首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Group II introns are mobile genetic elements that can be redirected to invade specific genes. Here we describe the use of the lactococcal group II intron, Ll.ltrB, to achieve multicopy delivery of heterologous genes into the genome of Lactococcus lactis IL1403-UCD without the need for selectable markers. Ll.ltrB was retargeted to invade three transposase genes, the tra gene found in IS904 (tra904), tra981, and tra983, of which 9, 10, and 14 copies, respectively, were present in IL1403-UCD. Intron invasion of tra904, tra981, and tra983 allele groups occurred at high frequencies, and individual segregants possessed anywhere from one to nine copies of intron in the respective tra alleles. To achieve multicopy delivery of a heterologous gene, a green fluorescent protein (GFP) marker was cloned into the tra904-targeted Ll.ltrB, and the resultant intron (Ll.ltrB::GFP) was induced to invade the L. lactis tra904 alleles. Segregants possessing Ll.ltrB::GFP in three, four, five, six, seven, and eight copies in different tra904 alleles were obtained. In general, increasing the chromosomal copy number of Ll.ltrB::GFP resulted in strains expressing successively higher levels of GFP. However, strains possessing the same number of Ll.ltrB::GFP copies within different sets of tra904 alleles exhibited differential GFP expression, and segregants possessing seven or eight copies of Ll.ltrB::GFP grew poorly upon induction, suggesting that GFP expression from certain combinations of alleles was detrimental. The highest level of GFP expression was observed from a specific six-copy variant that produced GFP at a level analogous to that obtained with a multicopy plasmid. In addition, the high level of GFP expression was stable for over 120 generations. This work demonstrates that stable multicopy integration of heterologous genes can be readily achieved in bacterial genomes with group II intron delivery by targeting repeated elements.  相似文献   

2.
Despite their commercial importance, there are relatively few facile methods for genomic manipulation of the lactic acid bacteria. Here, the lactococcal group II intron, Ll.ltrB, was targeted to insert efficiently into genes encoding malate decarboxylase (mleS) and tetracycline resistance (tetM) within the Lactococcus lactis genome. Integrants were readily identified and maintained in the absence of a selectable marker. Since splicing of the Ll.ltrB intron depends on the intron-encoded protein, targeted invasion with an intron lacking the intron open reading frame disrupted TetM and MleS function, and MleS activity could be partially restored by expressing the intron-encoded protein in trans. Restoration of splicing from intron variants lacking the intron-encoded protein illustrates how targeted group II introns could be used for conditional expression of any gene. Furthermore, the modified Ll.ltrB intron was used to separately deliver a phage resistance gene (abiD) and a tetracycline resistance marker (tetM) into mleS, without the need for selection to drive the integration or to maintain the integrant. Our findings demonstrate the utility of targeted group II introns as a potential food-grade mechanism for delivery of industrially important traits into the genomes of lactococci.  相似文献   

3.
The lactococcal group II intron Ll.ltrB interrupts the ltrB relaxase gene within a region that encodes a conserved functional domain. Nucleotides essential for the homing of Ll.ltrB into an intronless version of ltrB are found exclusively at positions required to encode amino acids broadly conserved in a family of relaxase proteins of gram-positive bacteria. Two of these relaxase genes, pcfG from the enterococcal plasmid pCF10 and the ORF4 gene in the streptococcal conjugative transposon Tn5252, were shown to support Ll.ltrB insertion into the conserved motif at precisely the site predicted by sequence homology with ltrB. Insertion occurred through a mechanism indistinguishable from retrohoming. Splicing and retention of conjugative function was demonstrated for pCF10 derivatives containing intron insertions. Ll.ltrB targeting of a conserved motif of a conjugative element suggests a mechanism for group II intron dispersal among bacteria. Additional support for this mechanism comes from sequence analysis of the insertion sites of the E.c.I4 family of bacterial group II introns.  相似文献   

4.
5.
Ll.ltrB is a functional group II intron located within a gene (ltrB) encoding a conjugative relaxase essential for transfer of the lactococcal element pRSO1. In this work, the Ll.ltrB intron was shown to be an independent mobile element capable of inserting into an intronless allele of the ltrB gene. Ll.ltrB was not observed to insert into a deletion derivative of the ltrB gene in which the intron splice site was removed. In contrast, a second vector containing a 271-nucleotide segment of ltrB spanning the Ll.ltrB splice site was shown to be a proficient recipient of intron insertion. Efficient homing was observed in the absence of a functional host homologous recombination system. This work demonstrates that the Ll.ltrB intron is a novel site-specific mobile element in lactococci and that group II intron self-transfer is a mechanism for intron dissemination among bacteria.  相似文献   

6.
The conjugative element pRS01 from Lactococcus lactis encodes the putative relaxase protein LtrB. The ltrB gene is interrupted by the functional group II intron Ll.ltrB. Accurate splicing of the two ltrB exons is required for synthesis of the mRNA encoding the LtrB conjugative relaxase and subsequent plasmid transfer. A conjugation-based genetic assay was developed to identify Ll.ltrB mutations that affect splicing. In this assay a nonsplicing, transfer-defective pRS01 derivative (pM1014) and a shuttle vector carrying the ltrB region, including the Ll.ltrB intron (pCOM9), are used. pCOM9 provides splicing-dependent complementation of the transfer defect of pM1014. Site-directed mutations within Ll.ltrB, either in the catalytic RNA or in the intron-encoded protein gene ltrA, were generated in the context of pCOM9. When these mutants were tested in the conjugation-based assay, significantly reduced mating was observed. Quantitative molecular analysis of in vivo splicing activity confirmed that the observed mating defects resulted from reduced splicing. Once the system was validated for the engineered mutants, random mutagenesis of the intron followed by genetic and molecular screening for splicing defects resulted in identification of point mutations that affect splicing.  相似文献   

7.
The Ll.LtrB group II intron from the low-G+C gram-positive bacterium Lactococcus lactis was the first bacterial group II intron shown to splice and mobilize in vivo. This retroelement interrupts the relaxase gene (ltrB) of three L. lactis conjugative elements: plasmids pRS01 and pAH90 and the chromosomal sex factor. Conjugative transfer of a plasmid harboring a segment of the pRS01 conjugative plasmid including the Ll.LtrB intron allows dissemination of Ll.LtrB among L. lactis strains and lateral transfer of this retroelement from L. lactis to Enterococcus faecalis. Here we report the dissemination of the Ll.LtrB group II intron among L. lactis strains following conjugative transfer of the native chromosomally embedded L. lactis sex factor. We demonstrated that Ll.LtrB dissemination is highly variable and often more efficient from this integrative and conjugative element than from an engineered conjugative plasmid. Cotransfer among L. lactis strains of both Ll.LtrB-containing elements, the conjugative plasmid and the sex factor, was detected and shown to be synergistic. Moreover, following their concurrent transfer, both mobilizable elements supported the spread of their respective copies of the Ll.LtrB intron. Our findings explain the unusually high efficiency of Ll.LtrB mobility observed following conjugation of intron-containing plasmids.  相似文献   

8.
Despite their commercial importance, there are relatively few facile methods for genomic manipulation of the lactic acid bacteria. Here, the lactococcal group II intron, Ll.ltrB, was targeted to insert efficiently into genes encoding malate decarboxylase (mleS) and tetracycline resistance (tetM) within the Lactococcus lactis genome. Integrants were readily identified and maintained in the absence of a selectable marker. Since splicing of the Ll.ltrB intron depends on the intron-encoded protein, targeted invasion with an intron lacking the intron open reading frame disrupted TetM and MleS function, and MleS activity could be partially restored by expressing the intron-encoded protein in trans. Restoration of splicing from intron variants lacking the intron-encoded protein illustrates how targeted group II introns could be used for conditional expression of any gene. Furthermore, the modified Ll.ltrB intron was used to separately deliver a phage resistance gene (abiD) and a tetracycline resistance marker (tetM) into mleS, without the need for selection to drive the integration or to maintain the integrant. Our findings demonstrate the utility of targeted group II introns as a potential food-grade mechanism for delivery of industrially important traits into the genomes of lactococci.  相似文献   

9.
10.
Sela DA  Rawsthorne H  Mills DA 《Plasmid》2007,58(2):127-139
The Lactococcus lactis group II intron (Ll.ltrB) retrohomes into the ltrB gene at high efficiency. To date, the critical DNA bases recognized in vivo by the Ll.ltrB ribonucleoprotein (RNP) have been exclusively elucidated in Escherichia coli. However, recent evidence indicates host-dependant differences in Ll.ltrB mobility, raising the possibility of limitations of the current model for RNP-homing site recognition in the native L. lactis host. In this work, intron retargeting experiments in L. lactis have demonstrated that adherence to specific target site critical bases is not sufficient to predict success or failure of chromosomal invasion, as in E. coli. Accordingly, a quantitative real-time PCR (QPCR) assay was developed to test target site nucleotides previously demonstrated as critical for homing in E. coli, for relevance in its native host. This two-plasmid QPCR homing assay is highly sensitive and, unlike previous E. coli-based assays, resolves differential homing efficiencies in the absence of selection. As in E. coli, deviation from wild type at target site positions -23, -21, -20, -19, and +5 resulted in lower homing efficiencies in L. lactis. Furthermore, the same trends are observed when assaying select variants in Enterococcus faecalis. Our results suggest that these target site positions are critical in both E. coli and L. lactis.  相似文献   

11.
12.
Recently, lactic acid bacteria (LAB) have attracted a great deal of interest because of their potential to serve as oral delivery vehicles for recombinant protein vaccines. An important limitation to their use is the typically low level of heterologous expression obtained in LAB. To address this, a dynamic flux balance analysis (DFBA) model was used to identify gene targets for increasing specific expression of Green Fluorescent Protein (GFP), a model heterologous protein, in Lactococcus lactis IL1403. Two strains, each targeting one of the top model-identified genes, were constructed and tested in vivo. Data show that both strains, by a conservative estimate, achieved 15% higher GFP per cell than the control strain, a qualitative confirmation of the model predictions. A genome-scale DFBA model for L. lactis growing on M17 medium is presented along with the procedure for screening gene targets and a powerful method for visualizing fluxes in genome-scale metabolic networks.  相似文献   

13.
The restriction endonucleases HindIII and/or BamI have been used to clone the entire F transfer region into pBR322 to create a series of transfer-proficient multicopy plasmids. Despite the insertion of 40.7- to 55.9-kilobase F fragments, the plasmid copy numbers remained high, at 25–40 copies per cell. One of the chimeric plasmids contained the F replication and incompatibility region, and its high copy number confirmed that replication of the cointegrate was governed by pBR322. Despite the 30- to 40-fold increase in tra gene copy number compared to Flac, the transfer frequencies, number of pili per cell, and syntheses of the individual traT and traI proteins were increased only by about 5-fold. The level of tra mRNA in cells carrying the multicopy transfer-proficient plasmids was also increased only by about 5-fold, suggesting that its relative synthesis or stability was reduced in this situation. Nonetheless, the increased production of tra DNA, mRNA, and protein makes cells carrying the multicopy conjugative plasmids excellent sources of these products.  相似文献   

14.
Engineered Saccharomyces cerevisiae strains are good cell factories, and developing additional genetic manipulation tools will accelerate construction of metabolically engineered strains. Highly repetitive rDNA sequence is one of two main sites typically used for multicopy integration of genes. Here, we developed a simple and high-efficiency strategy for rDNA-mediated multicopy gene integration based on the dynamic balance of rDNA in S. cerevisiae. rDNA copy number was decreased by pre-treatment with hydroxyurea (HU). Then, heterologous genes were integrated into the rDNA sequence. The copy number of the integrated heterologous genes increased along with restoration of the copy number of rDNA. Our results demonstrated that HU pre-treatment doubled the number of integrated gene copies; moreover, compared with removing HU stress during transformation, removing HU stress after selection of transformants had a higher probability of resulting in transformants with high-copy integrated genes. Finally, we integrated 18.0 copies of the xylose isomerase gene into the S. cerevisiae genome in a single step. This novel rDNA-mediated multicopy genome integration strategy provides a convenient and efficient tool for further metabolic engineering of S. cerevisiae.  相似文献   

15.
16.
17.
Sex determination in Drosophila melanogaster is under the control of the X chromosome:autosome ratio and at least four major regulatory genes: transformer (tra), transformer-2 (tra-2), doublesex (dsx) and intersex (ix). Attention is focused here on the roles of these four loci in sex determination. By examining the sexual phenotype of clones of homozygous mutant cells produced by mitotic recombination in flies heterozygous for a given recessive sex-determination mutant, we have shown that the tra, tra-2 and dsx loci determine sex in a cell-autonomous manner. The effect of removing the wild-type allele of each locus (by mitotic recombination) at a number of times during development has been used to determine when the wild-type alleles of the tra, tra-2 and dsx loci have been transcribed sufficiently to support normal sexual development. The wild-type alleles of all three loci are needed into the early pupal period for normal sex determination in the cells that produce the sexually dimorphic (in pigmentation) cuticle of the fifth and sixth dorsal abdominal segments. tra+ and tra-2+ cease being needed shortly before the termination of cell division in the abdomen, whereas dsx+ is required at least until the end of division. By contrast, in the foreleg, the wild-type alleles of tra+ and tra-2+ have functioned sufficiently for normal sexual differentiation to occur by about 24 to 48 hours before pupariation, but dsx+ is required in the foreleg at least until pupariation.——A comparison of the phenotypes produced in mutant/deficiency and homozygous mutant-bearing flies shows that dsx, tra-2 and tra mutants result in a loss of wild-type function and probably represent null alleles at these genes.—All possible homozygous doublemutant combinations of ix, tra-2 and dsx have been constructed and reveal a clear pattern of epistasis: dsx > tra, tra-2 > ix. We conclude that these genes function in a single pathway that determines sex. The data suggest that these mutants are major regulatory loci that control the batteries of genes necessary for the development of many, and perhaps all, secondary sexual characteristics.—The striking similarities between the properties of these loci and those of the homeotic loci that determine segmental and subsegmental specialization during development suggest that the basic mechanisms of regulation are the same in the two situations. The phenotypes and interactions of these sex-determination mutants provide the basis for the model of how the wild-type alleles of these loci act together to effect normal sex determination. Implications of these observations for the function of other homeotic loci are discussed.  相似文献   

18.
19.
Protein overexpression based on introduction of multiple gene copies is well established. To improve purification or quantification, proteins are typically fused to peptide tags. In Saccharomyces cerevisiae, this has been hampered by multicopy toxicity of the TAP and GFP cassettes used in the global strain collections. Here, we show that this effect is due to the EF-1α promoter in the HIS3MX marker cassette rather than the tags per se. This promoter is frequently used in heterologous marker cassettes, including HIS3MX, KanMX, NatMX, PatMX and HphMX. Toxicity could be eliminated by promoter replacement or exclusion of the marker cassette. To our knowledge, this is the first report of toxicity caused by introduction of a heterologous promoter alone.  相似文献   

20.
A series of λ transducing phages carrying transfer (tra) genes have been isolated from an abnormal lysogen where the λ prophage was inserted into the traB gene of Flac. These have been characterised genetically by complementation analysis with Flac tra point mutants, and by studying tra gene expression during λ repression. Taken together, the phages cover the entire transfer region except for oriT and traI. The tra genes were expressed from the λ promoter pl in all cases, as well as from the tra promoters when these were present. Evidence was obtained suggesting that in F there is a separate promoter for traI. DNA isolated from the λtra phages was characterised physico-chemically by determination of the endonuclease R.EcoRI fragmentation pattern, and by electron microscope heteroduplex analysis. These data were used to construct an improved physical map of the transfer region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号