首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dairy systems are a source of pollutant emissions, such as greenhouse gases (GHG) and NH3 that are associated with impacts on the environment. Gas emissions in barns are related mainly to diet intake and chemical composition, N excretion and manure management. A reduction in dietary N is known to be an effective way to reduce N excretion and the resulting NH3 emissions. However, most studies consider manure in liquid form with frequent removal from the barn. In deep litter systems, several processes can occur during the accumulation of solid manure that result in variable gas emissions. The objective of this experiment was to investigate the influence of the interaction between dietary CP (low or high) and manure management (liquid or solid) on gas emissions (NH3, N2O, CH4) at the barn level. Dietary treatments provided either low (LowN; 12% CP) or high (HighN; 18% CP) degradable protein to modify the amount of total ammonia nitrogen (TAN) excreted. The cows were housed for two 8-week periods in two mechanically ventilated rooms equipped to manage manure either in liquid (LM; slurry) or solid form (SM; deep litter). In the LM treatment, N balance was measured for 4 days. As expected, animals fed the LowN diet ingested 35% less N and excreted 65% less N in their urine, with no reduction in faecal N excretion and N secretion in milk. On the LowN diet, excretion of urea-N and NH3-N emissions were reduced regardless of the manure management. On the HighN diet, urinary urea-N excretion was three times as high, while NH3-N emissions were 3.0 and 4.5 times as high in LM and SM, respectively. Manure management strongly influenced CH4-C emissions, which were 30% higher in SM than in LM, due to the accumulation of litter. Moreover, gas emissions from solid manure increased over the accumulation period, except for NH3 on the LowN diet. Finally, our results suggest that methods used for national inventories would become more accurate by considering the variability in TAN excretion, which is the primary factor that influences NH3 emissions.  相似文献   

2.
畜禽废弃物堆肥处理过程中产生的二氧化碳(CO2)、氧化亚氮(N2O)、甲烷(CH4)和氨气(NH3)等是重要的温室气体和大气污染物。但目前有关该过程气体排放的研究多基于室内小型模拟的反应器式堆肥,在工厂化堆肥条件下的原位气体排放监测较少。为探究工厂化堆肥产生气体对区域环境的影响,本研究对沈阳某堆肥厂畜禽废弃物堆体的气体排放进行了19 d的监测,并量化了排放氨气的自然丰度15N(δ15N)特征。结果表明: 堆置周期内,CO2、CH4、N2O和NH3的平均排放速率分别为86.8 g CO2-C·d-1·m-2、9.8 g CH4-C·d-1·m-2、3.7 mg N2O-N·d-1·m-2和736.6 mg NH3-N·d-1·m-2。温室气体日增温潜势(GWP)的贡献大小为CH4>CO2>NH3(间接)>N2O,其中CH4贡献了65%。堆肥排放NH3的δ15N在-21.8‰~-7.2‰,平均-11.6‰±1.2‰。本研究结果可为区域畜禽废弃物堆肥过程中温室气体排放的核算及大气氨溯源提供数据支持。  相似文献   

3.
4.
Characteristics of dairy manure composting with rice straw   总被引:3,自引:0,他引:3  
The aim of this work was to investigate the effects of aeration rate, aeration method, moisture content, and manure age on the characteristics of dairy manure composting with rice straw in terms of composting temperature, oxygen consumption rate, emission of odorous gases, and final compost property. It was found that the aeration rate of 0.25 L/min-kg VS was capable of achieving the highest composting temperature, longest retention time of high temperature, and less emission of odor gases. Except for the composting temperature reached, there was no significant difference between bottom-forced and top-diffusion aerations in terms of final compost property. The higher initial moisture content (65%) was more favorable for its higher temperature, longer retention time of high temperature, and more stable end compost obtained. Fresh manure showed better composting performance than the aged manure for its higher temperature reached in less time and less ammonia emission. Oxygen consumption rates were basically similar to those of temperatures. Most emissions of the odorous gases occurred during the first week of composting, therefore, special attention should be paid to this period of time for effective odor control.  相似文献   

5.
对奶牛粪好氧堆肥过程中不同含碳有机物的变化特征以及腐熟程度进行了研究。根据腐熟指标(温度、种子发芽率、种子发芽指数、大肠杆菌以及蛔虫卵死亡率)的要求,奶牛粪经过堆肥后能够达到腐熟要求。堆肥过程中全碳、易氧化有机碳呈逐渐下降趋势,腐殖酸碳呈逐渐增加的趋势;微生物量碳和水溶性碳呈先增后降而后平稳的变化趋势;氧化稳定系数和H/F比(胡敏酸与富里酸比值)呈先降后增的变化趋势,而胡敏酸的E4/E6值(465和665nm处吸光系数比值)与氧化稳定系数和H/F比变化趋势相反。通过相关性分析发现,堆肥过程中易氧化有机碳和腐殖酸碳是影响全碳变化的主要因素;易氧化有机碳、腐殖酸碳、氧化稳定系数、H/F比、E4/E6值均能很好地表征奶牛粪堆肥的腐殖化和稳定化程度;微生物量碳和水溶性碳之间存在相互转化的关系。  相似文献   

6.
Many governments have signed up to greenhouse gas emission (GHGE) reduction programmes under their national climate change obligations. Recently, it has been suggested that the use of extended lactations in dairy herds could result in reduced GHGE. Dairy GHGE were modelled on a national basis and the model was used to compare emissions from lactations of three different lengths (305, 370 and 440 days), and a current ‘base’ scenario on the basis of maintaining current milk production levels. In addition to comparing GHGE from the average ‘National Herd’ under these scenarios, results were used to investigate how accounting for lactations of different lengths might alter the estimation of emissions calculated from the National Inventory methodology currently recommended by Intergovernmental Panel on Climate Change. Data for the three lactation length scenarios were derived from nationally recorded dairy performance information and used in the GHGE model. Long lactations required fewer milking cows and replacements to maintain current milk yield levels than short ones, but GHGEs were found to rise from 1214 t of CO2 equivalent (CE)/farm per year for lactations of 305 days to 1371 t CE/farm per year for 440-day lactations. This apparent anomaly can be explained by the less efficient milk production (kg milk produced per kg cow weight) found in later lactation, a more pronounced effect in longer lactations. The sensitivity of the model to changes in replacement rate, persistency and level of milk yield was investigated. Changes in the replacement rate from 25% to 20% and in persistency by −10% to +20% resulted in very small changes in GHGE. Differences in GHGE due to the level of milk yield were much more dramatic with animals in the top 10% for yield, producing about 25% less GHGE/year than the average animal. National Inventory results were investigated using a more realistic spread of lactation lengths than recommended for such calculations using emissions calculated in the first part of the study. Current UK emission calculations based on the National Inventory were 329 Gg of methane per year from the dairy herd. Using the national distribution of lactation lengths, this was found to be an underestimate by about 10%. This work showed that the current rise in lactation length or a move towards calving every 18 months would increase GHGE by 7% to 14% compared with the current scenario, assuming the same milk yield in all models. Increased milk yield would have a much greater effect on reducing GHGE than changes to lactation length, replacement rate or persistency. National Inventory methodology appears to underestimate GHGE when the distribution of lactation lengths is considered and may need revising to provide more realistic figures.  相似文献   

7.
Chrysomya megacephala is a saprophagous fly whose larvae can compost manure and yield biomass and bio‐fertilizer simultaneously. However, there are concerns for the safety of the composting system, that is risk of diseases spread by way of manure pathogens, residue of harmful metals and emission of greenhouse gases. Microbiota analysis and heavy metal speciation by European Communities Bureau of Reference were evaluated in raw, C. megacephala‐composted and natural stacked swine manure to survey pathogenic bacterial changes and mobility of lead and cadmium in manure after C. megacephala feeding; the emission rate of CH4 and N2O from manure during C. megacephala composting and natural stacking was also measured. C. megacephala composting altered manure microbiota, reduced the risk of pathogenic bacteria and maintained the stability, and microbiota changes might be associated with heavy metal fractions, especially in Pseudomonas and Prevotella. In addition, C. megacephala‐composting significantly reduced the emission rate of CH4 and N2O in comparing with natural stacking situation and the first two days should be the crucial period for CH4 and N2O emission measurement for manure treatment by C. megacephala. Moreover, OTU26 and Betaproteobacteria were changed after C. megacephala composting which might play a role in emission of CH4 and N2O, respectively.  相似文献   

8.
Evolution of extracellular enzyme activities during manure composting   总被引:7,自引:0,他引:7  
AIMS: The objectives of this work were to determine the extracellular enzyme profiles during composting, relate the activities of these enzymes to the changes in microbial population and compare the enzyme profiles between two manures. METHODS AND RESULTS: API ZYM assay was used to monitor the activities of 19 extracellular enzymes during poultry and pig manure composting. Results showed an overall increase in diversity and relative abundance of enzymes present. The relative abundance and activities of enzymes were higher in poultry manure than in pig manure. Among the 19 enzymes tested, esterase, valine amino-peptidase and alpha-galactosidase were the most abundant enzymes in poultry manure, whereas it was N-acetyl-beta-glucosaminidase for the pig manure. A number of these enzymes correlated with change in numbers of different microbial groups during composting. CONCLUSIONS: The composting process represented a combined activity of a wide succession of environments, as one enzyme/microbial group overlapped the other and each emerged gradually due to the continual change in temperature and progressive breakdown of complex compounds to simpler ones. SIGNIFICANCE AND IMPACT OF THE STUDY: The results presented here show the applicability of the API ZYM test not only in monitoring the quantitative and qualitative fluctuation of the available substrate during composting, but also in revealing differences in composts and compost maturity.  相似文献   

9.
Thermophilic ammonium-tolerant bacterium Bacillus sp. TAT105 grows and reduces ammonia (NH3) emissions by assimilating ammonium nitrogen during composting of swine feces. To evaluate the efficacy of a biological additive containing TAT105 at reducing NH3 emissions, composting tests of swine manure on a pilot scale (1.8 m3) were conducted. In the TAT105-added treatment, NH3 emissions and nitrogen loss were lower than those in the control treatment without TAT105. No significant difference was detected in losses in the weight and volatile solids between the treatments. Concentration of thermophilic ammonium-tolerant bacteria in the compost increased in both treatments at the initial stage of composting. In the TAT105-added treatment, bacterial concentration reached ~109 colony-forming units per gram of dry matter, several-fold higher than that in the control and stayed at the same level until the end. These results suggest that TAT105 grows during composting and reduces NH3 emissions in TAT105-added treatment.  相似文献   

10.
Livestock manure management accounts for almost 10% of greenhouse gas emissions from agriculture globally, and contributes an equal proportion to the US methane emission inventory. Current emissions inventories use emissions factors determined from small‐scale laboratory experiments that have not been compared to field‐scale measurements. We compiled published data on field‐scale measurements of greenhouse gas emissions from working and research dairies and compared these to rates predicted by the IPCC Tier 2 modeling approach. Anaerobic lagoons were the largest source of methane (368 ± 193 kg CH4 hd?1 yr?1), more than three times that from enteric fermentation (~120 kg CH4 hd?1 yr?1). Corrals and solid manure piles were large sources of nitrous oxide (1.5 ± 0.8 and 1.1 ± 0.7 kg N2O hd?1 yr?1, respectively). Nitrous oxide emissions from anaerobic lagoons (0.9 ± 0.5 kg N2O hd?1 yr?1) and barns (10 ± 6 kg N2O hd?1 yr?1) were unexpectedly large. Modeled methane emissions underestimated field measurement means for most manure management practices. Modeled nitrous oxide emissions underestimated field measurement means for anaerobic lagoons and manure piles, but overestimated emissions from slurry storage. Revised emissions factors nearly doubled slurry CH4 emissions for Europe and increased N2O emissions from solid piles and lagoons in the United States by an order of magnitude. Our results suggest that current greenhouse gas emission factors generally underestimate emissions from dairy manure and highlight liquid manure systems as promising target areas for greenhouse gas mitigation.  相似文献   

11.
Dairy systems in Europe contribute to the emissions of the greenhouse gases (GHGs) nitrous oxide (N2O), methane (CH4) and carbon dioxide (CO2). In this paper, the effects of improved nitrogen (N) management on GHG emissions from Dutch dairy farms are determined. The GHG emissions are calculated using the panel on climate change (IPCC) methodology for the Netherlands, an updated and refined IPCC methodology, and a full accounting approach. The changes in dairy farming over the last 20 years, and the consequences for N management are described using detailed farm‐level data, collected in 1985, 1997 and 2002. The selected years represent distinct stages in the implementation of N policies. The changes in N management have reduced the GHG emissions. A reduction of the N surplus per kilogram milk with 1 g N reduced the GHG emissions per kilogram milk with approximately 29 g CO2‐equivalents. The reduction of the N surpluses was mainly brought about by reduced fertilizer use and reduced grazing time. The use of updated and refined emission factors resulted in higher CH4 emissions and lower N2O emissions. On average, the overall emission was 36% higher with the refined method. Full accounting, including all direct and indirect emissions of CH4, N2O and CO2, increased the emission with 36% compared with the refined IPCC methodology. We conclude that the N surplus at farm level is a useful indicator of GHG emissions. A full accounting system as presented in this study may effectively enable farmers to address the issue of emissions of GHGs in their operational management decisions. Both approaches serve their own specific objectives: full accounting at the farm level to explore mitigation options, and the IPCC methods to report changes in GHG emissions at the national level.  相似文献   

12.
13.
The transition period is the most critical period in the lactation cycle of dairy cows. Extended lactations reduce the frequency of transition periods, the number of calves and the related labour for farmers. This study aimed to assess the impact of 2 and 4 months extended lactations on milk yield and net partial cash flow (NPCF) at herd level, and on greenhouse gas (GHG) emissions per unit of fat- and protein-corrected milk (FPCM), using a stochastic simulation model. The model simulated individual lactations for 100 herds of 100 cows with a baseline lactation length (BL), and for 100 herds with lactations extended by 2 or 4 months for all cows (All+2 and All+4), or for heifers only (H+2 and H+4). Baseline lactation length herds produced 887 t (SD: 13) milk/year. The NPCF, based on revenues for milk, surplus calves and culled cows, and costs for feed, artificial insemination, calving management and rearing of youngstock, was k€174 (SD: 4)/BL herd per year. Extended lactations reduced milk yield of the herd by 4.1% for All+2, 6.9% for All+4, 1.1% for H+2 and 2.2% for H+4, and reduced the NPCF per herd per year by k€7 for All+2, k€12 for All+4, k€2 for H+2 and k€4 for H+4 compared with BL herds. Extended lactations increased GHG emissions in CO2-equivalents per t FPCM by 1.0% for All+2, by 1.7% for All+4, by 0.2% for H+2 and by 0.4% for H+4, but this could be compensated by an increase in lifespan of dairy cows. Subsequently, production level and lactation persistency were increased to assess the importance of these aspects for the impact of extended lactations. The increase in production level and lactation persistency increased milk production of BL herds by 30%. Moreover, reductions in milk yield for All+2 and All+4 compared with BL herds were only 0.7% and 1.1% per year, and milk yield in H+2 and H+4 herds was similar to BL herds. The resulting NPCF was equal to BL for All+2 and All+4 and increased by k€1 for H+2 and H+4 due to lower costs for insemination and calving management. Moreover, GHG emissions per t FPCM were equal to BL herds or reduced (0% to −0.3%) when lactations were extended. We concluded that, depending on lactation persistency, extending lactations of dairy cows can have a positive or negative impact on the NPCF and GHG emissions of milk production.  相似文献   

14.
Straw-rich manure from organic pig farming systems was composted in passively aerated static piles to estimate the effect of monthly turning on organic matter degradation and NH(3), N(2)O and CH(4) emissions. Turning enhanced the rate of drying and degradation. The four-month treatment degraded 57+/-3% of the initial organic matter in the turned piles, while only 40+/-5% in the static piles. The turned piles showed low ammonia and N(2)O emissions, 3.9+/-0.2% and 2.5+/-0.1% of total initial nitrogen, respectively. Static piles gave low ammonia (2.4+/-0.1% N(initial)), but high (9.9+/-0.5% N(initial)) N(2)O emissions. Prevalence of anaerobic regions in the static system was supported by the higher CH(4) emissions, 12.6+/-0.6% VS(degraded) for the static vs. 0.4+/-0.0% VS(degraded) for the turned system. It was shown, that straw-rich pig manure with very low C/N ratios could be composted directly without significant NH(3) and N(2)O emissions if turned on a monthly basis.  相似文献   

15.
Signatories of the Kyoto Protocol are obliged to submit annual accounts of their anthropogenic greenhouse gas emissions, which include nitrous oxide (N(2)O). Emissions from the sectors industry (3.8 Gg), energy (14.4 Gg), agriculture (86.8 Gg), wastewater (4.4 Gg), land use, land-use change and forestry (2.1 Gg) can be calculated by multiplying activity data (i.e. amount of fertilizer applied, animal numbers) with simple emission factors (Tier 1 approach), which are generally applied across wide geographical regions. The agricultural sector is the largest anthropogenic source of N(2)O in many countries and responsible for 75 per cent of UK N(2)O emissions. Microbial N(2)O production in nitrogen-fertilized soils (27.6 Gg), nitrogen-enriched waters (24.2 Gg) and manure storage systems (6.4 Gg) dominate agricultural emission budgets. For the agricultural sector, the Tier 1 emission factor approach is too simplistic to reflect local variations in climate, ecosystems and management, and is unable to take into account some of the mitigation strategies applied. This paper reviews deviations of observed emissions from those calculated using the simple emission factor approach for all anthropogenic sectors, briefly discusses the need to adopt specific emission factors that reflect regional variability in climate, soil type and management, and explains how bottom-up emission inventories can be verified by top-down modelling.  相似文献   

16.
鸡粪堆肥的酶活特性研究   总被引:2,自引:0,他引:2  
目的研究以鸡粪和菌糠为主体物料在高温堆肥发酵过程中纤维素酶、木聚糖酶、淀粉酶以及蛋白酶酶活性的变化。方法通过测定各酶活动态变化,了解各酶在鸡粪堆肥中的变化规律。其中纤维素酶和淀粉酶采用DNS比色法,木聚糖酶活采用还原糖法,蛋白酶活采用福林法进行测定。结果随温度不断变化和酶本身的性质以及物料的作用机制机制不同,酶活动态变化表现出一定的差异性。物料发酵温度在0~3 d时迅速上升,在3~18 d持续高温期,15 d之后下降趋于恒定。各酶活变化基本上符合先上升至峰值再下降,最后保持恒定的规律。其中各酶发生高效反应的时间具有不一致性,纤维素酶活在第18天时达到峰值,淀粉酶活在第9天时达到峰值,木聚糖酶在第12天时达到峰值,而蛋白酶活在第3天时即达到峰值。结论酶对物料腐熟具有重要用,本研究结果为堆肥腐熟提供参考指标,对优化堆肥工艺具有重要意义。  相似文献   

17.
Liu D  Zhang R  Wu H  Xu D  Tang Z  Yu G  Xu Z  Shen Q 《Bioresource technology》2011,102(19):9040-9049
Various parameters were measured during the period of composting of dairy manure and rice chaff in different ratios (dairy manure/rice chaff=V/V, pile 1: 75/25; pile 2: 80/20; pile 3: 85/15) to evaluate their suitability as indicators for the composting process. The temperature in pile 1 increased rapidly and remained above 60 °C for 30 days, while the temperature in pile 3 increased slowly relative to the other two piles. Furthermore, the degradation of organic substrates, as indicated by the reduction of C/N ratio, was rapid in pile 1 (below 20% 28 days after beginning of the composting). The major fluctuations of various water-soluble fractions in all piles were observed during the first 3 weeks, and the results in general showed that the highest microbial populations and enzymatic activities also appeared in this phase. Various parameters indicated that the rapid composting method was a feasible one for treating agricultural wastes.  相似文献   

18.
The objective of this study was to improve the availability of phosphorus (P) from rock phosphate (RP) through feeding, mixing and composting manure. The experiment was conducted as a 3 x 2 split-plot design. Manure was collected from 12 Boran steers (200+/-4.5 kg live weight) fed a basal diet of Napier grass (Pennisetum purpureum) at 2.5% body weight on a dry matter (DM) basis. The main plot treatments were (i) manure from steers supplemented with 113 g Busumbu rock phosphate (BRP) per day (FBRP), (ii) manure from steers not supplemented with BRP, feces mixed with 113 g BRP per day (MBRP) and (iii) manure from steers not supplemented with BRP and feces not mixed with BRP (CONT). The sub-plots comprised composting the manure either (i) mixed with 440 g of wheat (Triticum aestivum L.) straw per kg fresh feces (WS) or (ii) without straw (WOS). The manure was composted in 200 L plastic bins for 90 days. After 90 days, P availability was evaluated (i) by aerobic laboratory incubation at 25 degrees C for 1, 2, 4, 8, 12, and 16 weeks and (ii) by greenhouse agronomic evaluation study using maize (Zea Mays L.) as the test crop in either a humic Nitosol or an Andosol. In the laboratory incubation study, resin P was higher (p<0.05) for the WS compost than for the WOS compost; values were higher (p<0.05) for the Andosol than for Nitosol and followed the order of FBRP-WS, Andosol>FBRP-WS, Nitosol>MBRP-WS, Andosol>MBRP-WS, Nitosol>FBRP-WOS, Andosol>FBRP-WOS, Nitosol. In the greenhouse evaluation, maize crops in the WS compost had higher (p<0.05) biomass yield than the reference fertilizer, triple super phosphate, (173% versus 196%; Andosol and Nitosol, respectively). The biomass yield and P uptake relative agronomic effectiveness (RAE) for WS compost was also higher (p<0.05) than that of WOS compost (184 versus 3+/-0.8 and 242 versus 162+/-0.2, WS and WOS, biomass yield and P uptake, respectively). Nitosol biomass yield and P uptake RAE were also higher (p<0.05) than for the Andosol (99 versus 88+/-0.8 and 332 versus 72+/-0.2, Nitosol and Andosol, biomass yield and P uptake, respectively). The results show that P-enriched composting in the presence of wheat straw significantly increased P availability and increased plant growth. However, in terms of plant growth, there was no additional benefit of first feeding the RP to steers before composting the manure because most of the RP fed seem to have been utilized by the animal.  相似文献   

19.
Ammonia emissions during vermicomposting of sheep manure   总被引:2,自引:0,他引:2  
The effect of C:N ratio, temperature and water content on ammonia volatilization during two-phase composting of sheep manure was evaluated. The aerobic phase was conducted under field conditions. This was followed by Phase II, vermicomposting, conducted in the laboratory under controlled conditions of water content (70% and 80%) and temperature (15 and 22 °C). The addition of extra straw lead to a 10% reduction in NH3 volatilization compared to sheep manure composted without extra straw. Temperature and water content significantly effected ammonia volatilization at 0 day in Phase II, with a water content of 70% and temperature of 22 °C leading to greater losses of ammonia. Nitrogen loss by ammonia volatilization during vermicomposting ranged from 8% to 15% of the initial N content. The addition of extra straw did not result in significant differences in total carbon content following vermicomposting.  相似文献   

20.
Livestock manures contain numerous microorganisms which can infect humans and/or animals, such as Escherichia coli O157:H7, Listeria monocytogenes, Salmonella spp., and Mycobacterium avium subsp. paratuberculosis (Mycobacterium paratuberculosis). The effects of commonly used manure treatments on the persistence of these pathogens have rarely been compared. The objective of this study was to compare the persistence of artificially inoculated M. paratuberculosis, as well as other naturally occurring pathogens, during the treatment of dairy manure under conditions that simulate three commonly used manure management methods: thermophilic composting at 55 degrees C, manure packing at 25 degrees C (or low-temperature composting), and liquid lagoon storage. Straw and sawdust amendments used for composting and packing were also compared. Manure was obtained from a large Ohio free-stall dairy herd and was inoculated with M. paratuberculosis at 10(6) CFU/g in the final mixes. For compost and pack treatments, this manure was amended with sawdust or straw to provide an optimal moisture content (60%) for composting for 56 days. To simulate liquid storage, water was added to the manure (to simulate liquid flushing and storage) and the slurry was placed in triplicate covered 4-liter Erlenmeyer flasks, incubated under ambient conditions for 175 days. The treatments were sampled on days 0, 3, 7, 14, 28, and 56 for the detection of pathogens. The persistence of M. paratuberculosis was also assessed by a PCR hybridization assay. After 56 days of composting, from 45 to 60% of the carbon in the compost treatments was converted to CO2, while no significant change in carbon content was observed in the liquid slurry. Escherichia coli, Salmonella, and Listeria were all detected in the manure and all of the treatments on day 0. After 3 days of composting at 55 degrees C, none of these organisms were detectable. In liquid manure and pack treatments, some of these microorganisms were detectable up to 28 days. M. paratuberculosis was detected by standard culture only on day 0 in all the treatments, but was undetectable in any treatment at 3 and 7 days. On days 14, 28, and 56, M. paratuberculosis was detected in the liquid storage treatment but remained undetectable in the compost and pack treatments. However, M. paratuberculosis DNA was detectable through day 56 in all treatments and up to day 175 in liquid storage treatments. Taken together, the results indicate that high-temperature composting is more effective than pack storage or liquid storage of manure in reducing these pathogens in dairy manure. Therefore, thermophilic composting is recommended for treatment of manures destined for pathogen-sensitive environments such as those for vegetable production, residential gardening, or application to rapidly draining fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号