首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Leucine-rich repeat and fibronectin type III domain-containing (LRFN) family proteins are thought to be neuronal-specific proteins that play essential roles in neurite outgrowth and synapse formation. Here, we focused on expression and function of LRFN4, the fourth member of the LRFN family, in non-neural tissues. We found that LRFN4 was expressed in a wide variety of cancer and leukemia cell lines. We also found that expression of LRFN4 in the monocytic cell line THP-1 and in primary monocytes was upregulated following macrophage differentiation. Furthermore, we demonstrated that LRFN4 signaling regulated both the transendothelial migration of THP-1 cells and the elongation of THP-1 cells via actin cytoskeleton reorganization. Our data indicate that LRFN4 signaling plays an important role in the migration of monocytes/macrophages.  相似文献   

3.
4.
Interleukin-1 (IL-1) induces the induciblenitric oxide synthase (iNOS), resulting in the release of nitric oxide(NO) from glomerular mesangial cells. In this study, we demonstratedthat disruption of F-actin formation by sequestration of G-actin with the toxin latrunculin B (LatB) dramatically potentiated IL-1-induced iNOS protein expression in a dose-dependent manner. LatB by itself hadlittle or no effect on iNOS expression. Staining of F-actin withnitrobenzoxadiazole (NBD)-phallacidin demonstrated that LatB significantly impaired F-actin stress fiber formation. Jasplakinolide (Jasp), which binds to and stabilizes F-actin, suppressed iNOS expression enhanced by LatB. These data strongly suggest that actincytoskeletal dynamics regulates IL-1-induced iNOS expression. Wedemonstrated that LatB decreases serum response factor (SRF) activityas determined by reporter gene assays, whereas Jasp increases SRFactivity. The negative correlation between SRF activity and iNOSexpression suggests a negative regulatory role for SRF in iNOSexpression. Overexpression of a dominant negative mutant of SRFincreases the IL-1-induced iNOS expression, providing directevidence that SRF inhibits iNOS expression.

  相似文献   

5.
Although arsenic is a human carcinogen, the molecular mechanisms of its action remain to be understood. The present study reports that exposure to arsenic induced actin filament reorganization, resulting in lamellipodia and filopodia structures through the activation of Cdc42 in SVEC4-10 endothelial cells. It was also found that arsenic induced the formation of the superoxide anion (O2*) in SVEC4-10 cells. Immunoprecipitation and Western blotting analysis demonstrated that arsenic stimulation induced serine phosphorylation of p47phox, a key component of NADPH oxidase, indicating that arsenic induces O2* formation through NADPH oxidase activation. Inhibition of arsenic-induced actin filament reorganization by either overexpression of a dominant negative Cdc42 or pretreatment of an actin filament stabilizing regent, jasplakinolide, abrogated arsenic-induced NADPH oxidase activation, showing that the activation of NADPH oxidase was regulated by Cdc42-mediated actin filament reorganization. This study also showed that overexpression of a dominant negative Rac1 was sufficient to abolish arsenic-induced O2*- production, implying that Rac1 activities are required for Cdc42-mediated NADPH oxidase activation in response to arsenic stimulation. Furthermore, arsenic stimulation induced cell migration, which can be inhibited by the inactivation of either Cdc42 or NADPH oxidase. Taken together, the results indicate that arsenic is able to activate NADPH oxidase through Cdc42-mediated actin filament reorganization, leading to the induction of an increase in cell migration in SVEC4-10 endothelial cells.  相似文献   

6.
The pattern recognition receptor CD36 initiates a signaling cascade that promotes microglial activation and recruitment to beta-amyloid deposits in the brain. In the present study we identify the focal adhesion-associated proteins p130Cas, Pyk2, and paxillin as novel members of the tyrosine kinase signaling pathway downstream of CD36 and show that assembly of this complex is essential for microglial migration. In primary microglia and macrophages exposed to beta-amyloid, the scaffolding protein p130Cas is rapidly tyrosine-phosphorylated and co-localizes with CD36 to membrane ruffles contemporaneous with F-actin polymerization. These beta-amyloid-stimulated events are not detected in CD36 null cells and are dependent on CD36 activation of Src family tyrosine kinases. Fyn, a Src kinase known to interact with CD36, co-precipitates with p130Cas and is an essential upstream intermediate in the signaling pathways leading to phosphorylation of the p130Cas substrate domain. Furthermore, the p130Cas-interacting kinase Pyk2 and the cytoskeletal adapter protein paxillin also demonstrate CD36-dependent phosphorylation, identifying these focal adhesion molecules as additional members of this beta-amyloid signaling cascade. Disruption of this p130Cas complex by small interfering RNA silencing inhibits p44/42 mitogen-activated protein kinase phosphorylation and microglial migration, illustrating the importance of this pathway in microglial activation and recruitment. Together, these data are the first to identify the signaling cascade that directly links CD36 to the actin cytoskeleton and, thus, implicates it in diverse processes such as cellular migration, adhesion, and phagocytosis.  相似文献   

7.
8.
p120 catenin regulates the actin cytoskeleton via Rho family GTPases   总被引:19,自引:0,他引:19  
Cadherins are calcium-dependent adhesion molecules responsible for the establishment of tight cell-cell contacts. p120 catenin (p120ctn) binds to the cytoplasmic domain of cadherins in the juxtamembrane region, which has been implicated in regulating cell motility. It has previously been shown that overexpression of p120ctn induces a dendritic morphology in fibroblasts (Reynolds, A.B. , J. Daniel, Y. Mo, J. Wu, and Z. Zhang. 1996. Exp. Cell Res. 225:328-337.). We show here that this phenotype is suppressed by coexpression of cadherin constructs that contain the juxtamembrane region, but not by constructs lacking this domain. Overexpression of p120ctn disrupts stress fibers and focal adhesions and results in a decrease in RhoA activity. The p120ctn-induced phenotype is blocked by dominant negative Cdc42 and Rac1 and by constitutively active Rho-kinase, but is enhanced by dominant negative RhoA. p120ctn overexpression increased the activity of endogenous Cdc42 and Rac1. Exploring how p120ctn may regulate Rho family GTPases, we find that p120ctn binds the Rho family exchange factor Vav2. The behavior of p120ctn suggests that it is a vehicle for cross-talk between cell-cell junctions and the motile machinery of cells. We propose a model in which p120ctn can shuttle between a cadherin-bound state and a cytoplasmic pool in which it can interact with regulators of Rho family GTPases. Factors that perturb cell-cell junctions, such that the cytoplasmic pool of p120ctn is increased, are predicted to decrease RhoA activity but to elevate active Rac1 and Cdc42, thereby promoting cell migration.  相似文献   

9.
10.
Changes in the spatial organization of actin filaments of nuclear erythrocytes and leukocytes during their migration in fish, frogs and birds have been studied by the method of confocal laser scanning microscopy. It has been shown that, during movement of cells, the reorganization of cytoskeleton microfilaments in erythrocytes is similar to that in leukocytes. During migration, red blood cells of amphibious and birds form pseudopodia filled with bunches in parallel laid actin filaments. Erythrocytes in fish do not form pseudopodia. Similar to leukocytes change in the structure of the actin cytoskeleton in nuclear erythrocytes determines the ability of red blood cells to reactions of migration and phagocytosis.  相似文献   

11.
12.
Regulation of the actin cytoskeleton in cancer cell migration and invasion   总被引:1,自引:0,他引:1  
Malignant cancer cells utilize their intrinsic migratory ability to invade adjacent tissues and the vasculature, and ultimately to metastasize. Cell migration is the sum of multi-step processes initiated by the formation of membrane protrusions in response to migratory and chemotactic stimuli. The driving force for membrane protrusion is localized polymerization of submembrane actin filaments. Recently, several studies revealed that molecules that link migratory signals to the actin cytoskeleton are upregulated in invasive and metastatic cancer cells. In this review, we summarize recent progress on molecular mechanisms of formation of invasive protrusions used by tumor cells, such as lamellipodia and invadopodia, with regard to the functions of key regulatory proteins of the actin cytoskeleton; WASP family proteins, Arp2/3 complex, LIM-kinase, cofilin, and cortactin.  相似文献   

13.
Vascular calcification is an active cell-mediated process that reduces elasticity of blood vessels and increases blood pressure. Until now, the molecular basis of vascular calcification has not been fully understood. We previously reported that microtubule disturbances mediate vascular calcification. Here, we found that protein kinase C (PKC) signaling acted as a novel coordinator between cytoskeletal changes and hyperphosphatemia-induced vascular calcification. Phosphorylation and expression of both PKCα and PKCδ decreased during inorganic phosphate (Pi)-induced vascular smooth muscle cell (VSMC) calcification. Knockdown of PKC isoforms by short interfering RNA as well as PKC inactivation by Go6976 or rottlerin treatment revealed that specific inhibition of PKCα and PKCδ accelerated Pi-induced calcification both in VSMCs and ex vivo aorta culture through upregulation of osteogenic signaling. Additionally, inhibition of PKCα and PKCδ induced disassembly of microtubule and actin, respectively. In summary, our results indicate that cytoskeleton perturbation via PKCα and PKCδ inactivation potentiates vascular calcification through osteogenic signal induction.  相似文献   

14.
《The Journal of cell biology》1995,131(5):1223-1230
Glucocorticoids induce the remodeling of the actin cytoskeleton and the formation of numerous stress fibers in a protein synthesis-dependent fashion in a variety of cell types (Castellino, F., J. Heuser, S. Marchetti, B. Bruno, and A. Luini. 1992. Proc. Natl. Acad. Sci. USA. 89:3775-3779). These cells can thus be used as models to investigate the mechanisms controlling the organization of actin filaments. Caldesmon is an almost ubiquitous actin- and calmodulin-binding protein that synergizes with tropomyosin to stabilize microfilaments in vitro (Matsumura, F., and Yamashiro, S. 1993. Current Opin. Cell Biol. 5:70- 76). We now report that glucocorticoids (but not other steroids) enhanced the levels of caldesmon (both protein and mRNA) and induced the reorganization of microfilaments with similar time courses and potencies in A549 cells. A caldesmon antisense oligodeoxynucleotide targeted to the most abundant caldesmon isoform in A549 cells dramatically inhibited glucocorticoid-induced caldesmon synthesis and actin reorganization with similar potencies. Several control oligonucleotides were inactive. These results demonstrate that caldesmon has a crucial role in vivo in the organization of the actin cytoskeleton and suggest that hormone-induced changes in caldesmon levels mediate microfilament remodeling.  相似文献   

15.
Several studies have reported the up-regulation of EphB receptor-tyrosine kinases and ephrin-B ligands in a variety of tumors, suggesting a functional relation between EphB/ephrin-B signaling and tumor progression. The ability of the EphB receptors to regulate cell migration and promote angiogenesis likely contributes to tumor progression and metastasis. Here we show that EphB receptors, and especially EphB4, regulate the migration of murine melanoma cells. Highly malignant melanoma cells express the highest levels of EphB4 receptor and migrate faster than less malignant melanoma cells. Furthermore, inhibition of EphB receptor forward signaling by overexpression of a form of EphB4 lacking the cytoplasmic portion or by treatment with competitively acting soluble EphB2-Fc results in slower melanoma cell migration. In contrast, overexpression of active EphB4 significantly enhances cell migration. The effects of EphB4 receptor on cell migration and cell morphology require its kinase activity because the inhibition of EphB4 kinase activity by overexpression of kinase dead EphB4 inhibits cell migration and affects the organization of actin cytoskeleton. Activation of EphB4 receptor with its ligand ephrin-B2-Fc enhances the migratory ability of melanoma cells and increases RhoA activity, whereas inhibiting EphB receptor forward signaling decreases RhoA activity. Moreover, expression of dominant negative RhoA blocks the effects of active EphB4 on cell migration and actin organization. These data suggest that EphB4 forward signaling contributes to the high migratory ability of invasive melanoma cells by influencing RhoA-mediated actin cytoskeleton reorganization.  相似文献   

16.
17.
The temporal dependence of cytoskeletal remodelling on cell-cell contact in HepG2 cells has been established here. Cell-cell contact occurred in an ultrasound standing wave trap designed to form and levitate a 2-D cell aggregate, allowing intercellular adhesive interactions to proceed, free from the influences of solid substrata. Membrane spreading at the point of contact and change in cell circularity reached 50% of their final values within 2.2 min of contact. Junctional F-actin increased at the interface but lagged behind membrane spreading, reaching 50% of its final value in 4.4 min. Aggregates had good mechanical stability after 15 min in the trap. The implication of this temporal dependence on the sequential progress of adhesion processes is discussed. These results provide insight into how biomimetic cell aggregates with some liver cell functions might be assembled in a systematic, controlled manner in a 3-D ultrasound trap.  相似文献   

18.
The role of the actin cytoskeleton in regulating membrane protein trafficking is complex and depends on the cell type and protein being examined. Using the epididymis as a model system in which luminal acidification is crucial for sperm maturation and storage, we now report that modulation of the actin cytoskeleton by the calcium-activated actin-capping and -severing protein gelsolin plays a key role in regulating vacuolar H(+)-ATPase (V-ATPase) recycling. Epididymal clear cells contain abundant V-ATPase in their apical pole, and an increase in their cell-surface V-ATPase expression correlates with an increase in luminal proton secretion. We have shown that apical membrane accumulation of V-ATPase is triggered by an elevation in cAMP following activation of bicarbonate-regulated soluble adenylyl cyclase in response to alkaline luminal pH (Pastor-Soler, N., Beaulieu, V., Litvin, T. N., Da Silva, N., Chen, Y., Brown, D., Buck, J., Levin, L. R., and Breton, S. (2003) J. Biol. Chem. 278, 49523-49529). Here, we show that clear cells express high levels of gelsolin, indicating a potential role in the functional activity of these cells. When jasplakinolide was used to overcome the severing action of gelsolin by polymerizing actin, complete inhibition of the alkaline pH- and cAMP-induced apical membrane accumulation of V-ATPase was observed. Conversely, when gelsolin-mediated actin filament elongation was inhibited using a 10-residue peptide (PBP10) derived from the phosphatidylinositol 4,5-bisphosphate-binding region (phosphoinositide-binding domain 2) of gelsolin, significant V-ATPase apical membrane mobilization was induced, even at acidic luminal pH. In contrast, the calcium chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis(acetoxymethyl ester) and the phospholipase C inhibitor U-73122 inhibited the alkaline pH-induced V-ATPase apical accumulation. Thus, maintenance of the actin cytoskeleton in a depolymerized state by gelsolin facilitates calcium-dependent apical accumulation of V-ATPase in response to luminal pH alkalinization. Gelsolin is present in other cell types that express the V-ATPase in their plasma membrane and recycling vesicles, including kidney intercalated cells and osteoclasts. Therefore, modulation of the actin cortex by this severing and capping protein may represent a common mechanism by which these cells regulate their rate of proton secretion.  相似文献   

19.
Rab40b is a SOCS box–containing protein that regulates the secretion of MMPs to facilitate extracellular matrix remodeling during cell migration. Here, we show that Rab40b interacts with Cullin5 via the Rab40b SOCS domain. We demonstrate that loss of Rab40b–Cullin5 binding decreases cell motility and invasive potential and show that defective cell migration and invasion stem from alteration to the actin cytoskeleton, leading to decreased invadopodia formation, decreased actin dynamics at the leading edge, and an increase in stress fibers. We also show that these stress fibers anchor at less dynamic, more stable focal adhesions. Mechanistically, changes in the cytoskeleton and focal adhesion dynamics are mediated in part by EPLIN, which we demonstrate to be a binding partner of Rab40b and a target for Rab40b–Cullin5-dependent localized ubiquitylation and degradation. Thus, we propose a model where Rab40b–Cullin5-dependent ubiquitylation regulates EPLIN localization to promote cell migration and invasion by altering focal adhesion and cytoskeletal dynamics.  相似文献   

20.
The RHO1 gene encodes a yeast homolog of the mammalian RhoA protein. Rho1p is localized to the growth sites and is required for bud formation. We have recently shown that Bni1p is one of the potential downstream target molecules of Rho1p. The BNI1 gene is implicated in cytokinesis and the establishment of cell polarity in Saccharomyces cerevisiae but is not essential for cell viability. In this study, we screened for mutations that were synthetically lethal in combination with a bni1 mutation and isolated two genes. They were the previously identified PAC1 and NIP100 genes, both of which are implicated in nuclear migration in S. cerevisiae. Pac1p is a homolog of human LIS1, which is required for brain development, whereas Nip100p is a homolog of rat p150(Glued), a component of the dynein-activated dynactin complex. Disruption of BNI1 in either the pac1 or nip100 mutant resulted in an enhanced defect in nuclear migration, leading to the formation of binucleate mother cells. The arp1 bni1 mutant showed a synthetic lethal phenotype while the cin8 bni1 mutant did not, suggesting that Bni1p functions in a kinesin pathway but not in the dynein pathway. Cells of the pac1 bni1 and nip100 bni1 mutants exhibited a random distribution of cortical actin patches. Cells of the pac1 act1-4 mutant showed temperature-sensitive growth and a nuclear migration defect. These results indicate that Bni1p regulates microtubule-dependent nuclear migration through the actin cytoskeleton. Bni1p lacking the Rho-binding region did not suppress the pac1 bni1 growth defect, suggesting a requirement for the Rho1p-Bni1p interaction in microtubule function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号