首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
cDNA clones for the human hematopoietic regulator granulocyte-macrophage colony-stimulating factor (hGM-CSF) were isolated from a lamba gt11 cDNA library prepared from RNA of COS cells transiently expressing the gene for hGM-CSF. As the RNA was a rich source of hGM-CSF mRNA, approximately 0.1% of the clones of this library contained hGM-CSF sequences. All of the clones analyzed were full length and were correctly processed. When subcloned into an expression vector and transfected into COS cells, the cDNA clones direct the synthesis of higher levels of the growth factor than the gene from which they were derived. The cDNA for native hGM-CSF was used to generate structural mutants which lack N-linked carbohydrate, O-linked carbohydrate, or both. Although the mutant proteins had differing specific activities, the nonglycosylated forms reproduce many, if not all, of the physiologic functions of authentic hGM-CSF. The role of carbohydrate in the secretion and function of hGM-CSF is discussed.  相似文献   

3.
Monocytes are known to produce both hematopoietic growth factors and other factors, monokines, which do not directly stimulate hematopoiesis. Monokines such as interleukin-1 (IL-1) and tumor necrosis factor (TNF) may indirectly stimulate mesenchymal cells to produce hematopoietic growth factors. The identity of all the factors produced by monocytes or mesenchymal cells has not been established because of overlapping activities on biologic assay. The purpose of this study was to identify the individual growth factors produced by endothelial cells before and after stimulation with various monokines. We prepared conditioned media and extracted RNA from endothelial cells before and after stimulation with monokines. The results show that immortalized endothelial cells produce maximal detectable amounts of granulocyte-macrophage colony-stimulating factor (GM-CSF) constitutively. In contrast, GM-CSF production by primary endothelial cells requires induction with either IL-1 or TNF.  相似文献   

4.
人参总皂甙对人GM-CSF和GM-CSFR表达的调控   总被引:6,自引:0,他引:6  
Wang SL  Chen D  Wang YP  Liu YG  Jiang R 《生理学报》2003,55(4):487-492
为探讨人参调控粒细胞发生的生物学机制,采用造血祖细胞和骨髓基质细胞体外培养、造血生长因子生物学活性检测、免疫细胞化学、核酸分子原位杂交、免疫沉淀和蛋白印迹等现代生物学技术,研究人参总皂甙(total saponins of Panax ginaeng,TSPG)对人粒-巨噬细胞集落刺激因子(granulocyte-macrophage colony-stimulating factor,GM-CSF)和粒-巨噬细胞集落刺激因子受体α(GM-CSFRα)表达的影响。结果:(1)经TSPG(50μg/m1)诱导制备的骨髓基质细胞、胸腺细胞、脾细胞、血管内皮细胞和单核细胞条件培养液可显著提高粒单系造血祖细胞(CFU-GM)的集落产率;(2)经TSPG(50μg/ml)诱导后,上述细胞的GM-CSF蛋白(诱导24h)和mRNA(诱导12h)表达显著提高;(3)经TSPG(50μg/ml)诱导24h骨髓造血细胞的GM-CSFRα蛋白表达增强;(4)经TSPG(50μg/ml)刺激后2min,GM-CSFRα和Shc发生酪氨酸磷酸化,5min时达高峰,随后去磷酸化。上述结果表明,TSPG可能通过直接和/或间接途径促进淋巴细胞与骨髓基质细胞合成与分泌GM-CSF,诱导骨髓造血细胞表达GM-CSFRα,并刺激GM-CSFRα和Shc的酪氨酸可逆磷酸化,从而通过调控GM-CSF的信号转导过程,促进CFU-GM的增殖。  相似文献   

5.
The ability of the isolated gill epithelium of Mytilus edulis to incorporate [14C]glucosamine as a precursor in the biosynthesis and secretion of mucous glycoproteins was investigated. Localization of mucous cells in the gill filament was achieved using histochemical staining techniques. Mucus cells containing neutral and acidic mucins were found in the lateral region, whereas mucus cells containing primarily neutral or sulfated mucins were found in the abfrontal region. Autoradiographic results showed that in both regions, the mucous cells were rich in content of the incorporated radiolabel. The secreted glycoproteins containing the incorporated radiolabel were analyzed by column chromatography using Bio-Gel P-2 and P-6. Two populations of the glycoproteins differing in molecular size were isolated. Upon alkaline reductive borohydride cleavage of the O-glycosidic linkages of the high molecular weight protein, about 70% of the radiolabel and 85% of the carbohydrate content were removed from the protein. The alkaline borohydride cleavage resulted in the formation of at least six oligosaccharide chains of various lengths of sugar units. Gas chromatographic analysis of the carbohydrate composition shows that the glycoproteins contain N-acetylglucosamine, N-acetylgalactosamine, and galactose, fucose, and mannose as the neutral monosaccharides. The above results indicate that the isolated gill epithelium of M. edulis is capable of incorporating [14C]glucosamine in the synthesis of secretable mucin-type glycoproteins.  相似文献   

6.
A deletion mutant of murine granulocyte-macrophage colony-stimulating factor (GM-CSF) which differs in primary structure from native GM-CSF in the carboxy-terminal 11 amino acids was prepared. Four amino acid residues are mutated and the seven terminal residues including Cys-118 are deleted. Supernatants from COS-1 cells transfected with this deletion mutant (GM-CSF(del] showed a 3000-fold decrease in the ability to stimulate bone marrow stem cells to proliferate and differentiate into granulocytes and macrophages in vitro. Northern blot analysis using poly(A)+ RNA extracted from the transfected cells showed equal accumulations of GM-CSF and GM-CSF(del). Transfection with full-length GM-CSF followed by immunoprecipitation of metabolically labeled supernatant proteins with rabbit anti-rGM-CSF antiserum yielded predominantly the 23-kDa, fully glycosylated form and small amounts of both a 29-kDa form and the 18-kDa non-N-glycosylated form. Transfection of the GM-CSF(del) mutant and immunoprecipitation revealed a large, diffuse band on sodium dodecyl sulfate--polyacrylamide gel electrophoresis with a molecular weight of about 29 kDa. Digestion of the immunoprecipitated 29-kDa species with N-glycanase converted the 29-kDa form into two forms of about 23 and 18 kDa, suggesting that the increase in molecular weight of the deletion mutant protein resulted from hyperglycosylation. Adding tunicamycin to the culture medium of cells transfected with GM-CSF(del) also yielded a single non-N-glycosylated species of about 18 kDa, but secretion was at a significantly lower level than either the 29-kDa hyperglycosylated GM-CSF(del) protein from non-tunicamycin-treated cells or the 18-kDa non-N-glycosylated full-length GM-CSF from tunicamycin-treated cells. Since very recent scanning-deletion analysis indicates that there is a critical region for activity near Cys-118 and that Cys-118 is necessary for maximal activity, we conclude that the Cys-118 residue is necessary for proper glycosylation and maximal biologic activity of GM-CSF.  相似文献   

7.
Membrane glycoproteins and glycolipids play an important role in epithelial organization, transport and function. To study the effects of exogenous carbohydrates on the expression of glycoproteins, cells of the renal epithelial line LLC-PK1 were cultured on different nutritive carbohydrate sources and on uridine, which is, despite striking differences, known to substitute all essential nutritive functions of glucose. LLC-PK1 cultures were long-term adapted to growth in culture medium containing 0.5, 5, 10 and 25 mM glucose, and 5 mM fructose, galactose and uridine, respectively, as the sole carbohydrate source. These growth conditions elicited adaptive changes in the expression of enzyme activities of alkaline phosphatase and gamma-glutamyltranspeptidase, integral membrane glycoproteins exclusively localized in the apical membrane of LLC-PK1 cells. SDS-PAGE of membrane preparations of adapted LLC-PK1 cells revealed a strong induction of several protein bands between 13.5 and 47 kD in fructose-grown cells, while in plasma membranes of cells grown in galactose several protein bands between 62 and 70 kD decreased. Changes in the secretion pattern of proteins into the culture medium were most prominent in uridine-grown cells compared to controls grown on 25 mM glucose.  相似文献   

8.
We recently demonstrated that granulocyte-macrophage colony-stimulating factor (GM-CSF) is an autocrine growth factor for human osteoblastic (hOB) cells. Since GM-CSF is a member of the heparin-binding factor family, we examined the interactions between GM-CSF and glycosaminoglycans (GAGs) present in the osteoblast microenvironment. Using a bioassay in which the mitogenic activity of recombinant human (rh) GM-CSF was measured after incubation in the presence of an hOB cell layer or extracellular matrix (ECM) produced by these cells, we showed that rhGM-CSF binds to GAG components present in the ECM and that the bound rhGM-CSF retains its ability to stimulate hOB cell proliferation. Heparan sulfate compounds on the hOB cell surface were also found to sequester GM-CSF. Moreover, treatment with sodium chlorate, an inhibitor of GAG sulfation, suppressed the mitogenic activity of rhGM-CSF on hOB cells. This inhibitory effect was rescued by a low dose of heparin. Heparin was also found to promote the effect of rhGM-CSF on hOB cell proliferation, allowing nonmitogenic high doses of rhGM-CSF to stimulate hOB cell growth. Western blot analysis showed that undersulfation of cellular GAGs by chlorate inhibited the increased tyrosine phosphorylation of proteins involved in GM-CSF signaling in cloned immortalized hOB cells. The data demonstrate that GM-CSF binds to proteoglycans on the hOB cell surface and in ECM produced by these cells and that the bound GM-CSF is biologically active. Furthermore, this study shows that cellular proteoglycans play an essential role in GM-CSF signaling and biological activity in hOBs. J. Cell. Physiol. 177:187–195, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

9.
In the process of evaluating roles for purified preparations of lactoferrin, transferrin and acidic isoferritins in the regulation of myelopoiesis, it was found that: (1) values reported for lactoferrin in the serum and plasma of normal donors are in most cases an over-estimation, (2) lactoferrin suppresses the production/release of granulocyte-macrophage colony stimulatory factors (GM-CSF) from monocytes in the absence of T-lymphocytes and also suppresses the production/release of acidic isoferritin-inhibitory activity from monocytes, (3) lactoferrin, transferrin and acidic isoferritins act on their specific target cells which express Ia-like antigens, (4) lactoferrin and transferrin act in vivo to suppress rebound myelopoiesis in mice recovering from sublethal dosages of Cytoxan, with preliminary observations suggesting that lactoferrin has a greater apparent effect on the bone marrow and transferrin has a greater apparent effect on the spleen, (5) active lactoferrin derives from Fc receptor positive subpopulations of PMN from patients with CML as well as from normal donors, but the percentage of Fc receptor containing PMN is lower in CML, as is the amount of active lactoferrin found in their PMN, and (6) lactoferrin, transferrin and acidic isoferritins suppress the colony formation of U937 clonogenic cells, with lactoferrin and transferrin decreasing the release of growth factors from U937 cells which are needed to stimulate U937 colony formation, and lactoferrin and acidic isoferritins suppress the colony formation of WEHI-3 cells, with lactoferrin decreasing the release of growth factors from WEHI-3 cells which are needed to stimulate WEHI-3 colony formation. Speculation on the potential usefulness of these iron binding glycoproteins to control of disease progression is given in the discussion.  相似文献   

10.
Granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-3 (IL-3) are hematopoietic growth factors which stimulate the proliferation and differentiation of myeloid progenitor cells. There is a considerable degree of overlap in target cell specificity and the functional effects of GM-CSF and IL-3. GM-CSF and IL-3 induce a nearly identical pattern of protein-tyrosine phosphorylation in certain cell lines, although their receptors have no kinase domains. Furthermore, their receptor complexes share one subunit (designated as beta). These observations raise the possibility that GM-CSF and IL-3 have a common signaling pathway. Here we show that both GM-CSF and IL-3 induce tyrosine phosphorylation and kinase activity of the c-fps/fes proto-oncogene product (p92c-fes), a non-receptor protein-tyrosine kinase, in a human erythro-leukemia cell line, TF-1, which requires GM-CSF or IL-3 for growth. In addition, GM-CSF induces physical association between p92c-fes and the beta chain of the GM-CSF receptor. p92c-fes is therefore a possible signal transducer of several hematopoietic growth factors including GM-CSF and IL-3 through the common beta chain.  相似文献   

11.
L Klampfer  J Zhang  S D Nimer 《Cytokine》1999,11(11):849-855
Cytokines such as granulocyte-macrophage colony-stimulating factor (GM-CSF) and IL-3 promote the survival and stimulate the proliferation of haematopoietic cells. Using the GM-CSF-dependent TF-1 myeloid leukaemia cell line, the authors show that the endogenous levels of BCL-2 and MCL-1 are downregulated upon GM-CSF withdrawal, whereas the levels of BCL-x(L)and Bax are unchanged. Re-exposure of growth factor deprived cells to GM-CSF resulted in an early and transient increase in MCL-1 expression, and prolonged induction of BCL-2, which prevented apoptosis. In contrast, the expression of BCL-2 and MCL-1 were not modulated during TPA-induced differentiation of TF-1 cells, which was followed by apoptosis despite the presence of GM-CSF. TF-1 cells overexpressing BCL-2 or MCL-1 underwent delayed apoptosis upon growth factor withdrawal, but displayed no impaired apoptosis in response to TPA. Erythropoietin (Epo) induced the expression of BCL-2 and MCL-1 protein in TF-1 cells, however it did not support their long term proliferation, further demonstrating that upregulation of these anti-apoptotic genes is insufficient for the long term proliferation of TF-1 cells.  相似文献   

12.
Endothelial cells are a potent source of hematopoietic growth factors when stimulated by soluble products of monocytes. Interleukin 1 (IL 1) is released by activated monocytes and is a mediator of the inflammatory response. We determined whether purified recombinant human IL 1 could stimulate cultured human umbilical vein endothelial cells to release hematopoietic growth factors. As little as 1 U/ml of IL 1 stimulated growth factor production by the endothelial cells, and increasing amounts of IL 1 enhanced growth factor production in a dose-dependent manner. Growth factor production increased within 2 to 4 hr and remained elevated for more than 48 hr. To investigate the molecular basis for these findings, oligonucleotide probes for granulocyte-macrophage colony-stimulating factor (GM-CSF), granulocyte colony-stimulating factor (G-CSF), macrophage colony-stimulating factor (M-CSF), and multi-CSF were hybridized to poly(A)-containing RNA prepared from unstimulated and IL 1-stimulated endothelial cells. Significant levels of GM-CSF and G-CSF, but not M-CSF or multi-CSF, mRNA were detected in the IL 1-stimulated endothelial cells. Biological assays performed on the IL 1-stimulated endothelial cell-conditioned medium confirmed the presence of both GM- and G-CSF. These results demonstrate that human recombinant IL 1 can stimulate endothelial cells to release GM-CSF and G-CSF, and provide a mechanism by which IL 1 could modulate both granulocyte production and function during the course of an inflammatory response.  相似文献   

13.
For the study of the biosynthesis, processing and secretion of mucus glycoproteins in rat gastric mucous cells, antibodies were raised against purified gastric mucus glycoproteins and against deglycosylated gastric mucus glycoproteins. Indirect immunofluorescence analysis of gastric mucosa sections revealed that both antibodies specifically labelled the mucus glycoprotein-synthesizing cells in the gastric mucosa. Stomach segments were pulse-labelled with [35S]cysteine and chased for various times. The radioactively labelled (glyco)proteins were quantitatively immunoprecipitated and analyzed by SDS-polyacrylamide gel electrophoresis. Less than 3% of the total radioactivity incorporated in protein was found to be present in mucus glycoproteins. Antibodies raised against native mucus glycoproteins recognized only high-molecular-weight mucus glycoproteins, while the antibodies against deglycosylated glycoproteins also bound to probable precursor forms. The synthesis of mature mucus glycoproteins (Mr greater than 300 000) required about 90 min. After 3 h of chase, only a small portion of the pulse-labelled mucus glycoproteins had been secreted; the majority of the radioactive glycoproteins at that time was still associated with the tissue. Immature (glyco)proteins were not secreted into the medium.  相似文献   

14.
M Takeuchi  A Kobata 《Glycobiology》1991,1(4):337-346
Erythropoietin (EPO) is a haemopoietic hormone specific to cells of erythroid lineage. EPO has recently become available for the treatment of anaemia as the first human recombinant biomedicine produced in heterologous mammalian cells. Human EPO is characterized by its large carbohydrate chains, which occupy close to 40% of its total mass. These sugar moieties were thought to be important for the biological activity of EPO, but detailed studies were not performed until the structures were elucidated. The variety of roles for the sugar chains were then immediately found once the structures were known. EPO is an excellent model for investigating the roles of sugar chains on glycoproteins, since its gene and its multiple glycoforms are available, as well as sensitive bioassays for testing. In this review, we will first summarize the known sugar chain structures of EPO from different host cells, and then discuss the host-cell dependent and peptide structure-dependent glycosylation of glycoproteins. We will then address how one investigates the roles of sugar chains of glycoproteins, show several examples of such investigations, and discuss the functional roles of HuEPO's sugar chains in its biosynthesis and secretion, its in vitro and in vivo biological activities, and its half-life in blood circulation.  相似文献   

15.
16.
Enzyme and carbohydrate histochemical methods were used to study the secretory activity of the apocrine glands of the scrotal skin of the cat and dog. The typical activity spectra of the different oxidative and hydrolytic enzymes investigated indicated high metabolic rates within the secretory cells. The carbohydrate histochemical differentiation revealed mostly neutral and partly acidic glycoproteins, with only small amounts of sialic acid, in the secretory cells and the luminal secretion of the glands. The PO-lectin-DAB procedures applied demonstrated that the following saccharide residues were dominant within the neutral glycoproteins present: alpha-D-glucose, alpha-D-mannose, beta-D-galactose, N-acetyl-D-galactosamine, and N-acetyl-D-glucosamine.  相似文献   

17.
A high proportion of acute myeloid leukemias (AML) recently investigated for their capacity to synthesize biologically active bioregulatory molecules was found to accumulate messenger (m) RNA and to produce membrane-bound or -secreted forms of stimulating factors for granulocyte, macrophage and mixed granulocyte-macrophage colony growth. Blast cells have also been found to secrete interleukin 1, tumor necrosis factor-alpha, interleukin 6, and to express receptors for various growth factors as well. However, growth factors like interleukin 2 and interleukin 3 have not been identified as AML products, and several other factors including interleukin 4, interleukin 5, etc. need further evaluation. Responsiveness of clonogenic leukemic cells to exogenous growth-promoting factors in vitro suggests a possible role of these biomolecules in the course of these disorders. Important evidence for the crucial role of growth factors, at least in some subtypes of AML, has been provided by demonstrating constitutive growth factor production by leukemic cells and their autonomous in vitro growth which is dependent on autocrine secretion of a specific growth factor. The concert of mechanisms providing stimulatory and inhibitory signals for hematopoiesis, which is adapted to the various physiological requirements of the organism, may have multiple defects in AML. This leads to successive steps of malfunctioning of cells, which finally express a fully malignant phenotype. In addition, these derangements also lead to defects in accessory cells on the level of mediator communication. However, there is evidence for autonomous growth promotion of AML blast by constitutive production of growth factors active in an autocrine fashion (GM-CSF, G-CSF, interleukin 6) and by recruitment of accessory cells to increase CSF supply (GM-CSF, G-CSF) via molecules such as interleukin 1 and TNF-alpha in a paracrine fashion. Molecular analysis of transformed hematopoietic cells has revealed changes of the genome, e.g., insertion of viral genetic information or cytogenetic fractures at DNA sites controlling growth factor gene activation. These events appear to be crucial in the induction of uncontrolled growth factor expression promoting oncogenic transformation of hematopoietic progenitor cells.  相似文献   

18.
Histochemical study on the eccrine glands in the foot pad of the cat   总被引:1,自引:0,他引:1  
Enzyme and carbohydrate histochemical methods were used to study the secretory activities and secretion properties of the eccrine tubular glands in the foot pad of the cat. The activity spectra of the different oxidative and hydrolytic enzymes investigated indicate high metabolic rates within the secretory epithelium. Additionally the enzyme reactions emphasize a double innervation of the glands by cholinergic and adrenergic nerve fibres. The carbohydrate histochemical differentiation reveals mostly neutral and very few acidic glycoproteins in the secretory cells and the secretion, respectively. Clear (basal) cells contain distinct amounts of glycogen, and dark (superficial) cells show neutral glycoproteins, which reveal after PO-lectin-DAB procedures the following saccharide residues: alpha-D-mannose, alpha-D-galactose, N-acetyl-alpha-D-glucosamine, alpha-L-fucose, beta-D-galactose-D-N-galactosamine, beta-D-galactose, and sialic acid. The results obtained confirm the view that the normal biological functions of the eccrine glands of the feline foot pad are to improve the frictional capacities of the paw and to leave typical scent marks.  相似文献   

19.
The recombinant vaccinia virus strain VV-GMCSF-S1/3, which contains an insertion of full-length DNA copy of messenger RNA of human granulocyte-macrophage colony-stimulating factor (GM-CSF) in the structural part of the viral thymidine kinase gene, was obtained. The expression of the GM-CSF gene as a part of the recombinant virus is under the control of the native vaccinia virus promoter р7.5K; this results in the production of a mature form of the secreted protein with a molecular mass of 32 kDa. The biological activity of GM-CSF was evaluated by stimulation of the proliferation of cytokine-dependent human TF-1 erythroleukemia cells. The secretion level of biologically active human GM-CSF in the system of recombinant vaccinia virus/mammalian cells was 1–40 μg/mL of culture medium. The recombinant strain VV-GMCSF-S1/3 can be used as a producer of the glycosylated mature form of human GM-CSF, as well as a vector for the construction of oncolytic viruses and multivalent vaccine preparations.  相似文献   

20.
J S Lee  I G Young 《Genomics》1989,5(2):359-362
The hemopoietic growth factors interleukin-3 (IL-3, multi-CSF) and granulocyte-macrophage colony-stimulating factor (GM-CSF) belong to a family of secreted glycoproteins that stimulate the proliferation and differentiation of hemopoietic progenitor cells. IL-3 and GM-CSF have overlapping biological activities and show similar regulation of expression after mitogenic or antigenic stimulation of T lymphocytes. In the present work we have derived a map of the region covering the Il-3 and Csfgm loci using a combination of pulsed-field gel electrophoresis and molecular cloning. The two genes are shown to be 14 kbp apart, in the same orientation with the IL-3 gene 5' of the GM-CSF gene. The proximity of the two genes, together with similarities in their structure, function, and regulation, suggests that they may have arisen by ancient gene duplication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号