首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Binding specificities of mouse macrophage galactose-type C-type lectin 1 (MGL1/CD301a) and 2 (MGL2/CD301b) toward various oligosaccharides were compared by frontal affinity chromatography. MGL1 preferentially bound oligosaccharides containing Lewis(X) (Le(X)) trisaccharides among 111 oligosaccharides tested, whereas MGL2 preferentially bound globoside Gb4. The important amino acids for the preferential bindings were investigated by pair-wise site-directed mutagenesis at positions 61, 89, 97, 100, 110-113, 115, 124, and 125 in the soluble recombinant carbohydrate recognition domains (CRD) prepared in Escherichia coli and purified with galactose-Sepharose. Mutations of Val, Ala, Thr, and Phe at positions 61, 89, 111 and 125 on MGL1 CRD caused reductions in Le(X) binding. Mutations of MGL2 CRD at Leu, Arg, Arg, and Tyr at positions 61, 89, 115 and 125 were implicated in the preference for beta-GalNAc. Le(X) binding was observed with MGL2 mutants of Arg89Ala and Arg89Ala/Ser111Thr. MGL1 mutants of Ala89Arg and Ala89Arg/Pro115Arg showed beta-GalNAc bindings. Molecular modeling illustrated potential direct molecular interactions of Leu61, Arg89, and His109 in MGL2 CRD with GalNAc.  相似文献   

2.
The major soluble avian eye lens protein, delta crystallin, is highly homologous to the housekeeping enzyme argininosuccinate lyase (ASL). ASL is part of the urea and arginine-citrulline cycles and catalyzes the reversible breakdown of argininosuccinate to arginine and fumarate. In duck lenses, there are two delta crystallin isoforms that are 94% identical in amino acid sequence. Only the delta2 isoform has maintained ASL activity and has been used to investigate the enzymatic mechanism of ASL. The role of the active site residues Ser-29, Asp-33, Asp-89, Asn-116, Thr-161, His-162, Arg-238, Thr-281, Ser-283, Asn-291, Asp-293, Glu-296, Lys-325, Asp-330, and Lys-331 have been investigated by site-directed mutagenesis, and the structure of the inactive duck delta2 crystallin (ddeltac2) mutant S283A with bound argininosuccinate was determined at 1.96 A resolution. The S283A mutation does not interfere with substrate binding, because the 280's loop (residues 270-290) is in the open conformation and Ala-283 is more than 7 A from the substrate. The substrate is bound in a different conformation to that observed previously indicating a large degree of conformational flexibility in the fumarate moiety when the 280's loop is in the open conformation. The structure of the S283A ddeltac2 mutant and mutagenesis results reveal that a complex network of interactions of both protein residues and water molecules are involved in substrate binding and specificity. Small changes even to residues not involved directly in anchoring the argininosuccinate have a significant effect on catalysis. The results suggest that either His-162 or Thr-161 are responsible for proton abstraction and reinforce the putative role of Ser-283 as the catalytic acid, although we cannot eliminate the possibility that arginine is released in an uncharged form, with the solvent providing the required proton. A detailed enzymatic mechanism of ASL/ddeltac2 is presented.  相似文献   

3.
Localization of thrombomodulin-binding site within human thrombin   总被引:3,自引:0,他引:3  
A binding site for thrombomodulin on human thrombin (alpha-thrombin) was elucidated by identifying an epitope for a monoclonal antibody for thrombin (MT-6) which inhibited the activation of protein C by the thrombin-thrombomodulin complex by directly inhibiting the binding of thrombin to thrombomodulin. An 8.5-kDa fragment isolated by digestion of thrombin with Staphylococcus aureus V8 protease followed by reversed-phase high performance liquid chromatography (HPLC) and a peptide isolated by reversed-phase HPLC after reduction of the 8.5-kDa fragment, which was composed of three peptides linked by disulfide-bonds, bound directly to MT-6 and thrombomodulin. The amino acid sequence of the peptide coincided with the sequence of residues Thr-147 to Asp-175 of the B-chain of thrombin. A synthetic peptide corresponding to Thr-147 to Ser-158 of the B-chain inhibited the binding of thrombin to thrombomodulin. Elastase-digested thrombin, which was cleaved between Ala-150 and Asn-151, lost its binding affinity for both MT-6 and thrombomodulin. These findings indicate that the binding site for thrombomodulin is located within the sequence between Thr-147 and Ser-158 of the B-chain.  相似文献   

4.
The reversible binding of manganese and calcium to concanavalin A determines the carbohydrate binding of the lectin by inducing large conformational changes. These changes are governed by the isomerization of a non-proline peptide bond, Ala-207-Asp-208, positioned in a beta-strand in between the calcium binding site S2 and the carbohydrate specificity-determining loop. The replacement of calcium by manganese allowed us to investigate the structures of the carbohydrate binding, locked state and the inactive, unlocked state of concanavalin A, both with and without metal ions bound. Crystals of unlocked metal-free concanavalin A convert to the locked form with the binding of two Mn(2+) ions. Removal of these ions from the crystals traps metal-free concanavalin A in its locked state, a minority species in solution. The ligation of a metal ion in S2 to unlocked concanavalin A causes bending of the beta-strand foregoing the S2 ligand residues Asp-10 and Tyr-12. This bending disrupts conventional beta-sheet hydrogen bonding and forces the Thr-11 side chain against the Ala-207-Asp-208 peptide bond. The steric strain exerted by Thr-11 is presumed to drive the trans-to-cis isomerization. Upon isomerization, Asp-208 flips into its carbohydrate binding position, and the conformation of the carbohydrate specificity determining loop changes dramatically.  相似文献   

5.
The singnificance of the zinc hydroxide–Thr-199–Glu-106 hydrogen-bond network in the active site of human carbonic anhydrase II has been examined by X-ray crystallographic analyses of site-specific mutants. Mutants with Ala-199 and Ala-106 or Gln-106 have low catalytic activities, while a mutant with Asp-106 has almost full CO2 hydration activity. The structures of these four mutants, as well as that of the bicarbonate complex of the mutant with Ala-199, have been determined at 1.7 to 2.2 Å resolution. Removal of the γ atoms of residue 199 leads to distorted tetrahedral geometry at the zine ion, and a catalytically important zinc-bound water molecule has moved towards Glu-106. In the bicarbonate complex of the mutant with Ala-199 one oxygen atom from bicarbonate binds to zinc without displacing this water molecule. Tetrahedral coordination geometries are retained in the mutants at position 106. The mutants with Ala-106 and Gln-106 have a zinc-bound sulfate ion, whereas this sulfate site is only partially occupied in the mutant with Asp-106. The hydrogen-bond network seems to be “reversed” in the mutants with Ala-106 and Gln-106. The network is preserved as in native enzyme in the mutant with Asp-106 but the side chain of Asp-106 is more extended than that of Glu-106 in the native enzyme. These results illustrate the importance of Glu-106 and Thr-199 for controlling the precise coordination geometry of the zinc ion and its ligand preferences with results in an optimal orientation of a zine-bound hydroxide ion for an attack on the CO2 substrate. © 1993 Wiley-Liss, Inc.  相似文献   

6.
Insulin stimulates phosphorylation of multiple sites in the eIF4E-binding protein, PHAS-I, leading to dissociation of the PHAS-I.eIF4E complex and to an increase in cap-dependent translation. The Ser-64 and Ser-111 sites have been proposed to have key roles in controlling the association of PHAS-I and eIF4E. To determine whether the effects of insulin require these sites, we assessed the control of PHAS-I proteins having Ala-64 or Ala-111 mutations. The results indicate that phosphorylation of neither site is required for insulin to promote release of PHAS-I from eIF4E. Also, the mutation of Ser-111, which has been proposed to serve as a necessary priming site for the phosphorylation of other sites in PHAS-I, did not affect the phosphorylation of Thr-36/45, Ser-64, or Thr-69. Insulin promoted the release of eIF4E from PHAS-II, a PHAS isoform that lacks the Ser-111 site, but it was without effect on the amount of eIF4E bound to the third isoform, PHAS-III. The results demonstrate that contrary to widely accepted models, Ser-64 and Ser-111 are not required for the control of PHAS-I binding to eIF4E in cells, implicating phosphorylation of the Thr sites in dissociation of the PHAS-I.eIF4E complex. The findings also indicate that PHAS-II, but not PHAS-III, contributes to the control of protein synthesis by insulin.  相似文献   

7.
There is a region exhibiting a similarity of amino acid sequence near the carboxyl-terminal segment of each FAD-containing oxidoreductase. In this region, four amino acid residues-Thr, Ala, Gly, and Asp-are highly conserved. To determine the involvement of the four amino acid residues (Thr-469, Ala-476, Gly-478, and Asp-479) in the activity of NADH dehydrogenase of an alkaliphilic Bacillus, mutations of these amino acid residues were conducted. In spite of high conservation, mutations of Thr-469 and Ala-476 to Ala and Ser, respectively, did not lead to a critical loss of enzyme activity. However, mutations of Gly-478 and Asp-479 to Ala caused a complete loss of the activity, which appears to result from the loss of binding capacity of FAD.  相似文献   

8.
beta Lys-155 in the glycine-rich sequence of the beta subunit of Escherichia coli F1-ATPase has been shown to be near the gamma-phosphate moiety of ATP by affinity labeling (Ida, K., Noumi, T., Maeda, M., Fukui, T., and Futai, M. (1991) J. Biol. Chem. 266, 5424-5429). For examination of the roles of beta Lys-155 and beta Thr-156, mutants (beta Lys-155-->Ala, Ser, or Thr; beta Thr-156-->Ala, Cys, Asp, or Ser; beta Lys-155/beta Thr-156-->beta Thr-155/beta Lys-156; and beta Thr-156/beta Val-157-->beta Ala-156/beta Thr-157) were constructed, and their properties were studied extensively. The beta Ser-156 mutant was active in ATP synthesis and had approximately 1.5-fold higher membrane ATPase activity than the wild type. Other mutants were defective in ATP synthesis, had < 0.1% of the membrane ATPase activity of the wild type, and showed no ATP-dependent formation of an electrochemical proton gradient. The mutants had essentially the same amounts of F1 in their membranes as the wild type. Purified mutant enzymes (beta Ala-155, beta Ser-155, beta Ala-156, and beta Cys-156) showed low rates of multisite (< 0.02% of the wild type) and unisite (< 1.5% of the wild type) catalyses. The k1 values of the mutant enzymes for unisite catalysis were lower than that of the wild type: not detectable with the beta Ala-156 and beta Cys-156 enzymes and 10(2)-fold lower with the beta Ala-155 and beta Ser-155 enzymes. The beta Thr-156-->Ala or Cys enzyme showed an altered response to Mg2+, suggesting that beta Thr-156 may be closely related to Mg2+ binding. These results suggest that beta Lys-155 and beta Thr-156 are essential for catalysis and are possibly located in the catalytic site, although beta Thr-156 could be replaced by a serine residue.  相似文献   

9.
Procollagen C-proteinase enhancers (PCPE-1 and -2) are extracellular glycoproteins that can stimulate the C-terminal processing of fibrillar procollagens by tolloid proteinases such as bone morphogenetic protein-1. They consist of two CUB domains (CUB1 and -2) that alone account for PCPE-enhancing activity and one C-terminal NTR domain. CUB domains are found in several extracellular and plasma membrane-associated proteins, many of which are proteases. We have modeled the structure of the CUB1 domain of PCPE-1 based on known three-dimensional structures of CUB-containing proteins. Sequence alignment shows conserved amino acids, notably two acidic residues (Asp-68 and Asp-109) involved in a putative surface-located calcium binding site, as well as a conserved tyrosine residue (Tyr-67). In addition, three residues (Glu-26, Thr-89, and Phe-90) are found only in PCPE CUB1 domains, in putative surface-exposed loops. Among the conserved residues, it was found that mutations of Asp-68 and Asp-109 to alanine almost completely abolished PCPE-1 stimulating activity, whereas mutation of Tyr-67 led to a smaller reduction of activity. Among residues specific to PCPEs, mutation of Glu-26 and Thr-89 had little effect, whereas mutation of Phe-90 dramatically decreased the activity. Changes in activity were paralleled by changes in binding of different PCPE-1 mutants to a mini-procollagen III substrate, as shown by surface plasmon resonance. We conclude that PCPE-stimulating activity requires a calcium binding motif in the CUB1 domain that is highly conserved among CUB-containing proteins but also that PCPEs contain specific sites that could become targets for the development of novel anti-fibrotic therapies.  相似文献   

10.
Phosphorylation of p34cdc2 can both positively and negatively regulate its kinase activity. We have mapped two phosphorylation sites in Xenopus p34cdc2 to Thr-14 and Tyr-15 within the putative ATP-binding region of p34cdc2. Mutation of these sites to Ala-14 and Phe-15 has no effect on the final histone H1 kinase activity of the cyclin/p34cdc2 complex. Phosphopeptide analysis shows that there is at least one more site of phosphorylation on p34cdc2. When Thr-161 is changed to Ala, two phosphopeptide spots disappear and it is no longer possible to activate the H1 kinase activity of p34cdc2. We suggest that Thr-161 is a third site of phosphorylation, which is required for kinase activity. All three phosphorylations are induced by cyclin. None of the phosphorylations appears to be required for binding to cyclin, as indicated by the ability of the triple mutant, Ala-14, Phe-15, Ala-161, to bind cyclin. The activating phosphorylation that requires Thr- or Ser-161 occurs even in a catalytically inactive K33R mutant of p34cdc2 and hence does not appear to be the result of intramolecular autophosphorylation. We have detected an activity in Xenopus extracts required for activation of p34cdc2 and present evidence that this is a p34cdc2 activating kinase which, in a cyclin-dependent manner, probably directly phosphorylates Thr-161.  相似文献   

11.
There is a region exhibiting a similarity of amino acid sequence near the carboxyl-terminal segment of each FAD-containing oxidoreductase. In this region, four amino acid residues—Thr, Ala, Gly, and Asp—are highly conserved. To determine the involvement of the four amino acid residues (Thr-469, Ala-476, Gly-478, and Asp-479) in the activity of NADH dehydrogenase of an alkaliphilic Bacillus, mutations of these amino acid residues were conducted. In spite of high conservation, mutations of Thr-469 and Ala-476 to Ala and Ser, respectively, did not lead to a critical loss of enzyme activity. However, mutations of Gly-478 and Asp-479 to Ala caused a complete loss of the activity, which appears to result from the loss of binding capacity of FAD. Received: 3 July 2002 / Accepted: 29 July 2002  相似文献   

12.
Short-chain dehydrogenases/reductases form a large, evolutionarily old family of NAD(P)(H)-dependent enzymes with over 60 genes found in the human genome. Despite low levels of sequence identity (often 10-30%), the three-dimensional structures display a highly similar alpha/beta folding pattern. We have analyzed the role of several conserved residues regarding folding, stability, steady-state kinetics, and coenzyme binding using bacterial 3beta/17beta-hydroxysteroid dehydrogenase and selected mutants. Structure determination of the wild-type enzyme at 1.2-A resolution by x-ray crystallography and docking analysis was used to interpret the biochemical data. Enzyme kinetic data from mutagenetic replacements emphasize the critical role of residues Thr-12, Asp-60, Asn-86, Asn-87, and Ala-88 in coenzyme binding and catalysis. The data also demonstrate essential interactions of Asn-111 with active site residues. A general role of its side chain interactions for maintenance of the active site configuration to build up a proton relay system is proposed. This extends the previously recognized catalytic triad of Ser-Tyr-Lys residues to form a tetrad of Asn-Ser-Tyr-Lys in the majority of characterized short-chain dehydrogenases/reductase enzymes.  相似文献   

13.
45Ca(II) binding studies (equilibrium dialysis) on the kringle domain of bovine prothrombin fragment 1 were conducted using a mixture of peptides (residues 43-156 and 46-156) resulting from limited alpha-chymotryptic hydrolysis of fragment 1. Analysis of the Scatchard plot of these data indicates a single, low affinity Ca(II)-binding site to be present. Similar results were obtained from studies on the decarboxylated fragment 1 derivative, 10-gamma-MGlu-fragment 1. Acetylation of bovine fragment 1 in the absence of Ca(II) or Mg(II) ions results in the loss of the metal ion-promoted quenching of the intrinsic Trp fluorescence of the protein and the Ca(II)-mediated binding to phosphatidylserine/phosphatidylcholine (PS/PC) vesicles. The acetylation of the NH2 alpha-group of Ala-1 has been shown (Welsch, D. J., and Nelsestuen, G. L. (1988) Biochemistry 27, 4946-4952) to abolish the PS/PC binding property of fragment 1. The present study demonstrates that acetylation of a second site possibly Ser-79 or Thr-81 using the conditions described in the preceding paper results in loss of both the fluorescence transition and the Ca(II)-mediated PS/PC binding of the resulting protein derivative. Removal of the O-acetyl group at the Ser-79/Thr-81 site is accomplished by aminolysis with 0.2 M hydroxylamine, pH 10, 50 degrees C; the fluorescence transition is partially restored. PS/PC binding is partially restored if the NH2 alpha-group of Ala-1 is trinitrophenylated but is not restored if the NH2 alpha-group of Ala-1 is acetylated. We conclude that the Ser-79/Thr-81 site may represent a portion of the metal ion-binding site within the kringle domain of fragment 1. Occupancy of this site by a Ca(II) ion appears to be important in the binding of the protein to PS/PC vesicles.  相似文献   

14.
The present work uses alpha-conotoxin ImI (CTx ImI) to probe the neurotransmitter binding site of neuronal alpha7 acetylcholine receptors. We identify key residues in alpha7 that contribute to CTx ImI affinity, and use mutant cycles analysis to identify pairs of residues that stabilize the receptor-conotoxin complex. We first mutated key residues in the seven known loops of alpha7 that converge at the subunit interface to form the ligand binding site. The mutant subunits were expressed in 293 HEK cells, and CTx ImI binding was measured by competition against the initial rate of 125I-alpha-bungarotoxin binding. The results reveal a predominant contribution by Tyr-195 in alpha7, accompanied by smaller contributions by Thr-77, Tyr-93, Asn-111, Gln-117, and Trp-149. Based upon our previous identification of bioactive residues in CTx ImI, we measured binding of receptor and toxin mutations and analyzed the results using thermodynamic mutant cycles. The results reveal a single dominant interaction between Arg-7 of CTx ImI and Tyr-195 of alpha7 that anchors the toxin to the binding site. We also find multiple weak interactions between Asp-5 of CTx ImI and Trp-149, Tyr-151, and Gly-153 of alpha7, and between Trp-10 of CTx ImI and Thr-77 and Asn-111 of alpha7. The overall results establish the orientation of CTx ImI as it bridges the subunit interface and demonstrate close approach of residues on opposing faces of the alpha7 binding site.  相似文献   

15.
Epidermal growth factor (EGF) domains are found in many proteins, particularly those of the coagulation/fibrinolytic system. We and others have demonstrated that tissue plasminogen activator (t-PA) and prourokinase are modified by the attachment of fucose to equivalent threonine residues within their EGF domains. Factor XII and protein C each contain two EGF domains; in both proteins, the EGF domain nearest the N terminus has a threonine residue in a position homologous to that which is fucosylated in t-PA. In protein C, this site is 3 residues from the position of another post-translational modification, beta-hydroxylation of Asp-71. We isolated peptides containing these sites to determine, primarily by mass spectrometric analysis, the presence of O-linked fucose and/or beta-hydroxyaspartate. We found that factor XII is fully fucosylated at Thr-90. Protein C is unmodified at the equivalent site (Thr-68) and is completely beta-hydroxylated at Asp-71. It has been recently reported that the first EGF domain of human factor VII has O-linked fucose at the equivalent position (Ser-60) (Bjoern, S., Foster, D. C., Thim, L., Wiberg, F. C., Christensen, M., Komiyama, Y., Pedersen, A. H., and Kisiel, W. (1991) J. Biol. Chem. 266, 11051-11057), while it is unmodified at Asp-63 despite having the consensus sequence for beta-hydroxylation at the latter site. These observations raise the possibility that O-linked fucosylation and beta-hydroxylation of EGF domains are mutually exclusive post-translational modifications.  相似文献   

16.
D M Lowe  G Winter  A R Fersht 《Biochemistry》1987,26(19):6038-6043
Residues Asp-78 and Gln-173 of the tyrosyl-tRNA synthetase of Bacillus stearothermophilus form part of the binding site for tyrosine by making hydrogen bonds with the alpha-ammonium group. Asp-38 is close enough to the group to make an important electrostatic contribution. Unlike other residues in the active site that have been studied by site-directed mutagenesis, Asp-38, Asp-78, and Gln-173 are part of hydrogen-bonded networks. Each of these residues has been mutated to an alanine, and the resultant mutants have been studied by kinetics to construct the difference energy diagrams for the formation of tyrosyl adenylate. In each example, the binding of tyrosine is weakened by about 2.5 kcal mol-1. But, unlike previous mutants, the dissociation of the second substrate, in this case ATP, is also seriously affected, being weakened by some 2 kcal mol-1 for TyrTS(Ala-78) and TyrTS(Ala-173). The energy of the transition state for the formation of tyrosyl adenylate is raised by 7.8 kcal mol-1 for the former and 4.5 kcal mol-1 for the latter mutant. Addition of these mutants to linear free energy plots constructed for the nondisruptive mutants in the accompanying study [Fersht, A. R., Leatherbarrow, R. J., & Wells, T. N. C. (1987) Biochemistry (preceding paper in this issue)] reveals large deviations of the data for TyrTS(Ala-38) and TyrTS(Ala-78) from the regression line. These thus belong to a different class of mutations from previous nondisruptive examples. This observation combined with the structural evidence and difference energy diagrams strongly suggests that the mutations Asp----Ala-38 and Asp----Ala-78 are disruptive in nature.  相似文献   

17.
The gustatory responses of nine compounds, namely glycine, D-phenylalanine,D-tryptophan, cyanosuosan, magapame, sucrononate, campame, cyclamateand superaspartame, all known as sweet in man, were studiedin 41 species or subspecies of non-human primates, selectedamong Prosimii (Lemuridae and Lorisidae), Platyrrhini (Callitrichidaeand Cebidae) and Catarrhini (Cercopithecidae, Hylobatidae andPongidae). The first six compounds are generally sweet to allprimates, which implies that they interact with the primatesweetness receptors essentially through constant recognitionsites. Campame is sweet only to Cebidae and Catarrhini, cyclamateonly to Catarrhini, superaspartame principally to Callitrichidaeand Catarrhini, which implies that all these compounds interactwith the receptors partly through variable recognition sites.From the present work, from other previous results (where notablyit was observed that alitame is sweet to all primates, ampameonly to Prosimii and Catarrhini, and aspartame only to Catarrhini),and from the multipoint attachment (MPA) theory of sweetnessreception (as elaborated by Nofre and Tinti from a detailedstudy of structure-activity relationships of various sweetenersin man), it is inferred that the primate sweetness receptorsare very likely made up of eight recognition sites, of whichthe first, second, third, fourth, seventh and eighth are constant,and the fifth and sixth variable. From these results and fromthe MPA theory, it is also inferred that the recognition sitesof the primate sweetness receptors could be: Asp-1 or Glu-1,Lys-2, Asp-3 or Glu-3, Thr-4, X-5, X-6, Thr-7, Ser-8, wherethe variable recognition sites X-5 and X-6 would be: Ala-5 andAla-6 for Callitrichidae, Ser-5 and Ala-6 for Cebidae, Ala-5and Thr-6 for Prosimii, and Thr-5 and Thr-6 for Catarrhini.By using Tupaiidae (tree shrews) as a reference outgroup andby means of other structural and functional molecular considerations,it appears that Callitrichidae have retained the most primitivereceptor among the four types of primate receptors. The possibletaxonomic and phylogenetic implications of these findings arediscussed. Chem. Senses 21: 747–762, 1996.  相似文献   

18.
Monoacylglycerol lipases (MGLs) play an important role in lipid catabolism across all kingdoms of life by catalyzing the release of free fatty acids from monoacylglycerols. The three-dimensional structures of human and a bacterial MGL were determined only recently as the first members of this lipase family. In addition to the α/β-hydrolase core, they showed unexpected structural similarities even in the cap region. Nevertheless, the structural basis for substrate binding and conformational changes of MGLs is poorly understood. Here, we present a comprehensive study of five crystal structures of MGL from Bacillus sp. H257 in its free form and in complex with different substrate analogs and the natural substrate 1-lauroylglycerol. The occurrence of different conformations reveals a high degree of conformational plasticity of the cap region. We identify a specific residue, Ile-145, that might act as a gatekeeper restricting access to the binding site. Site-directed mutagenesis of Ile-145 leads to significantly reduced hydrolase activity. Bacterial MGLs in complex with 1-lauroylglycerol, myristoyl, palmitoyl, and stearoyl substrate analogs enable identification of the binding sites for the alkyl chain and the glycerol moiety of the natural ligand. They also provide snapshots of the hydrolytic reaction of a bacterial MGL at different stages. The alkyl chains are buried in a hydrophobic tunnel in an extended conformation. Binding of the glycerol moiety is mediated via Glu-156 and water molecules. Analysis of the structural features responsible for cap plasticity and the binding modes of the ligands suggests conservation of these features also in human MGL.  相似文献   

19.
E Heller  M A Raftery 《Biochemistry》1976,15(6):1194-1198
The egg vitelline envelope of the marine invertebrate Megathura crenulata is a glycoprotein composed of 37.3 mol % protein and 62.7 mol % carbohydrate. Of the total amino acid content, 61 mol % consists of a single amino acid, threonine. The carbohydrate content includes galactosamine, galactose, and fucose. The molar ratio of threonine to galactosamine is about 1:1. Most of the threonine residues are linked to galactosamine residues via O-glycosidic bonds. A single peptide that was purified following alkaline borohydride treatment of the vitelline envelope had the structure: Abu-Pro-Abu-(Abu6, Pro1, Thr1), where Abu is 2-aminobutyric acid. Several sugar residues have been isolated following the alkaline hydrolysis of the vitelline envelope that include an octasaccharide Gal4Fu4, an hexasaccharide Gal3Fu3, a trisaccharide Gal3, fucose, and galactose. It is proposed that the vitelline envelope of Megathura crenulata eggs is composed of polypeptide chains built to a large extent of closely spaced threonine residues. Almost every threonine residue is linked to a saccharide moiety.  相似文献   

20.
The role of Thr-46 and Thr-89 in the bacteriorhodopsin photocycle has been investigated by Fourier transform infrared difference spectroscopy and time-resolved visible absorption spectroscopy of site-directed mutants. Substitutions of Thr-46 and Thr-89 reveal alterations in the chromophore and protein structure during the photocycle, relative to wild-type bacteriorhodopsin. The mutants T89D and to a lesser extent T89A display red shifts in the visible lambda max of the light-adapted states compared with wild type. During the photocycle, T89A exhibits an increased decay rate of the K intermediate, while a K intermediate is not detected in the photocycle of T89D at room temperature. In the carboxyl stretch region of the Fourier transform infrared difference spectra of T89D, a new band appears as early as K formation which is attributed to the deprotonation of Asp-89. Along with this band, an intensity increase occurs in the band assigned to the protonation of Asp-212. In the mutant T46V, a perturbation in the environment of Asp-96 is detected in the L and M intermediates which corresponds to a drop in its pK alpha. These data indicate that Thr-89 is located close to the chromophore, exerts steric constraints on it during all-trans to 13-cis isomerization, and is likely to participate in a hydrogen-bonding network that extends to Asp-212. In addition, a transient interaction between Thr-46 and Asp-96 occurs early in the photocycle. In order to explain these results, a previously proposed model of proton transport is extended to include the existence of a transient network of hydrogen-bonded residues. This model can account for the protonation changes of key amino acid residues during the photocycle of bacteriorhodopsin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号