首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fibrosis is one of the most common pathological alterations in heart failure, and fibroblast migration is an essential process in the development of cardiac fibrosis. Experimental autoimmune myocarditis (EAM) is a model of inflammatory heart disease characterized by inflammatory cell infiltration followed by healing without residual fibrosis. However, the precise mechanisms mediating termination of inflammation and nonfibrotic healing remain to be elucidated. Microarray analysis of hearts from model mice at multiple time points after EAM induction identified several secreted proteins upregulated during nonfibrotic healing, including the anti-inflammatory cathelicidin antimicrobial peptide (CAMP). Treatment with LL-37, a human homolog of CAMP, activated MAP kinases in fibroblasts but not in cardiomyocytes, indicating that fibroblasts were the target of CAMP activity. In addition, LL-37 decreased fibroblast migration in the in vitro scratch assay. P2X7 receptor (P2X7R), a well-known receptor for LL-37, was involved in LL-37 mediated biological effect on cardiac fibroblasts. Stimulation of BzATP, a P2X7R agonist, activated MAPK in fibroblasts, whereas the P2X7R antagonist, BBG, as well as P2X7R deletion abolished both LL-37-mediated MAPK activation and LL-37-induced reduction in fibroblast migration. These results strongly suggest that CAMP upregulation during myocarditis prevents myocardial fibrosis by restricting fibroblast migration via activation of the P2X7R−MAPK signaling pathway.  相似文献   

2.
Peptide antibiotics possess the potent antimicrobial activities against invading microorganisms and contribute to the innate host defense. An antibacterial cathelicidin, human cationic antibacterial protein of 18 kDa/LL-37, not only exhibits potent bactericidal activities against Gram-negative and Gram-positive bacteria, but also functions as a chemoattractant for immune cells, including neutrophils. During bacterial infections, the life span of neutrophils is regulated by various pathogen- and host-derived substances. In this study, to further evaluate the role of LL-37 in innate immunity, we investigated the action of LL-37 on neutrophil apoptosis. Neutrophil apoptosis was assessed using human blood neutrophils based on the morphological changes. Of note, LL-37 dose dependently (0.01-5 microg/ml) suppressed neutrophil apoptosis, accompanied with the phosphorylation of ERK-1/2, expression of Bcl-x(L) (an antiapoptotic protein), and inhibition of caspase 3 activity. Interestingly, LL-37-induced suppression of neutrophil apoptosis was attenuated by the antagonists for formyl-peptide receptor-like 1 (FPRL1) and P2X7 nucleotide receptor. Of importance, the agonists for FPRL1 and P2X7 apparently suppressed neutrophil apoptosis. Collectively, these observations indicate that LL-37 cannot only kill bacteria, but also modulate (suppress) neutrophil apoptosis via the activation of FPRL1 and P2X7 in bacterial infections. Suppression of neutrophil apoptosis results in the prolongation of their life span, and may be advantageous for host defense against bacterial invasion.  相似文献   

3.
The present study examines whether changes in P2X7 purinergic receptor density precede formation of the cytolytic pore characteristic of this receptor. We fused P2X7 receptors with enhanced green fluorescent protein (EGFP) at the amino or carboxy termini (EGFP-P2X7 and P2X7-EGFP). Electrophysiological characterization in Xenopus oocytes revealed wild-type responses to ATP for GFP-tagged receptors. However, differences in sensitivity to ATP were apparent with the P2X7-EGFP receptor displaying a threefold reduction in ATP sensitivity compared with control. Ethidium ion uptake was used to measure cytolytic pore formation. Comparison of tagged receptors with wild type in HEK-293 and COS-7 cells showed there was no significant difference in ethidium ion uptake, suggesting that fusions with EGFP did not interfere with cytolytic pore formation. Confocal microscopy confirmed that tagged receptors localized to the plasmalemma. Simultaneous monitoring of EGFP and ethidium ion fluorescence revealed that changes in receptor distribution do not precede pore formation. We conclude that it is unlikely that large scale changes in P2X7 receptor density precede pore formation.  相似文献   

4.
LL-37 peptide is a multifunctional host defense molecule essential for normal immune responses to infection or tissue injury. In this study we assess the impact of LL-37 on endothelial stiffness and barrier permeability. Fluorescence microscopy reveals membrane localization of LL-37 after its incubation with human umbilical vein endothelial cells (HUVECs). A concentration-dependent increase in stiffness was observed in HUVECs, bovine aortic endothelial cells (BAECs), human pulmonary microvascular endothelial cells, and mouse aorta upon LL-37 (0.5-5 μM) addition. Stiffening of BAECs by LL-37 was blocked by P2X7 receptor antagonists and by the intracellular Ca2(+) chelator BAPTA-AM. Increased cellular stiffness correlated with a decrease in permeability of HUVEC cell monolayers after LL-37 addition compared with nontreated cells, which was similar to the effect observed upon treatment with sphingosine 1-phosphate, and both treatments increased F-actin content in the cortical region of the cells. These results suggest that the antiinflammatory effect of LL-37 at the site of infection or injury involves an LL-37-mediated increase in cell stiffening that prevents increased pericellular permeability. Such a mechanism may help to maintain tissue fluid homeostasis.  相似文献   

5.
Interaction of P2X7 receptor with P2X4 receptor has recently been suggested, but it remains unclear whether P2X4 receptor is involved in P2X7 receptor-mediated events, such as cell death of macrophages induced by high concentrations of extracellular ATP. Here, we present evidence that P2X4 receptor does play a role in P2X7 receptor-dependent cell death. Treatment of mouse macrophage RAW264.7 cells with 1mM ATP induced Ca(2+) influx, non-selective large pore formation, activation of extracellular signal-regulated protein kinase (ERK) 1/2 and p38 mitogen-activated protein kinase (MAPK), and cell death via activation of P2X7 receptor. P2X4-knockdown cells, established by transfecting RAW264.7 cells with two short hairpin RNAs (shRNAs) targeting P2X4 receptor, showed a decrease of the initial peak of intracellular Ca(2+) after treatment with ATP, though pore formation and the P2X7-mediated activation of ERK1/2 and p38 MAPK were not affected. Intriguingly, P2X4 knockdown resulted in significant suppression of cell death induced by ATP or P2X7 agonist BzATP. In conclusion, our results suggest that P2X4 receptor is involved in P2X7 receptor-mediated cell death, but not pore formation or MAPK signaling.  相似文献   

6.
Pyroptosis is a caspase-1 dependent cell death, associated with proinflammatory cytokine production, and is considered to play a crucial role in sepsis. Pyroptosis is induced by the two distinct stimuli, microbial PAMPs (pathogen associated molecular patterns) and endogenous DAMPs (damage associated molecular patterns). Importantly, cathelicidin-related AMPs (antimicrobial peptides) have a role in innate immune defense. Notably, human cathelicidin LL-37 exhibits the protective effect on the septic animal models. Thus, in this study, to elucidate the mechanism for the protective action of LL-37 on sepsis, we utilized LPS (lipopolysaccharide) and ATP (adenosine triphosphate) as a PAMP and a DAMP, respectively, and examined the effect of LL-37 on the LPS/ATP-induced pyroptosis of macrophage-like J774 cells. The data indicated that the stimulation of J774 cells with LPS and ATP induces the features of pyroptosis, including the expression of IL-1β mRNA and protein, activation of caspase-1, inflammasome formation and cell death. Moreover, LL-37 inhibits the LPS/ATP-induced IL-1β expression, caspase-1 activation, inflammasome formation, as well as cell death. Notably, LL-37 suppressed the LPS binding to target cells and ATP-induced/P2X7-mediated caspase-1 activation. Together these observations suggest that LL-37 potently inhibits the LPS/ATP-induced pyroptosis by both neutralizing the action of LPS and inhibiting the response of P2X7 to ATP. Thus, the present finding may provide a novel insight into the modulation of sepsis utilizing LL-37 with a dual action on the LPS binding and P2X7 activation.  相似文献   

7.
P2X7 is a bifunctional receptor (P2X7R) for extracellular ATP that, depending on the level of activation, forms a cation-selective channel or a large conductance nonselective pore. The P2X7R has a strong proapoptotic activity but can also support growth. Here, we describe the mechanism involved in growth stimulation. Transfection of P2X7R increases resting mitochondrial potential (delta psi(mt)), basal mitochondrial Ca2+ ([Ca2+]mt), intracellular ATP content, and confers ability to grow in the absence of serum. These changes require a full pore-forming function, because they are abolished in cells transfected with a mutated P2X7R that retains channel activity but cannot form the nonselective pore, and depend on an autocrine/paracrine tonic stimulation by secreted ATP. On the other hand, sustained stimulation of P2X7R causes a delta psi(mt) drop, a large increase in [Ca2+]mt, mitochondrial fragmentation, and cell death. These findings reveal a hitherto undescribed mechanism for growth stimulation by a plasma membrane pore.  相似文献   

8.
Human leukocytes can express the P2X(7) purinergic receptor, an ionic channel gated by extracellular ATP, for which the physiological role is only partially understood. Transfection of P2X(7) cDNA into lymphoid cells that lack this receptor sustains their proliferation in serum-free medium. Increased proliferation of serum-starved P2X(7) transfectants is abolished by the P2X(7) receptor blocker oxidized ATP or by the ATP hydrolase apyrase. Both wild type and P2X(7)-transfected lymphoid cells release large amounts of ATP into the culture medium. These data suggest the operation of an ATP-based autocrine/paracrine loop that supports lymphoid cell growth in the absence of serum-derived growth factors.  相似文献   

9.
Residues considered essential for ATP binding to the human P2X(7) receptor (hP2X(7)R) were investigated. HEK293 cells or Xenopus oocytes were transfected with wild-type or site-directed mutants of hP2X(7)R constructs and channel/pore activity measured in the presence of ATP or 2',3'-O-(4-benzoylbenzoyl)-ATP (BzATP). Barium uptake and ethidium influx into HEK293 cells were abolished in cells expressing K193A and K311A mutants, and were partially reduced in cells expressing mutant P210A. K193A and K311A mutations also completely abolished responses to ATP and BzATP in Xenopus oocytes as measured by electrophysiology. These results indicate that K193 and K311 are essential residues in ATP binding in the hP2X(7)R.  相似文献   

10.
Locovei S  Scemes E  Qiu F  Spray DC  Dahl G 《FEBS letters》2007,581(3):483-488
The purinergic receptor P2X(7) is part of a complex signaling mechanism participating in a variety of physiological and pathological processes. Depending on the activation scheme, P2X(7) receptors in vivo are non-selective cation channels or form large pores that can mediate apoptotic cell death. Expression of P2X(7)R in Xenopus oocytes results exclusively in formation of a non-selective cation channel. However, here we show that co-expression of P2X(7)R with pannexin1 in oocytes leads to the complex response seen in many mammalian cells, including cell death with prolonged ATP application. While the cation channel activity is resistant to carbenoxolone treatment, this gap junction and hemichannel blocking drug suppressed the currents induced by ATP in pannexin1/P2X(7)R co-expressing cells. Thus, pannexin1 appears to be the molecular substrate for the permeabilization pore (or death receptor channel) recruited into the P2X(7)R signaling complex.  相似文献   

11.
Microglia, glial cells with an immunocompetent role in the CNS, react to stimuli from the surrounding environment with alterations of their phenotypic response. Amongst other activating signals, the endotoxin lipopolysaccharide (LPS) is widely used as a tool to mimic bacterial infection in the CNS. LPS-activated microglia undergo dramatic changes in cell morphology/activity; in particular, they stop proliferating and differentiate from resting to effector cells. Activated microglia also show modifications of purinoreceptor signalling with a significant decrease in P2X(7) expression. In this study, we demonstrate that the down-regulation of the P2X(7) receptor in activated microglia may play an important role in the antiproliferative effect of LPS. Indeed, chronic blockade of the P2X(7) receptor by antagonists (oxidized ATP, KN62 and Brilliant Blue G), or treatment with the ATP-hydrolase apyrase, severely decreases microglial proliferation, down-regulation of P2X(7) receptor expression by small RNA interference (siRNA) decreases cell proliferation, and the proliferation of P2X(7)-deficient N9 clones and primary microglia, in which P2X(7) expression is down-regulated by siRNA, is unaffected by either LPS or P2X(7) antagonists. Furthermore, flow cytometric analysis indicates that exposure to oxidized ATP or treatment with LPS reversibly decreases cell cycle progression, without increasing the percentage of apoptotic cells. Overall, our data show that the P2X(7) receptor plays an important role in controlling microglial proliferation by supporting cell cycle progression.  相似文献   

12.
The pancreatic stellate cells (PSCs) have complex roles in pancreas, including tissue repair and fibrosis. PSCs surround ATP releasing exocrine cells, but little is known about purinergic receptors and their function in PSCs. Our aim was to resolve whether PSCs express the multifunctional P2X7 receptor and elucidate how it regulates PSC viability. The number of PSCs isolated from wild type (WT) mice was 50% higher than those from the Pfizer P2X7 receptor knock out (KO) mice. The P2X7 receptor protein and mRNA of all known isoforms were expressed in WT PSCs, while KO PSCs only expressed truncated versions of the receptor. In culture, the proliferation rate of the KO PSCs was significantly lower. Inclusion of apyrase reduced the proliferation rate in both WT and KO PSCs, indicating importance of endogenous ATP. Exogenous ATP had a two-sided effect. Proliferation of both WT and KO cells was stimulated with ATP in a concentration-dependent manner with a maximum effect at 100 µM. At high ATP concentration (5 mM), WT PSCs, but not the KO PSCs died. The intracellular Ca2+ signals and proliferation rate induced by micromolar ATP concentrations were inhibited by the allosteric P2X7 receptor inhibitor az10606120. The P2X7 receptor-pore inhibitor A438079 partially prevented cell death induced by millimolar ATP concentrations. This study shows that ATP and P2X7 receptors are important regulators of PSC proliferation and death, and therefore might be potential targets for treatments of pancreatic fibrosis and cancer.  相似文献   

13.
The release of IL-1 beta is a tightly controlled process that requires induced synthesis of the precursor pro-IL-1 beta and a second stimulus that initiates cleavage and secretion of mature IL-1 beta. Although ATP as a second stimulus potently promotes IL-1 beta maturation and release via P2X(7) receptor activation, millimolar ATP concentrations are needed. The human cathelicidin-derived peptide LL37 is a potent antimicrobial peptide produced predominantly by neutrophils and epithelial cells. In this study, we report that LL37 stimulation of LPS-primed monocytes leads to maturation and release of IL-1 beta via the P2X(7) receptor. LL37 induces a transient release of ATP, membrane permeability, caspase-1 activation, and IL-1 beta release without cell cytotoxicity. IL-1 beta release and cell permeability are suppressed by pretreatment with the P2X(7) inhibitors oxidized ATP, KN04, and KN62. In the presence of apyrase, which hydrolyzes ATP to AMP, the effect of LL37 was not altered, indicating that LL37 rather than autocrine ATP is responsible for the activation of the P2X(7) receptor. We conclude that endogenous LL37 may promote IL-1 beta processing and release via direct activation of P2X(7) receptors.  相似文献   

14.
The P2X(7) receptor is a ligand-gated channel that is highly expressed on mononuclear cells of the immune system and that mediates ATP-induced apoptosis. Wide variations in the function of the P2X receptor have been observed, explained in part by (7)loss-of-function polymorphisms that change Glu(496) to Ala (E496A) and Ile(568) to Asn (I568N). In this study, a third polymorphism, which substitutes an uncharged glutamine for the highly positively charged Arg(307) (R307Q), has been found in heterozygous dosage in 12 of 420 subjects studied. P2X(7) function was measured by ATP-induced fluxes of Rb(+), Ba(2+), and ethidium(+) into peripheral blood monocytes or various lymphocyte subsets and was either absent or markedly decreased. Transfection experiments showed that P2X(7) carrying the R307Q mutation lacked either channel or pore function despite robust protein synthesis and surface expression of the receptor. The monoclonal antibody (clone L4) that binds to the extracellular domain of wild type P2X(7) and blocks P2X(7) function failed to bind to the R307Q mutant receptor. Differentiation of monocytes to macrophages up-regulated P2X(7) function in cells heterozygous for the R307Q to a value 10-40% of that for wild type macrophages. However, macrophages from a subject who was double heterozygous for R307Q/I568N remained totally non-functional for P2X(7), and lymphocytes from the same subject also lacked ATP-stimulated phospholipase D activity. These data identify a third loss-of-function polymorphism affecting the human P2X(7) receptor, and since the affected Arg(307) is homologous to those amino acids essential for ATP binding to P2X(1) and P2X(2), it is likely that this polymorphism abolishes the binding of ATP to the extracellular domain of P2X(7).  相似文献   

15.
The function of P2X(7) receptors (ATP-gated ion channels) in innate immune cells is unclear. In the setting of Toll-like receptor (TLR) stimulation, secondary activation of P2X(7) ion channels has been linked to pro-caspase-1 cleavage and cell death. Here we show that cell death is a surprisingly early triggered event. We show using live-cell imaging that transient (1-4 min) stimulation of mouse macrophages with high extracellular ATP ([ATP]e) triggers delayed (hours) cell death, indexed as DEVDase (caspase-3 and caspase-7) activity. Continuous or transient high [ATP]e did not induce cell death in P2X(7)-deficient (P2X(7)(-/-)) macrophages or neutrophils (in which P2X(7) could not be detected). Blocking sustained Ca(2+) influx, a signature of P2X(7) ligation, was highly protective, whereas no protection was conferred in macrophages lacking caspase-1 or TLR2 and TLR4. Furthermore, pannexin-1 (Panx1) deficiency had no effect on transient ATP-induced delayed cell death or ATP-induced Yo-Pro-1 uptake (an index of large pore pathway formation). Thus, "transient" P2X(7) receptor activation and Ca(2+) overload act as a death trigger for native mouse macrophages independent of Panx1 and pro-inflammatory caspase-1 and TLR signaling.  相似文献   

16.
Retinal ganglion cells process the visual signal and transmit it along their axons in the optic nerve to the brain. Molecular, immunohistochemical, and functional analyses indicate that the majority of retinal ganglion cells express the ionotropic P2X(7) receptor. Stimulation of the receptor can lead to a rise in intracellular calcium and cell death, although death does not involve the opening of a large diameter pore. Adenosine acting at A(3) receptors can attenuate the rise in calcium and death accompanying P2X(7) receptor activation, suggesting that dephosphorylation of ATP into adenosine is neuroprotective and that the balance of extracellular purines can influence neuronal survival. Increased intraocular pressure can lead to release of excessive extracellular ATP in the retina and damage ganglion cells by acting on P2X(7) receptors, implicating a role for the receptor in the loss of ganglion cell activity in glaucoma. In summary, the activation of P2X(7) receptors has both physiologic and pathophysiologic implications for ganglion cell function. These characteristics may also provide an insight into the contributions the P2X(7) receptor makes to neurons elsewhere.  相似文献   

17.
P2X receptors function as ATP-gated cation channels. The P2X(7) receptor subtype is distinguished from other P2X family members by a very low affinity for extracellular ATP (millimolar EC50) and its ability to trigger induction of nonselective pores on repeated or prolonged stimulation. Previous studies have indicated that certain P2X(7) receptor-positive cell types, such as human blood monocytes and murine thymocytes, lack this pore-forming response. In the present study we compared pore formation in response to P2X(7) receptor activation in human blood monocytes with that in macrophages derived from these monocytes by in vitro tissue culture. ATP induced nonselective pores in macrophages but not in freshly isolated monocytes when both cell types were identically stimulated in standard NaCl-based salines. However, ion substitution studies revealed that replacement of extracellular Na+ and Cl- with K+ and nonhalide anions strongly facilitated ATP-dependent pore formation in monocytes. These ionic conditions also resulted in increased agonist affinity, such that 30-100 microM ATP was sufficient for activation of nonselective pores by P2X(7) receptors. Comparison of P2X(7) receptor expression in blood monocytes with that in macrophages indicated no differences in steady-state receptor mRNA levels but significant increases (up to 10-fold) in the amount of immunoreactive P2X(7) receptor protein at the cell surface of macrophages. Thus ability of ATP to activate nonselective pores in cells that natively express P2X(7) receptors can be modulated by receptor subunit density at the cell surface and ambient levels of extracellular Na+ and Cl-. These mechanisms may prevent adventitious P2X(7) receptor activation in monocytes until these proinflammatory leukocytes migrate to extravascular sites of tissue damage.  相似文献   

18.
Neural progenitor cells (NPCs) are capable of self-renewal and differentiation into neurons, astrocytes and oligodendrocytes, and have been used to treat several animal models of CNS disorders. In the present study, we show that the P2X7 purinergic receptor (P2X7R) is present on NPCs. In NPCs, P2X7R activation by the agonists extracellular ATP or benzoyl ATP triggers opening of a non-selective cationic channel. Prolonged activation of P2X7R with these nucleotides leads to caspase independent death of NPCs. P2X7R ligation induces NPC lysis/necrosis demonstrated by cell membrane disruption accompanied with loss of mitochondrial membrane potential. In most cells that express P2X7R, sustained stimulation with ATP leads to the formation of a non-selective pore allowing the entry of solutes up to 900 Da, which are reportedly involved in P2X7R-mediated cell lysis. Surprisingly, activation of P2X7R in NPCs causes cell death in the absence of pore formation. Our data support the notion that high levels of extracellular ATP in inflammatory CNS lesions may delay the successful graft of NPCs used to replace cells and repair CNS damage.  相似文献   

19.
P2X7 receptors have emerged as potential drug targets for the treatment of medical conditions such as e.g. rheumatoid arthritis and neuropathic pain. To assess the impact of pharmaceuticals on P2X7, we screened a compound library comprising approved or clinically tested drugs and identified several compounds that augment the ATP-triggered P2X7 activity in a stably transfected HEK293 cell line. Of these, clemastine markedly sensitized Ca(2+) entry through P2X7 to lower ATP concentrations. Extracellularly but not intracellularly applied clemastine rapidly and reversibly augmented P2X7-mediated whole-cell currents evoked by non-saturating ATP concentrations. Clemastine also accelerated the ATP-induced pore formation and Yo-Pro-1 uptake, increased the fractional NMDG(+) permeability, and stabilized the open channel conformation of P2X7. Thus, clemastine is an extracellularly binding allosteric modulator of P2X7 that sensitizes P2X7 to lower ATP concentrations and facilitates its pore dilation. The activity of clemastine on native P2X7 receptors, Ca(2+) entry, and whole-cell currents was confirmed in human monocyte-derived macrophages. Similar effects were observed in murine bone marrow-derived macrophages. Consistent with the data on recombinant P2X7, clemastine augmented the ATP-induced cation entry and Yo-Pro-1 uptake. In accordance with the observation that P2X7 controls the cytokine release from LPS-primed macrophages, we found that clemastine augmented the IL-1β release from LPS-primed human macrophages. Collectively, these data point to a sensitization of the recombinantly or natively expressed human P2X7 receptor toward its physiological activator, ATP, possibly leading to a modulation of macrophage-dependent immune responses.  相似文献   

20.
The P2X7 nucleotide receptor (P2X7R) is an ATP-gated ion channel expressed in many cell types including osteoblasts and osteocytes. Mice with a null mutation of P2X7R have osteopenia in load bearing bones, suggesting that the P2X7R may be involved in the skeletal response to mechanical loading. We found the skeletal sensitivity to mechanical loading was reduced by up to 73% in P2X7R null (knock-out (KO)) mice. Release of ATP in the primary calvarial osteoblasts occurred within 1 min of onset of fluid shear stress (FSS). After 30 min of FSS, P2X7R-mediated pore formation was observed in wild type (WT) cells but not in KO cells. FSS increased prostaglandin (PG) E2 release in WT cells but did not alter PGE2 release in KO cells. Studies using MC3T3-E1 osteoblasts and MLO-Y4 osteocytes confirmed that PGE2 release was suppressed by P2X7R blockade, whereas the P2X7R agonist BzATP enhanced PGE2 release. We conclude that ATP signaling through P2X7R is necessary for mechanically induced release of prostaglandins by bone cells and subsequent osteogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号