首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
All cells of the musculoskeletal system possess transmembrane syndecan proteoglycans, notably syndecan-4. In fibroblasts it regulates integrin-mediated adhesion to the extracellular matrix. Syndecan-4 null mice have a complex wound repair phenotype while their fibroblasts have reduced focal adhesions and matrix contraction abilities. Signalling through syndecan-4 core protein to the actin cytoskeleton involves protein kinase Cα and Rho family G proteins but also direct interactions with α-actinin. The contribution of the latter interaction to cell–matrix adhesion is not defined but investigated here since manipulation of Rho GTPase and its downstream targets could not restore a wild type microfilament organisation to syndecan-4 null cells. Microarray and protein analysis revealed no significant alterations in mRNA or protein levels for actin- or α-actinin associated proteins when wild type and syndecan-4 knockout fibroblasts were compared. The binding site for syndecan-4 cytoplasmic domain was identified as spectrin repeat 4 of α-actinin while further experiments confirmed the importance of this interaction in stabilising cell–matrix junctions. However, α-actinin is also present in adherens junctions, these organelles not being disrupted in the absence of syndecan-4. Indeed, co-culture of wild type and knockout cells led to adherens junction-associated stress fibre formation in cells lacking syndecan-4, supporting the hypothesis that the proteoglycan regulates cell–matrix adhesion and its associated microfilament bundles at a post-translational level. These data provide an additional dimension to syndecan function related to tension at the cell–matrix interface, wound healing and potentially fibrosis.  相似文献   

2.
The syndecans are known to form homologous oligomers that may be important for their functions. We have therefore determined the role of oligomerization of syndecan-2 and syndecan-4. A series of glutathione S-transferase-syndecan-2 and syndecan-4 chimeric proteins showed that all syndecan constructs containing the transmembrane domain formed SDS-resistant dimers, but not those lacking it. SDS-resistant dimer formation was hardly seen in the syndecan chimeras where each transmembrane domain was substituted with that of platelet-derived growth factor receptor (PDGFR). Increased MAPK activity was detected in HEK293T cells transfected with syndecan/PDGFR chimeras in a syndecan transmembrane domain-dependent fashion. The chimera-induced MAPK activation was independent of both ligand and extracellular domain, implying that the transmembrane domain is sufficient to induce dimerization/oligomerization in vivo. Furthermore, the syndecan chimeras were defective in syndecan-4-mediated focal adhesion formation and protein kinase Calpha activation or in syndecan-2-mediated cell migration. Taken together, these data suggest that the transmembrane domains are sufficient for inducing dimerization and that transmembrane domain-induced oligomerization is crucial for syndecan-2 and syndecan-4 functions.  相似文献   

3.
Syndecans are transmembrane proteoglycans that support integrin-mediated adhesion. Well documented is the contribution of syndecan-4 that interacts through its heparan sulphate chains to promote focal adhesion formation in response to fibronectin domains. This process has requirements for integrin and signaling through the cytoplasmic domain of syndecan-4. Here an alternate pathway mediated by the extracellular domains of syndecans-2 and -4 is characterized that is independent of both heparan sulphate and syndecan signaling. This pathway is restricted to mesenchymal cells and was not seen in any epithelial cell line tested, apart from vascular endothelia. The syndecan ectodomains coated as substrates promoted integrin-dependent attachment, spreading and focal adhesion formation. Syndecan-4 null cells were competent, as were fibroblasts compromised in heparan sulphate synthesis that were unable to form focal adhesions in response to fibronectin. Consistent with actin cytoskeleton organization, the process required Rho-GTP and Rho kinase. While syndecan-2 and -4 ectodomains could both promote integrin-mediated adhesion, their pathways were distinct, as shown by competition assays. Evidence for an indirect interaction of beta1 integrin with both syndecan ectodomains was obtained, all of which suggests a distinct mechanism of integrin-mediated adhesion.  相似文献   

4.
Syndecans, a family of transmembrane heparansulfate proteoglycans, are known to interact through their transmembrane domains to form non-covalently linked homodimers, a process essential for their individual functions. Because all syndecan transmembrane domains are highly conserved and thus might mediate interactions between different members of the syndecan family, we investigated syndecan interactions in detail. All recombinant syndecan-2 and -4 protein variants containing the transmembrane domain formed not only sodium dodecyl sulfate (SDS)-resistant homodimers but also SDS-resistant heterodimers. Biochemical and structural data revealed that recombinant syndecan-2 and -4 formed intermolecular interactions in vitro, and the GXXXG motif in transmembrane domain mediated this interaction. When exogenously expressed in rat embryonic fibroblasts, syndecan-2 interacted with syndecan-4 and vice versa. Furthermore, bimolecular fluorescence complementation-based assay demonstrated specific hetero-molecular interactions between syndecan-2 and -4, supporting hetero-oligomer formation of syndecans in vivo. Interestingly, hetero-oligomerization significantly reduced syndecan-4-mediated cellular processes such as protein kinase Cα activation and protein kinase Cα-mediated cell adhesion as well as syndecan-2-mediated tumorigenic activities in colon cancer cells such as migration and anchorage-independent growth. Taken together, these data provide evidence that hetero-oligomerization produces distinct syndecan functions and offer insights into the underlying signaling mechanisms of syndecans.  相似文献   

5.
Syndecan-4 core protein is composed of extracellular, transmembrane, and cytoplasmic domains. The cytoplasmic domain functions in transmitting signals into the cell through the protein kinase C alpha (PKCα) pathway. The glycosaminoglycan (GAG) and N-linked glycosylated (N-glycosylated) chains attached to the extracellular domain influence cell proliferation. The current study investigated the function of syndecan-4 cytoplasmic domain in combination with GAG and N-glycosylated chains in turkey muscle cell proliferation, differentiation, fibroblast growth factor 2 (FGF2) responsiveness, and PKCα membrane localization. Syndecan-4 or syndecan-4 without the cytoplasmic domain and with or without the GAG and N-glycosylated chains were transfected or co-transfected with a small interfering RNA targeting syndecan-4 cytoplasmic domain into turkey muscle satellite cells. The overexpression of syndecan-4 mutants increased cell proliferation but did not change differentiation. Syndecan-4 mutants had increased cellular responsiveness to FGF2 during proliferation. Syndecan-4 increased PKCα cell membrane localization, whereas the syndecan-4 mutants decreased PKCα cell membrane localization compared to syndecan-4. However, compared to the cells without transfection, syndecan-4 mutants increased cell membrane localization of PKCα. These data indicated that the syndecan‐4 cytoplasmic domain and the GAG and N-glycosylated chains are critical in syndecan-4 regulating satellite cell proliferation, responsiveness to FGF2, and PKCα cell membrane localization.  相似文献   

6.
Focal adhesion formation in fibroblasts results from complex transmembrane signaling processes initiated by extracellular matrix molecules. Although a role for integrins with attendant tyrosine kinases has been established, there is evidence that cell surface heparan sulfate proteoglycans (HSPGs) are also involved with an associated role of protein kinase C. The identity of the proteoglycan has remained elusive, but we now report that syndecan 4 (ryudocan/amphiglycan) is present in focal adhesions of a number of cell types. Affinity-purified antibodies raised against a unique portion of the cytoplasmic domain of syndecan 4 core protein recognized an HSPG of similar characteristics to those of syndecan 4. These antibodies stained focal adhesions only after cell permeabilization and recognized differing mammalian species. Syndecan 4 was associated with focal adhesions that contained either beta 1 or beta 3 integrin subunits and those that formed on substrates of fibronectin, laminin, vitronectin, or type I collagen. No focal adhesions were found that were vinculin-containing but lacked syndecan 4. In contrast, syndecan 2, whose cytoplasmic domain is closely homologous to syndecan 4, does not appear to be a focal adhesion component. Thus, syndecan 4 represents a new transmembrane focal adhesion component, probably involved in their assembly.  相似文献   

7.
《The Journal of cell biology》1996,132(6):1209-1221
Syndecan-1 is a cell surface proteoglycan containing a highly conserved transmembrane and cytoplasmic domain, and an extracellular domain bearing heparan sulfate glycosaminoglycans. Through these domains, syndecan-1 is proposed to have roles in growth factor action, extracellular matrix adhesion, and cytoskeletal organization that controls cell morphology. To study the role of syndecan-1 in cell adhesion and cytoskeleton reorganization, mouse syndecan-1 cDNA was transfected into human Raji cells, a lymphoblastoid cell line that grows as suspended cells and exhibits little or no endogenous cell surface heparan sulfate. High expressing transfectants (Raji-Sl cells) bind to and spread on immobilized thrombospondin or fibronectin, which are ligands for the heparan sulfate chains of the proteoglycan. This binding and spreading as not dependent on the cytoplasmic domain of the core protein, is mutants expressing core proteins with cytoplasmic deletions maintain the ability to spread. The spreading is mediated through engagement of the syndecan-1 core protein, as the Raji-S 1 cells also bind to and spread on immobilized mAb 281.2, an antibody specific for the ectodomain of the syndecan-1 core protein. Spreading on the antibody is independent of the heparan sulfate glycosaminoglycan chains and can be inhibited by competition with soluble mAb 281.2. The spreading can be inhibited by treatment with cytochalasin D or colchicine. These data suggest that the core protein of syndecan-1 mediates spreading through the formation of a multimolecular signaling complex at the cell surface that signals cytoskeleton reorganization. This complex may form via intramembrane or extracellular interactions with the syndecan core protein.  相似文献   

8.

Background

Syndecans are proteoglycans whose core proteins have a short cytoplasmic domain, a transmembrane domain and a large N-terminal extracellular domain possessing glycosaminoglycan chains. Syndecans are involved in many important cellular processes. Our recent publications have demonstrated that syndecan-1 translocates into the nucleus and hampers tumor cell proliferation. In the present study, we aimed to investigate the role of syndecan-1 in tumor cell adhesion and migration, with special focus on the importance of its distinct protein domains, to better understand the structure-function relationship of syndecan-1 in tumor progression.

Methodology/Principal Findings

We utilized two mesenchymal tumor cell lines which were transfected to stably overexpress full-length syndecan-1 or truncated variants: the 78 which lacks the extracellular domain except the DRKE sequence proposed to be essential for oligomerization, the 77 which lacks the whole extracellular domain, and the RMKKK which serves as a nuclear localization signal. The deletion of the RMKKK motif from full-length syndecan-1 abolished the nuclear translocation of this proteoglycan. Various bioassays for cell adhesion, chemotaxis, random movement and wound healing were studied. Furthermore, we performed gene microarray to analyze the global gene expression pattern influenced by syndecan-1. Both full-length and truncated syndecan-1 constructs decrease tumor cell migration and motility, and affect cell adhesion. Distinct protein domains have differential effects, the extracellular domain is more important for promoting cell adhesion, while the transmembrane and cytoplasmic domains are sufficient for inhibition of cell migration. Cell behavior seems to depend also on the nuclear translocation of syndecan-1. Many genes are differentially regulated by syndecan-1 and a number of genes are actually involved in cell adhesion and migration.

Conclusions/Significance

Our results demonstrate that syndecan-1 regulates mesenchymal tumor cell adhesion and migration, and different domains have differential effects. Our study provides new insights into better understanding of the role of syndecans in tumor progression.  相似文献   

9.
Syndecan-4 is a transmembrane heparan sulfate proteoglycan that can regulate cell-matrix interactions and is enriched in focal adhesions. Its cytoplasmic domain contains a central region unlike that of any other vertebrate or invertebrate syndecan core protein with a cationic motif that binds inositol phospholipids. In turn, lipid binding stabilizes the syndecan in oligomeric form, with subsequent binding and activation of protein kinase C. The specificity of phospholipid binding and its potential regulation are investigated here. Highest affinity of the syndecan-4 cytoplasmic domain was seen with phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5P)(2)) and phosphatidylinositol 4-phosphate, and both promoted syndecan-4 oligomerization. Affinity was much reduced for 3-phosphorylated inositides while no binding of diacylglycerol was detected. Syndecan-2 cytoplasmic domain had negligible affinity for any lipid examined. Inositol hexakisphosphate, but not inositol tetrakisphosphate, also had high affinity for the syndecan-4 cytoplasmic domain and could compete effectively with PtdIns(4,5)P(2). Since inositol hexaphosphate binding to syndecan-4 does not promote oligomer formation, it is a potential down-regulator of syndecan-4 signaling. Similarly, phosphorylation of serine 183 in syndecan-4 cytoplasmic domain reduced PtdIns(4,5)P(2) binding affinity by over 100-fold, although interaction could still be detected by nuclear magnetic resonance spectroscopy. Only protein kinase Calpha was up-regulated in activity by the combination of syndecan-4 and PtdIns(4,5)P(2), with all other isoforms tested showing minimal response. This is consistent with the codistribution of syndecan-4 with the alpha isoform of protein kinase C in focal adhesions.  相似文献   

10.
Syndecan-4, a member of the syndecan gene family of proteoglycans, is an important regulator of bFGF signaling. In particular, bFGF-dependent regulation of cell growth and migration has been linked to syndecan-4 cytoplasmic domain-mediated interactions. Screening of a yeast two-hybrid library with a cytoplasmic domain of rat syndecan-4 identified a novel binding partner, here termed synectin. Synectin is highly homologous to semaphorin F binding protein semcap1, glucose 1 transporter binding protein glut1cbp, and RGS-GAIP/neuropilin-1 binding protein GIPC. Overexpression of synectin in ECV304 cells in culture led to a dose-dependent inhibition of migration while not affecting cell adhesion or growth rate. We conclude that synectin is involved in syndecan-4-dependent interactions and may play a role in the assembly of syndecan-4 signaling complex.  相似文献   

11.
Syndecan-1 is a cell surface proteoglycan that can organize co-receptors into a multimeric complex to transduce intracellular signals. The syndecan-1 core protein has multiple domains that confer distinct cell- and tissue-specific functions. Indeed, the extracellular, transmembrane, and cytoplasmic domains have all been found to regulate specific cellular processes. Our previous work demonstrated that syndecan-1 controls lung epithelial migration and adhesion. Here, we identified the necessary domains of the syndecan-1 core protein that modulate its function in lung epithelial repair. We found that the syndecan-1 transmembrane domain has a regulatory function in controlling focal adhesion disassembly, which in turn controls cell migration speed. In contrast, the extracellular domain facilitates cell adhesion through affinity modulation of α2β1 integrin. These findings highlight the fact that syndecan-1 is a multidimensional cell surface receptor that has several regulatory domains to control various biological processes. In particular, the lung epithelium requires the syndecan-1 transmembrane domain to govern cell migration and is independent from its ability to control cell adhesion via the extracellular domain.  相似文献   

12.
Numerous functions of heparan sulfate proteoglycans are mediated through interactions between their heparan sulfate glycosaminoglycan chains and extracellular ligands. Ligand binding specificity for some molecules, including many growth factors, is determined by complex heparan sulfate fine structure, where highly sulfated, iduronate-rich domains alternate with N-acetylated domains. Syndecan-4, a cell surface heparan sulfate proteoglycan, has a distinct role in cell adhesion, suggesting its chains may differ from those of other cell surface proteoglycans. To determine whether the specific role of syndecan-4 correlates with a distinct heparan sulfate structure, we have analyzed heparan sulfate chains from the different surface proteoglycans of a single fibroblast strain and compared their ability to bind the Hep II domain of fibronectin, a ligand known to promote focal adhesion formation through syndecan-4. Despite distinct molecular masses of glypican and syndecan glycosaminoglycans and minor differences in disaccharide composition and sulfation pattern, the overall proportion and distribution of sulfated regions and the affinity for the Hep II domain were similar. Therefore, adhesion regulation requires core protein determinants of syndecan-4.  相似文献   

13.
Syndecan-4 is a cell membrane proteoglycan composed of a transmembrane core protein and substituted glycosaminoglycan (GAG) and N-linked glycosylated (N-glycosylated) chains. The core protein has three domains: extracellular, transmembrane and cytoplasmic domains. The GAG and N-glycosylated chains and the cytoplasmic domain of syndecan-4, especially the amino acids: Ser(178) and Tyr(187) are critical in regulation of turkey satellite cell growth and development. How these processes are regulated is still unknown. The objective of the current study was to determine whether the syndecan-4 GAG and N-glycosylated chains and the cytoplasmic domain functions through modulating focal adhesion formation and apoptosis. Twelve mutant clones were generated: a truncated syndecan-4 without the cytoplasmic domain with or without GAG and N-glycosylated chains, and Ser(178) and Tyr(187) mutants with or without GAG and N-glycosylated chains. The wild type syndecan-4 and all of the syndecan-4 mutants were transfected into turkey myogenic satellite cells after which cell apoptosis and focal adhesion formation were measured. Syndecan-4 increased cell membrane localization of β1 integrin and the activity of focal adhesion kinase (FAK) whereas the cytoplasmic domain mutation decreased the phosphorylation of FAK. However, syndecan-4 and syndecan-4 mutants did not influence cell apoptosis. They also had no effect on vinculin or paxillin-containing focal adhesion formation. These results suggested that the syndecan-4 cytoplasmic domain plays an important role in regulating FAK activity and β1 integrin cell membrane localization but not cell apoptosis and vinculin or paxillin-containing focal adhesion formation.  相似文献   

14.
Objectives:  Syndecan-1 is a transmembrane proteoglycan involved in various biological processes. Its extracellular, transmembrane and cytoplasmic domains may all participate in signal transduction. The aim of this study was to investigate the biological roles of these domains of syndecan-1.
Materials and methods:  We transfected cells of two mesenchymal tumour cell lines with a full-length syndecan-1 construct and three truncated variants, namely 78 construct lacking the EC domain with exception of DRKE sequence; 77 construct lacking extracellular the whole domain and RMKKK corresponding to a short cytoplasmic motif. Subcellular distribution was revealed using confocal laser microscopy. Overexpression of the constructs was verified using real-time RT-PCR and by FACS analysis and effects of syndecan-1 on cell behaviour were explored. Cell cycle analysis allowed for dissection of mechanisms regulating cell proliferation.
Results:  Overexpression of syndecan-1 influenced expression profile of the other syndecan members, and decreased tumour cell proliferation significantly by two mechanisms, as follows: increased length of G0/G1 phase was the most evident change in RMKKK and 77 transfectants, whereas prolonged S phase was more obvious in full-length transfectants. Overexpression of syndecan-1 changed the tumour cell morphology in an epithelioid direction.
Conclusions:  Both full-length and truncated syndecan-1 inhibited proliferation of the mesenchymal tumour cells, providing new insights into the importance for cancer growth of different functional domains of this proteoglycan.  相似文献   

15.
Laminin-2 promotes basement membrane assembly and peripheral myelinogenesis; however, a receptor-binding motif within laminin-2 and the downstream signaling pathways for motif-mediated cell adhesion have not been fully established. The human laminin-2 α2 chain cDNAs cloned from human keratinocytes and fibroblasts correspond to the laminin α2 chain variant sequence from the human brain. Individually expressed recombinant large globular (LG) 1 protein promotes cell adhesion and has heparin binding activities. Studies with synthetic peptides delineate the DLTIDDSYWYRI motif (Ln2-P3) within the LG1 as a major site for both heparin and cell binding. Cell adhesion to LG1 and Ln2-P3 is inhibited by treatment of heparitinase I and chondroitinase ABC. Syndecan-1 from PC12 cells binds to LG1 and Ln2-P3 and colocalizes with both molecules. Suppression of syndecan-1 with RNA interference inhibits cell adhesion to LG1 and Ln2-P3. The binding of syndecan-1 with LG1 and Ln2-P3 induces the recruitment of protein kinase Cδ (PKCδ) into the membrane and stimulates its tyrosine phosphorylation. A decrease in PKCδ activity significantly reduces cell adhesion to LG1 and Ln2-P3. Taken together, these results indicate that the Ln2-P3 motif and LG1 domain, containing the motif, within the human laminin-2 α2 chain are major ligands for syndecan-1, which mediates cell adhesion through the PKCδ signaling pathway.  相似文献   

16.
Syndecans are cell surface proteoglycans involved in cell adhesion and motility. Syndecan-4 is an important component of focal adhesions and is involved in cytoskeletal reorganization. Previous work has shown that the syndecan-4 ectodomain can support cell attachment. Here, three vertebrate syndecan-4 ectodomains were compared, including that of the zebrafish, and we have demonstrated that the cell binding activity of the syndecan-4 ectodomain is conserved. Cell adhesion to the syndecan-4 ectodomain appears to be a characteristic of mesenchymal cells. Comparison of syndecan-4 ectodomain sequences led to the identification of three conserved regions of sequence, of which the NXIP motif is important for cell binding activity. We have shown that cell adhesion to the syndecan-4 ectodomain involves beta1 integrins in several cell types.  相似文献   

17.
The syndecan transmembrane proteoglycans are involved in the organization of the actin cytoskeleton and have important roles as cell surface receptors during cell-matrix interactions. We have shown that the syndecan-4 cytoplasmic domain (4L) forms oligomeric complexes that bind to and stimulate PKCalpha activity in the presence of PtdIns(4,5)P2, emphasizing the importance of multimerization in the regulation of PKCalpha activation. Oligomerization of the cytoplasmic domain of syndecan-4 is regulated either positively by PtdIns(4,5)P2 or negatively by phosphorylation of serine 183. Phosphorylation results in reduced PKCalpha activity by inhibiting PtdIns(4,5)P2-dependent oligomerization of the syndecan-4 cytoplasmic domain. Data from NMR and gel-filtration chromatography show that the phosphorylated cytoplasmic domain (p-4L) exists as a dimer, similar to 4L, but not as higher-order oligomers. NMR analysis showed that the overall conformation of p-4L is a compact intertwined dimer with an unusually symmetric clamp shape, and its molecular surface is mostly positively charged. The two parallel strands form a cavity in the center of the dimeric twist. An especially marked effect of phosphorylation of the syndecan-4 cytoplasmic domain is a dramatic conformational change near the C2 region that ablates an interaction site with the PDZ domain of syntenin. Wound healing studies further suggest that syndecan-4 phosphorylation might influence cell migration behavior. We conclude that the phosphorylation (Ser183) of syndecan-4 can play a critical role as a molecular switch to regulate its functions through conformational change.  相似文献   

18.
Choi Y  Kang D  Han IO  Oh ES 《Cellular signalling》2012,24(8):1522-1530
Syndecan-4, a transmembrane heparan sulfate proteoglycan, plays a critical role in cell adhesion. Both the transmembrane and cytoplasmic domains of syndecan-4 are known to contribute to its functions, but the regulatory mechanisms underlying the functional interplay between the two domains were previously unclear. Here, we examined the functional relationship between these two domains. Fluorescence resonance energy transfer (FRET)-based assays showed that syndecan-4 expression enhanced RhoA activation. Furthermore, rat embryonic fibroblasts (REFs) plated on fibronectin fragments lacking the heparin-binding domain that interacts with syndecan-4 showed much lower RhoA activation than that in cells plated on full-length fibronectin, indicating that RhoA is involved in syndecan-4-mediated cell adhesion signaling. Syndecan-4 mutants defective in transmembrane domain-induced oligomerization and syndecan-4 phosphorylation-mimicking cytoplasmic domain mutants showed decreases in RhoA activation and RhoA-related functions, such as adhesion, spreading and focal adhesion formation, and subsequent increase in cell migration, but the inhibitory effect was much higher in cells expressing the transmembrane domain mutants. The cytoplasmic domain mutants (but not the transmembrane domain mutants) retained the capacity to form SDS-resistant dimers, and the cytoplasmic mutants showed less inhibition of syndecan-4-mediated protein kinase C activation compared to the transmembrane domain mutants. Finally, cytoplasmic domain activation failed to overcome the inhibition conferred by mutation of the transmembrane domain. Taken together, these data suggest that the transmembrane domain plays a major role in regulating syndecan-4 functions, and further show that a domain hierarchy exists in the regulation of syndecan-4.  相似文献   

19.
Cell surface receptors must specifically recognize an extracellular ligand and then trigger an appropriate response within the cell. Their general structure enables this, as it comprises an extracellular domain that can bind an extracellular ligand, a cytoplasmic domain that can transduce a signal inside the cell to produce an appropriate response, and a transmembrane domain that links the two and is responsible for accurately delivering specific information on a binding event from the extracellular domain to the cytoplasmic domain, to trigger the proper response. A vast body of research has focused on elucidating the specific mechanisms responsible for regulating extracellular binding events and the subsequent interactions of the cytoplasmic domain with intracellular signaling. In contrast, far less work has focused on examining how the transmembrane domain links these domains and delivers the necessary information. In this review, we propose the importance of the transmembrane domain as a signal regulator. We highlight the cell adhesion receptor, syndecan, as a special case, and propose that the transmembrane domain-mediated oligomerization of the syndecan cytoplasmic domain is a unique regulatory mechanism in syndecan signaling.  相似文献   

20.
Cell protrusions contribute to cell motility and migration by mediating the outward extension and initial adhesion of cell edges. In many cells, these extensions are supported by actin bundles assembled by the actin cross-linking protein, fascin. Multiple extracellular cues regulate fascin and here we focus on the mechanism by which the transmembrane proteoglycan, syndecan-1, specifically activates lamellipodial cell spreading and fascin-and-actin bundling when clustered either by thrombospondin-1, laminin, or antibody to the syndecan-1 extracellular domain. There is almost no knowledge of the signaling mechanisms of syndecan-1 cytoplasmic domain and we have tested the hypothesis that the unique V region of syndecan-1 cytoplasmic domain has a crucial role in these processes. By four criteria--the activities of N-cadherin/V region chimeras, syndecan-1 deletion mutants, or syndecan-1 point mutants, and specific inhibition by a membrane-permeable TAT-V peptide--we demonstrate that the V region is necessary and sufficient for these cell behaviors and map the molecular basis for its activity to multiple residues located across the V region. These activities correlate with a V-region-dependent incorporation of cell-surface syndecan-1 into a detergent-insoluble form. We also demonstrate functional roles of syndecan-1 V region in laminin-dependent C2C12 cell adhesion and three-dimensional cell migration. These data identify for the first time specific cell behaviors that depend on signaling through the V region of syndecan-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号