fe-4S] cluster, they are most readily interpreted in terms of this cluster being entirely in the flavoprotein subunit or bridging between the two catalytic domain subunits. These new results are discussed in light of the amino acid sequences of the two subunits and the sequences of structurally well characterized iron-sulfur proteins containing [2Fe-2S], [3Fe-4S], and [4Fe-4S] centers.  相似文献   

15.
Mitochondrial F1F0-ATP synthase of chlorophycean algae is a dimeric complex of 1600 kDa constituted by 17 different subunits with varying stoichiometries, 8 of them conserved in all eukaryotes and 9 that seem to be unique to the algal lineage (subunits ASA1-9). Two different models proposing the topological assemblage of the nine ASA subunits in the ATP synthase of the colorless alga Polytomella sp. have been put forward. Here, we readdressed the overall topology of the enzyme with different experimental approaches: detection of close vicinities between subunits based on cross-linking experiments and dissociation of the enzyme into subcomplexes, inference of subunit stoichiometry based on cysteine residue labelling, and general three-dimensional structural features of the complex as obtained from small-angle X-ray scattering and electron microscopy image reconstruction. Based on the available data, we refine the topological arrangement of the subunits that constitute the mitochondrial ATP synthase of Polytomella sp.  相似文献   

16.
Subunit stoichiometry of the chloroplast photosystem I complex   总被引:2,自引:0,他引:2  
A native photosystem I (PS I) complex and a PS I core complex depleted of antenna subunits has been isolated from the uniformly 14C-labeled aquatic higher plant, Lemna. These complexes have been analyzed for their subunit stoichiometry by quantitative sodium dodecyl sulfate-polyacrylamide gel electrophoresis methods. The results for both preparations indicate that one copy of each high molecular mass subunit is present per PS I complex and that a single copy of most low molecular mass subunits is also present. These results suggest that iron-sulfur center X, an early PS I electron acceptor proposed to bind to the high molecular mass subunits, contains a single [4Fe-4S] cluster which is bound to a dimeric structure of high molecular mass subunits, each providing 2 cysteine residues to coordinate this cluster.  相似文献   

17.
Li QH  Haga I  Shimizu T  Itoh M  Kurosaki T  Fujisawa J 《FEBS letters》2002,516(1-3):145-150
Genes encoding the NarG and NarH subunits of the molybdo-iron-sulfur enzyme, a nitrate reductase from a denitrifying halophilic euryarchaeota Haloarcula marismortui, were cloned and sequenced. An incomplete cysteine motif reminiscent of that for a [4Fe-4S] cluster binding was found in the NarG subunit, and complete cysteine arrangements for binding one [3Fe-4S] cluster and three [4Fe-4S] clusters were found in the NarH subunit. In conjunction with chemical, electron paramagnetic resonance, and subcellular localization analyses, we firmly establish that the H. marismortui enzyme is a new archaeal member of the known membrane-bound nitrate reductases whose homologs are found in the bacterial domain.  相似文献   

18.
The respiratory chain enzymes of microaerophilic bacteria should play a major role in their adaptation to growth at low oxygen tensions. The genes encoding the putative NADH:quinone reductases (NDH-1), the ubiquinol:cytochrome c oxidoreductases (bc1 complex) and the terminal oxidases of the microaerophiles Campylobacter jejuni and Helicobacter pylori were analysed to identify structural elements that may be required for their unique energy metabolism. The gene clusters encoding NDH-1 in both C. jejuni and H. pylori lacked nuoE and nuoF, and in their place were genes encoding two unknown proteins. The NuoG subunit in these microaerophilic bacteria appeared to have an additional Fe-S cluster that is not present in NDH-1 from other organisms; but C. jejuni and H. pylori differed from each other in a cysteine-rich segment in this subunit, which is present in some but not all NDH-1. Both organisms lacked genes orthologous to those encoding NDH-2. The subunits of the bc1 complex of both bacteria were similar, and the Rieske Fe-S and cytochrome b subunits had significant similarity to those of Paracoccus denitrificans and Rhodobacter capsulatus, well-studied bacterial bc1 complexes. The composition of the terminal oxidases of C. jejuni and H. pylori was different; both bacteria had cytochrome cbb3 oxidases, but C. jejuni also contained a bd-type quinol oxidase. The primary structures of the major subunits of the cbb3-type (terminal) oxidase of C. jejuni and H. pylori indicated that they form a separate group within the cbb3 protein family. The implications of the results for the function of the enzymes and their adaptation to microaerophilic growth are discussed.  相似文献   

19.
The terminal oxygenase component (ISPNAP) of naphthalene dioxygenase from Pseudomonas putida NCIB 9816-4 was purified to homogeneity. The protein contained approximately 4 g-atoms each of iron and acid-labile sulfide per mol of ISPNAP, and enzyme activity was stimulated significantly by addition of exogenous iron. The large (alpha) and small (beta) subunits of ISPNAP were isolated by two different procedures. The NH2-terminal amino acid sequences of the alpha and beta subunits were identical to the deduced amino acid sequences reported for the ndoB and ndoC genes from P. putida NCIB 9816 and almost identical to the NH2-terminal amino acid sequences determined for the large and small subunits of ISPNAP from P. putida G7. Gel filtration in the presence of 6 M urea gave an alpha subunit with an absorption maximum at 325 nm and broad absorption between 420 and 450 nm. The alpha subunit contained approximately 2 g-atoms each of iron and acid-labile sulfide per mol of the subunit. The beta subunit did not contain iron or acid-labile sulfide. These results, taken in conjunction with the deduced amino acid sequences of the large subunits from several iron-sulfur oxygenases, indicate that each alpha subunit of ISPNAP contains a Rieske [2Fe-2S] center.  相似文献   

20.
The respiratory NADH:quinone oxidoreductase (complex I) (NDH-1) is a multisubunit enzyme that translocates protons (or in some cases Na+) across energy-conserving membranes from bacteria or mitochondria. We studied the reaction of the Na+-translocating complex I from the enterobacterium Klebsiella pneumoniae with N,N'-dicyclohexylcarbodiimide (DCCD), with the aim of identifying a subunit critical for Na+ binding. At low Na+ concentrations (0.6 mM), DCCD inhibited both quinone reduction and Na+ transport by NDH-1 concurrent with the covalent modification of a 30-kDa polypeptide. In the presence of 50 mM Na+, NDH-1 was protected from inhibition by DCCD, and the modification of the 30-kDa polypeptide with [14C]DCCD was prevented, indicating that Na+ and DCCD competed for the binding to a critical carboxyl group in NDH-1. The 30-kDa polypeptide was assigned to NuoH, the homologue of the ND1 subunit from mitochondrial complex I. It is proposed that Na+ binds to the NuoH subunit during NADH-driven Na+ transport by NDH-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号