首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Seed dispersal is one of the least understood phases in plant life-cycles, despite being recognized as fundamentally important for understanding species distribution, abundance, population dynamics and life-history variation. For species living in fragmented habitats, dispersal may be crucial for regional persistence. This paper synthesizes studies performed in Swedish semi-natural grasslands and deciduous forests. The main objective was to develop a simple method to assess the dispersal and colonization ability of plants. Dispersal and colonization were considered as a series of steps: seed production, seed transport and seedling recruitment. With the use of verified assumptions on (i) a trade-off between seed production and seed size, (ii) a relatively small predictive power of seed transport for species actual dispersal and colonization, (iii) a positive effect of seed size on recruitment, and (iv) a general prevalence of recruitment limitations by seed availability, a prediction is made that dispersal and colonization ability will be highest among species with intermediate seed sizes in a given community. This prediction is supported by field data. Based on estimated dispersal and colonization ability, and the ability of local populations to persist, a scheme is suggested with four basic categories of plants. Some implications are suggested for conservation, in a landscape scale, of plants belonging to each of these four categories.  相似文献   

2.
Biological Invasions - For alien invasive plant species dependent on frugivores for seed dispersal, traits that influence consumption can be important determinants of invasion and spread. However,...  相似文献   

3.
4.
Group members present physical and physiological differences according to their age, sex or social status, which could generate motivation differences among individuals during travel. In spite of these divergences of interest among individuals, the group succeeds more often than not in making a collective decision about departure time and which direction to take. To reach a consensus decision, animals should exchange information relating to characteristics of group movement through different communication channels. The main purpose of this study is to understand the function of behaviour patterns displayed during movements of white-faced capuchins (Cebus capucinus). We designed experiments in which we provoked collective movements involving a binary choice. During experiments, a video camera recorded the behaviour of each capuchin, which enabled us to determine which individuals displayed a behavioural pattern during travel and how this behaviour influenced the other group members. We found that looking backwards seemed to permit the recruitment of group mates during collective movement. This behaviour also seemed to allow the quantification of the number of followers, since the emitter modified its locomotion speed according to this number. In this preliminary study, we showed that visual behaviour was used to recruit and monitor group mates during collective movements and provided information on mechanisms involved in maintaining cohesion and coordination among group members during travel.  相似文献   

5.
Long‐distance seed dispersal is generally assumed to be important for the regional survival of plant species. In this study, we quantified the importance of long‐distance seed dispersal for regional survival of plant species using wind dispersal as an example. We did this using a new approach, by first relating plant species’ dispersal traits to seed dispersal kernels and then relating the kernels to regional survival of the species. We used a recently developed and tested mechanistic seed dispersal model to calculate dispersal kernels from dispersal traits. We used data on 190 plant species and calculated their regional survival in two ways, using species distribution data from 36,800 1 km2‐grid cells and 10,754 small plots covering the Netherlands during the largest part of the 20th century. We carried out correlation and stepwise multiple regression analyses to quantify the importance of long‐distance dispersal, expressed as the 99‐percentile dispersal distance of the dispersal kernels, relative to the importance of median‐distance dispersal and other plant traits that are likely to contribute to the explanation of regional survival: plant longevity (annual, biennial, perennial), seed longevity, and plant nutrient requirement. Results show that long‐distance dispersal plays a role in determining regional survival, and is more important than median‐distance dispersal and plant longevity. However, long‐distance dispersal by wind explains only 1–3% of the variation in regional survival between species and is equally important as seed longevity and much less important than nutrient requirement. In changing landscapes such as in the Netherlands, where large‐scale eutrophication and habitat destruction took place in the 20th century, plant traits indicating ability to grow under the changed, increasingly nutrient‐rich conditions turn out to be much more important for regional survival than seed dispersal.  相似文献   

6.
7.
It is commonly supposed that the contribution of a bond to protein or nucleic acid stability is equal to the in situ stability of the bond itself. This is not true for the noncovalent bonds that stabilize molecular folding. In general, a bonding interaction contributes a free energy increment to protein or nucleic acid stability that is larger, an enthalpy increment that is smaller, and entropy and heat capacity increments that are more positive than the corresponding bond parameter.  相似文献   

8.
Objective: To review the recent research into human‐mediated dispersal (HMD) in the European rural landscape, and explore the potential positive aspect of HMD for grassland conservation, in contrast to it's common association with the spread of invasive species. Methods: A literature search was undertaken to identify HMD vectors in the rural landscape for discussion regarding dispersal potential past and present, implications for management, and the identification of future research needs. Results: Grazing animals are important propagule dispersers, but the reduced movement of livestock through the landscape has also meant a reduction in seeds dispersed in this way. Other, non‐standard human‐mediated dispersal vectors such as clothing and motor vehicles can also transport seeds of many species, and HMD vectors often transport seeds with a variety of dispersal specialisations. Recommendations: There should be a greater movement of grazing animals throughout the landscape, either within larger grazing areas or between existing grasslands. Where this is not possible, other, more directed dispersal of propagules from species‐rich communities to target sites should be considered. The potential of non‐standard HMD vectors to make a positive contribution to biodiversity should be considered, but more research into all types of HMD vectors is important if we are to fully understand their role in the dispersal of plant species in fragmented landscapes.  相似文献   

9.
Recent syntheses on the evolutionary causes of dispersal have focused on dispersal as a direct adaptation, but many traits that influence dispersal have other functions, raising the question: when is dispersal ‘for’ dispersal? We review and critically evaluate the ecological causes of selection on traits that give rise to dispersal in marine and terrestrial organisms. In the sea, passive dispersal is relatively easy and specific morphological, behavioural, and physiological adaptations for dispersal are rare. Instead, there may often be selection to limit dispersal. On land, dispersal is relatively difficult without specific adaptations, which are relatively common. Although selection for dispersal is expected in both systems and traits leading to dispersal are often linked to fitness, systems may differ in the extent to which dispersal in nature arises from direct selection for dispersal or as a by‐product of selection on traits with other functions. Our analysis highlights incompleteness of theories that assume a simple and direct relationship between dispersal and fitness, not just insofar as they ignore a vast array of taxa in the marine realm, but also because they may be missing critically important effects of traits influencing dispersal in all realms.  相似文献   

10.
How much seed remains in the soil after a fire?   总被引:2,自引:0,他引:2  
Soil seed banks that persist after a fire are important in fire-prone habitats as they minimise the risk of decline or local extinction in plants, should the fire-free interval be less than the primary juvenile periods of the species. In two common woody plant genera (Acacia and Grevillea) in southeastern Australia, we examined the size and location of the residual seed bank after fire across areas of varying seedling densities at three locations in comparison to the distribution of seeds in the soil at an unburnt site. We found viable dormant seeds remaining in the soil after fire (evidence of residual soil seed bank). A significantly lower proportion of seeds remained in the top 5 cm of soil than at 5–10 cm or 10–15 cm soil depths, independent of seedling density or plant genus. This was due to greater germination, and possibly some seed mortality, near the soil surface. Reduced germination below 5 cm was probably due to the reduced efficacy of the fire cues that break seed dormancy, a declining ability of seeds to emerge successfully from such depths, and the lower abundance of seeds in the soil at such depths. The magnitude of the residual seed bank was similar across 0–5, 5–10 and 10–15 cm soil depths in Acacia suaveolens. For two Grevillea species, most residual seeds were at 0–5 and 5–10 cm. The residual soil seed bank in the top 10 cm of soil after fire varied across sites with estimates of 0, 19 and 27% in G. speciosa and 23, 35, and 55% in A. suaveolens. At two sites, both species had similar residual seed bank sizes, while at a third, there were large differences between the species (0–55%). The observed patterns imply that the fire-related cues that break seed dormancy generally declined with soil depth. For Acacia, seed dormancy is broken by heat shock, a fire-cue that declines with soil depth. Some 250 species (approx 15% of the fire-prone flora) in the region are thought to have dormancy broken by heat shock. For Grevillea, where seed dormancy is broken by the interaction of smoke and heat shock, at two sites, we suggest three possibilities: (i) the smoke cue declined with soil depth; (ii) both heat and smoke are obligatory for breaking seed dormancy; or (iii) the cues may be independent and additive and below the zone of soil heating, only a proportion of available seeds had dormancy broken by smoke alone. At a third site (no residual seed bank detected) the smoke cue was predicted not to have declined with soil depth. Up to 900 species (just under half the fire-prone flora) in the study region are thought to have seed dormancy broken by the interaction of heat and smoke during the passage of a fire.  相似文献   

11.
What is the required minimum landscape size for dispersal studies?   总被引:2,自引:0,他引:2  
Among small animals dispersal parameters are mainly obtained by traditional methods using population studies of marked individuals. Dispersal studies may underestimate the rate and distance of dispersal, and be biased because of aggregated habitat patches and a small study area. The probability of observing long distance dispersal events decreases with distance travelled by the organisms. In this study a new approach is presented to solve this methodological problem. An extensive mark-release-recapture programme was performed in an area of 81 km(2) in southern Sweden. To estimate the required size of the study area for adequate dispersal measures we examined the effect of study area size on dispersal distance using empirical data and a repeated subsampling procedure. In 2003 and 2004, two species of diurnal burnet moths (Zygaenidae) were studied to explore dispersal patterns. The longest confirmed dispersal distance was 5600 m and in total 100 dispersal events were found between habitat patches for the two species. The estimated dispersal distance was strongly affected by the size of the study area and the number of marked individuals. For areas less than 10 km(2) most of the dispersal events were undetected. Realistic estimates of dispersal distance require a study area of at least 50 km(2). To obtain adequate measures of dispersal, the marked population should be large, preferably over 500 recaptured individuals. This result was evident for the mean moved distance, mean dispersal distance and maximum dispersal distance. In general, traditional dispersal studies are performed in small study areas and based on few individuals and should therefore be interpreted with care. Adequate dispersal measures for insects obtained by radio-tracking and genetic estimates (gene flow) is still a challenge for the future.  相似文献   

12.
13.
14.
Peek MS  Leffler AJ  Flint SD  Ryel RJ 《Oecologia》2003,137(2):161-170
Oecologia - A recent meta-analysis of meta-analyses by Møller and Jennions (2002, Oecologia 132:492–500) suggested that ecologists using statistical models are explaining between 2.5%...  相似文献   

15.
Forest destruction and disturbance can have long-term consequences for species diversity and ecosystem processes such as seed dispersal. Understanding these consequences is a crucial component of conserving vulnerable ecosystems. In the heavily fragmented and disturbed Kakamega Forest, western Kenya, we studied seed dispersal of Prunus africana (Rosaceae). In the main forest, five forest fragments, and differently disturbed sites, we quantified the overall frugivore community as an indicator for species diversity. Furthermore, we determined the frugivores on 28 fruiting P. africana trees, estimated seed dispersal, crop size and the general fruit availability of surrounding trees. During the overall frugivore census we recorded 49 frugivorous species; 36 of them were observed visiting P. africana trees and feeding on their fruits. Although overall frugivore species richness was 1.1 times lower in fragments than in main forest sites and 1.02 times higher in highly disturbed than in less disturbed sites, P. africana experienced 1.1 times higher numbers of frugivores in fragments than in main forest sites and 1.5 times higher numbers of frugivores in highly disturbed than in less disturbed sites. Correspondingly, seed dispersal was 1.5 times higher in fragments than in main forest sites and 1.5 times higher in more disturbed than less disturbed sites. Fruit availability of surrounding trees and crop size influenced the number of visitors to some degree. Thus, the number of dispersed seeds seemed to be slightly higher in fragmented and highly disturbed sites. This indicates that loss of single species does not necessarily lead to a decrease of ecosystem services. However, loss of diversity could be a problem in the long term, as a multitude of species might act as buffer against future environmental change.  相似文献   

16.
17.
Secondary seed dispersal by ants (myrmecochory) is an important process in semi‐arid environments where seeds are transported from the soil surface to an ant nest. Microsites from which ants often remove seeds are the small pits and depressions made by native and exotic animals that forage in the soil. Previous studies have demonstrated greater seed retention in the pits of native than exotic animals, but little is known about how biotic factors such as secondary seed dispersal by ants affect seed removal and therefore retention in these foraging pits. We used an experimental approach to examine how the morphology of burrowing bettong (Bettongia lesueur), greater bilby (Macrotis lagotis), short‐beaked echidna (Tachyglossus aculeatus) and European rabbit (Oryctolagus cuniculus) foraging pits and ant body size influenced ant locomotion and seed removal from pits along an aridity gradient. Ants took 3.7‐times longer to emerge from echidna pits (19.6 s) and six‐times longer to emerge from bettong pits (30.5 s) than from rabbit pits (5.2 s), resulting in lower seed removal from bettong pits than other pit types. Fewer seeds were removed from pits when cages were used to exclude large body‐sized (>2 mm) ants. Few seeds were removed from the pits or surface up to aridity values of 0.5 (humid and dry sub‐humid), but removal increased rapidly in semi‐arid and arid zones. Our study demonstrates that mammal foraging pit morphology significantly affects ant locomotion, the ability of ants to retrieve seeds, and therefore the likelihood that seeds will be retained within foraging pits.  相似文献   

18.
The phenology of seed ripening and release are important for dispersal, reproductive success and survival of plants. Most phenological studies, however, consider early phenological phases. Here, we examined the ecological and evolutionary basis of ripening and seed release phenology. We monitored single flower phenology for 104 plant species from 30 families and three life forms from central Europe. Further, we undertook an associate monitoring study along an elevational gradient over two years. We calculated temperature demands (as growing degree days) for ripening and seed release and examined them with respect to the species’ seed mass, life form, dispersal mode and phylogeny. We found a strong correlation between species’ seed mass and temperature demands for ripening. For both variables seed mass and temperature demands for seed ripening, we found a strong effect of the species phylogeny. These phylogenetic signals indicate that the evolutionary history of the species’ lineage affects its seed mass and the temperature demands for seed ripening. Among the studied life forms, shrub species showed the most efficient ripening process. Anemochorous species showed lower relative humidity during seed release than epizoochorous species. For anemochorous species, the synchronisation of release timing with periods that show favourable environmental conditions for wind dispersal could be interpreted as a phenological adaptation to increase dispersal distances. According to the monitoring along the elevational gradient, individuals from higher altitudes showed lower temperature demands for ripening than individuals from lower altitudes. This might tentatively indicate physiological adaptations to lower temperature demands for locations with a shorter growing season. Our study provides basic insights into the ecological, environmental and evolutionary constraints that shape the ripening and seed release phenology of plants. We introduce data that can be used to advance existing models of ripening phenology, seed release and plant spread.  相似文献   

19.
Precision of seed placement in a heterogeneous environment is often assumed to select for the evolution of animal-mediated dispersal systems, but this hypothesis has rarely been tested in a multivariate sense. We quantify the microsite fitness benefits of dispersal by white-tailed deer (Odocoileus virginianus) and raccoons (Procyon lotor) for mayapple (Podophyllum peltatum), a shade-tolerant perennial herb, in deciduous forests of southeastern Ohio, USA. Micro-environmental variables were recorded at dung-deposition microsites, at rooting points of mayapple shoots, and at random (control) points in the forest. Fitness was assessed as the degree of overlap in ordinations of microsites by environmental variables. Mayapple occupied a broad sector (56%) of environment space corresponding to low and mid-slope positions, ravines, and proximity to trees. Deer and raccoon defecation placed dung in 71–74 and 86–95% of environment space, respectively, reaching mayapple microsites in 57–60 and 53–54% of cases. Deer placed dung in mayapple environment space 7–9% more often than predicted by random distribution, and raccoons placed dung in mayapple space 0–5% more often, consistent with only a modest degree of directed dispersal. Thus, the precision hypothesis is only weakly supported. The greatest fitness benefit of vertebrate dispersal appears to be the broad distribution of seeds, thereby increasing the probability of randomly reaching a suitable microsite. Imprecise dispersal suggests that secondary mechanisms of seed movement need to be explored in deciduous forest communities.  相似文献   

20.
Abstract. Semi-desert grasslands and dryland forests are typically arranged along elevation gradients, with low elevation grasslands and savannas separated from higher-elevation woodlands by a diffuse boundary. Recent (< 200 yr) woody plant encroachment into adjacent semi-desert grasslands appears to be a cosmopolitan phenomenon, and has been attributed to disturbance by humans (e.g., livestock grazing, fire suppression); however, little is known about rates, patterns and mechanisms. Are observations of increased woody plant abundance in semi-arid grasslands indicative of a downslope shift in the boundary zone? Experimental plots were established in adjacent oak woodlands and semi-desert grasslands in southeastern Arizona, to determine if mechanisms of acorn predation and dispersal would facilitate or limit downslope movement of oak woodlands. We recovered acorns that had been dispersed 50 m into adjacent grasslands, which suggests that they were cached by acorn predators. Acorns in grassland plots were more than twice as likely to escape predation than acorns that remained in woodland or cleared woodland plots. Contrary to previously published research, simulated perturbations (gap formation, understory and below-ground vegetation removal) did not affect seed predation, suggesting that generalizations from mesic, deciduous oak forests may not be accurately extrapolated to xeric, evergreen oak forests. Recently published studies indicate that xeric conditions limit survival of oak seedlings across the boundary zone, suggesting that observed patterns of acorn dispersal and predation provide the potential for colonization of adjacent grassland only during infrequent years with cool, moist conditions during late summer months.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号