首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single-channel conductance in Cys-loop channels is controlled by the nature of the amino acids in the narrowest parts of the ion conduction pathway, namely the second transmembrane domain (M2) and the intracellular helix. In cationic channels, such as Torpedo ACh nicotinic receptors, conductance is increased by negatively charged residues exposed to the extracellular vestibule. We now show that positively charged residues at the same loop 5 position boost also the conductance of anionic Cys-loop channels, such as glycine (α1 and α1β) and GABA(A) (α1β2γ2) receptors. Charge reversal mutations here produce a greater decrease on outward conductance, but their effect strongly depends on which subunit carries the mutation. In the glycine α1β receptor, replacing Lys with Glu in α1 reduces single-channel conductance by 41%, but has no effect in the β subunit. By expressing concatameric receptors with constrained stoichiometry, we show that this asymmetry is not explained by the subunit copy number. A similar pattern is observed in the α1β2γ2 GABA(A) receptor, where only mutations in α1 or β2 decreased conductance (to different extents). In both glycine and GABA receptors, the effect of mutations in different subunits does not sum linearly: mutations that had no detectable effect in isolation did enhance the effect of mutations carried by other subunits. As in the nicotinic receptor, charged residues in the extracellular vestibule of anionic Cys-loop channels influence elementary conductance. The size of this effect strongly depends on the direction of the ion flow and, unexpectedly, on the nature of the subunit that carries the residue.  相似文献   

2.
5-HT3A receptors select among permeant ions based on size and charge. The membrane-associated (MA) helix lines the portals into the channel’s cytoplasmic vestibule in the 4-Å resolution structure of the homologous acetylcholine receptor. 5-HT3A MA helix residues are important determinants of single-channel conductance. It is unknown whether the portals into the cytoplasmic vestibule also determine the size selectivity of permeant ions. We sought to determine whether the portals form the size selectivity filter. Recently, we showed that channels functioned when the entire 5-HT3A M3–M4 loop was replaced by the heptapeptide M3–M4 loop sequence from GLIC, a bacterial Cys-loop neurotransmitter gated ion channel homologue from Gloebacter violaceus. We used homomeric 5-HT3A receptors with either a wild-type (WT) M3–M4 loop or the chimeric heptapeptide (5-HT3A–glvM3M4) loop, i.e., with or without portals. In Na+-containing buffer, the WT receptor current–voltage relationship was inwardly rectifying. In contrast, the 5-HT3A–glvM3M4 construct had a negative slope conductance region at voltages less than −80 mV. Glutamine substitution for the heptapeptide M3–M4 loop arginine eliminated the negative slope conductance region. We measured the relative permeabilities and conductances of a series of inorganic and organic cations ranging from 0.9 to 4.5 Å in radius (Li+, Na+, ammonium, methylammonium, ethanolammonium, 2-methylethanolammonium, dimethylammonium, diethanolammonium, tetramethylammonium, choline, tris [hydroxymethyl] aminomethane, and N-methyl-d-glucamine). Both constructs had measurable conductances with Li+, ammonium, and methylammonium (size range of 0.9–1.8-Å radius). Many of the organic cations >2.4 Å acted as competitive antagonists complicating measurement of conductance ratios. Analysis of the permeability ratios by excluded volume theory indicates that the minimal pore radius for 5-HT3A and 5-HT3–glvM3M4 receptors was similar, ∼5 Å. We infer that the 5-HT3A size selectivity filter is located in the transmembrane channel and not in the portals into the cytoplasmic vestibule. Thus, the determinants of size selectivity and conductance are located in physically distinct regions of the channel protein.  相似文献   

3.
The determinants of charge selectivity of the Cys-loop family of ligand-gated ion channels have been studied for more than a decade. The investigations have mainly covered homomeric receptors e.g. the nicotinic acetylcholine receptor alpha7, the glycine receptor alpha1 and the serotonin receptor 5-HT(3A). Only recently, the determinants of charge selectivity of heteromeric receptors have been addressed for the GABA(A) receptor alpha2beta3gamma2. For all receptor subtypes, the selectivity determinants have been located to an intracellular linker between transmembrane domains M1 and M2. Two features of the M1-M2 linker appear to control ion selectivity. A central role for charged amino acid residues in selectivity has been almost universally observed. Furthermore, recent studies point to an important role of the size of the narrowest constriction in the pore. In the present review, these determinants of charge selectivity of the Cys-loop family of ligand-gated ion channels will be discussed in detail.  相似文献   

4.
Anion/cation selectivity is a critical property of ion channels and underpins their physiological function. Recently, there have been numerous mutagenesis studies, which have mapped sites within the ion channel-forming segments of ligand-gated ion channels that are determinants of the ion selectivity. Site-directed mutations to specific amino acids within or flanking the M2 transmembrane segments of the anion-selective glycine, GABA(A) and GABA(C) receptors and the cation-selective nicotinic acetylcholine and serotonin (type 3) receptors have revealed discrete, equivalent regions within the ion channel that form the principal selectivity filter, leading to plausible molecular mechanisms and mathematical models to describe how ions preferentially permeate these channels. In particular, the dominant factor determining anion/cation selectivity seems to be the sign and exposure of charged amino acids lining the selectivity filter region of the open channel. In addition, the minimum pore diameter, which can be influenced by the presence of a local proline residue, also makes a contribution to such ion selectivity in LGICs with smaller diameters increasing anion/cation selectivity and larger ones decreasing it.  相似文献   

5.
Cys-loop receptor neurotransmitter-gated ion channels are pentameric assemblies of subunits that contain three domains: extracellular, transmembrane, and intracellular. The extracellular domain forms the agonist binding site. The transmembrane domain forms the ion channel. The cytoplasmic domain is involved in trafficking, localization, and modulation by cytoplasmic second messenger systems but its role in channel assembly and function is poorly understood and little is known about its structure. The intracellular domain is formed by the large (>100 residues) loop between the alpha-helical M3 and M4 transmembrane segments. Putative prokaryotic Cys-loop homologues lack a large M3M4 loop. We replaced the complete M3M4 loop (115 amino acids) in the 5-hydroxytryptamine type 3A (5-HT(3A)) subunit with a heptapeptide from the prokaryotic homologue from Gloeobacter violaceus. The macroscopic electrophysiological and pharmacological characteristics of the homomeric 5-HT(3A)-glvM3M4 receptors were comparable to 5-HT(3A) wild type. The channels remained cation-selective but the 5-HT(3A)-glvM3M4 single channel conductance was 43.5 pS as compared with the subpicosiemens wild-type conductance. Coexpression of hRIC-3, a protein that modulates expression of 5-HT(3) and acetylcholine receptors, significantly attenuated 5-HT-induced currents with wild-type 5-HT(3A) but not 5-HT(3A)-glvM3M4 receptors. A similar deletion of the M3M4 loop in the anion-selective GABA-rho1 receptor yielded functional, GABA-activated, anion-selective channels. These results imply that the M3M4 loop is not essential for receptor assembly and function and suggest that the cytoplasmic domain may fold as an independent module from the transmembrane and extracellular domains.  相似文献   

6.
Nicotinic acetylcholine receptors are heteropentameric ion channels that open upon activation to a single conducting state. The second transmembrane segments of each subunit were identified as channel-forming elements, but their respective contribution in the gating process remains unclear. Moreover, the detailed impact of variations of the membrane potential, such as occurring during an action potential, on the transmembrane domains, is unknown. Residues at the 12′ position, close to the center of each second transmembrane segment, play a key role in channel gating. We examined their functional symmetry by substituting a lysine to that position of each subunit and measuring the electrical activity of single channels. For 12′ lysines in the α, γ and δ subunits rapid transitions between an intermediate and large conductance appeared, which are interpreted as single lysine protonation events. From the kinetics of these transitions we calculated the pK a values of respective lysines and showed that they vary differently with membrane hyperpolarization. Respective mutations in β or ε subunits gave receptors with openings of either intermediate or large conductance, suggesting extreme pK a values in two open state conformations. The results demonstrate that these parts of the highly homologous transmembrane domains, as probed by the 12′ lysines, sense unequal microenvironments and are differently affected by physiologically relevant voltage changes. Moreover, observation of various gating events for mutants of α subunits suggests that the open channel pore exists in multiple conformations, which in turn supports the notion of functional asymmetry of the channel.  相似文献   

7.
gamma-Aminobutyric acid type A (GABA(A)) receptors are members of the Cys-loop superfamily of ligand-gated ion channels. Upon agonist binding, the receptor undergoes a structural transition from the closed to the open state, but the mechanism of gating is not well understood. Here we utilized a combination of conventional mutagenesis and the high precision methodology of unnatural amino acid incorporation to study the gating interface of the human homopentameric rho1 GABA(A) receptor. We have identified an ion pair interaction between two conserved charged residues, Glu(92) in loop 2 of the extracellular domain and Arg(258) in the pre-M1 region. We hypothesize that the salt bridge exists in the closed state by kinetic measurements and free energy analysis. Several other charged residues at the gating interface are not critical to receptor function, supporting previous conclusions that it is the global charge pattern of the gating interface that controls receptor function in the Cys-loop superfamily.  相似文献   

8.
5-hydroxytryptamine (5-HT)3 and gamma-aminobutyric acid, type C (GABAC) receptors are members of the Cys-loop superfamily of neurotransmitter receptors, which also includes nicotinic acetylcholine, GABAA, and glycine receptors. The details of how agonist binding to these receptors results in channel opening is not fully understood but is known to involve charged residues at the extracellular/transmembrane interface. Here we have examined the roles of such residues in 5-HT3 and GABAC receptors. Charge reversal experiments combined with data from activation by the partial agonist beta-alanine show that in GABAC receptors there is a salt bridge between Glu-92 (in loop 2) and Arg-258 (in the pre-M1 region), which is involved in receptor gating. The equivalent residues in the 5-HT3 receptor are important for receptor expression, but charge reversal experiments do not restore function, indicating that there is not a salt bridge here. There is, however, an interaction between Glu-215 (loop 9) and Arg-246 (pre-M1) in the 5-HT3 receptor, although the coupling energy determined from mutant cycle analysis is lower than might be expected for a salt bridge. Overall the data show that charged residues at the extracellular/transmembrane domain interfaces in 5-HT3 and GABAC receptors are important and that specific, but not equivalent, molecular interactions between them are involved in the gating process. Thus, we propose that the molecular details of interactions in the transduction pathway between the binding site and the pore can differ between different Cys-loop receptors.  相似文献   

9.
We analyzed voltage-dependent ion channel structure and conformational changes corresponding to channel gating. During the gating, S4 segments, as well as other parts of the channel, undergo a set of conformational modifications. These changes are accompanied by complicated movements of positive charges that are mostly located in the S4 segments. These charges electrostatically interact with the ions passing through the channel. The interaction energy depends on the conformational state of the channel, i.e., on the mutual positions of the permeant ions and these charges. Analyzing and making energetical estimations, we propose a hypothesis: the closed state of the ion channel corresponds to the S4 position when electrostatic interaction between positively charged groups of the S4 segments and permeant ions is strong enough to close the pathway for these ions.  相似文献   

10.
The PSST program (see accompanying article) utilizes the detailed structure of a large-pore channel protein as the sole input for selection of trajectories along which negative and positive ions propagate. In the present study we applied this program to reconstruct the ion flux through five large-pore channel proteins (PhoE, OmpF, the WT R. blastica general diffusion porin and two of its mutants). The conducting trajectories, one for positive and one for negative particles, are contorted pathways that run close to arrays of charged residues on the inner surface of the channel. In silico propagation of the charged particles yielded passage time values that are compatible with the measured average passage time of ions. The calculated ionic mobilities are close to those of the electrolyte solution of comparable concentrations. Inspection of the transition probabilities along the channel revealed no region that could impose a rate-limiting step. It is concluded that the ion flux is a function of the whole array of local barriers. Thus, the conductance of the large-pore channel protein is determined by the channel's shape and charge distribution, while the selectivity also reflects the features of the channel's vestibule.  相似文献   

11.
Ion channels lower the energetic barrier for ion passage across cell membranes and enable the generation of bioelectricity. Electrostatic interactions between permeant ions and channel pore helix dipoles have been proposed as a general mechanism for facilitating ion passage. Here, using genetic selections to probe interactions of an exemplar potassium channel blocker, barium, with the inward rectifier Kir2.1, we identify mutants bearing positively charged residues in the potassium channel signature sequence at the pore helix C terminus. We show that these channels are functional, selective, resistant to barium block, and have minimally altered conductance properties. Both the experimental data and model calculations indicate that barium resistance originates from electrostatics. We demonstrate that potassium channel function is remarkably unperturbed when positive charges occur near the permeant ions at a location that should counteract pore helix electrostatic effects. Thus, contrary to accepted models, the pore helix dipole seems to be a minor factor in potassium channel permeation.  相似文献   

12.
Potassium channels as multi-ion single-file pores   总被引:52,自引:36,他引:16       下载免费PDF全文
A literature review reveals many lines of evidence that both delayed rectifier and inward rectifier potassium channels are multi-ion pores. These include unidirectional flux ratios given by the 2--2.5 power of the electrochemical activity ratio, very steeply voltage-dependent block with monovalent blocking ions, relief of block by permeant ions added to the side opposite from the blocking ion, rectification depending on E--EK, and a minimum in the reversal potential or conductance as external K+ ions are replaced by an equivalent concentration of T1+ ions. We consider a channel with a linear sequence of energy barriers and binding sites. The channel can be occupied by more than one ion at a time, and ions hop in single file into vacant sites with rate constants that depend on barrier heights, membrane potential, and interionic repulsion. Such multi-ion models reproduce qualitatively the special flux properties of potassium channels when the barriers for hopping out of the pore are larger than for hopping between sites within the pore and when there is repulsion between ions. These conditions also produce multiple maxima in the conductance-ion activity relationship. In agreement with Armstrong's hypothesis (1969. J. Gen. Physiol. 54:553--575), inward rectification may be understood in terms of block by an internal blocking cation. Potassium channels must have at least three sites and often contain at least two ions at a time.  相似文献   

13.
14.
Cys-loop receptors are pentameric ligand-gated ion channels (pLGICs) that bind neurotransmitters to open an intrinsic transmembrane ion channel pore. The recent crystal structure of a prokaryotic pLGIC from the cyanobacterium Gloeobacter violaceus (GLIC) revealed that it naturally lacks an N-terminal extracellular α helix and an intracellular domain that are typical of eukaryotic pLGICs. GLIC does not respond to neurotransmitters acting at eukaryotic pLGICs but is activated by protons. To determine whether the structural differences account for functional differences, we used a eukaryotic chimeric acetylcholine-glutamate pLGIC that was modified to carry deletions corresponding to the sequences missing in the prokaryotic homolog GLIC. Deletions made in the N-terminal extracellular α helix did not prevent the expression of receptor subunits and the appearance of receptor assemblies on the cell surface but abolished the capability of the receptor to bind α-bungarotoxin (a competitive antagonist) and to respond to the neurotransmitter. Other truncated chimeric receptors that lacked the intracellular domain did bind ligands; displayed robust acetylcholine-elicited responses; and shared with the full-length chimeric receptor similar anionic selectivity, effective open pore diameter, and unitary conductance. We suggest that the integrity of the N-terminal α helix is crucial for ligand accommodation because it stabilizes the intersubunit interfaces adjacent to the neurotransmitter-binding pocket(s). We also conclude that the intracellular domain of the chimeric acetylcholine-glutamate receptor does not modulate the ion channel conductance and is not involved in positioning of the pore-lining helices in the conformation necessary for coordinating a Cl- ion within the intracellular vestibule of the ion channel pore.  相似文献   

15.

Background  

Acetylcholine receptor type ligand-gated ion channels (ART-LGIC; also known as Cys-loop receptors) are a superfamily of proteins that include the receptors for major neurotransmitters such as acetylcholine, serotonin, glycine, GABA, glutamate and histamine, and for Zn2+ ions. They play a central role in fast synaptic signaling in animal nervous systems and so far have not been found outside of the Metazoa.  相似文献   

16.
Sequence comparison suggests that the ryanodine receptors (RyRs) have pore architecture similar to that of the bacterial K+ channel KcsA. The lumenal loop linking the two most C-terminal transmembrane spanning segments in the RyRs has a predicted pore helix and an amino acid motif (GGGIG) similar to the selectivity filter (TVGYG) of KcsA identified by x-ray analysis. The RyRs have many negatively charged amino acid residues in the two regions linking the GGGIG motif and predicted pore helix with the two most C-terminal transmembrane spanning segments. We tested the role of these residues by generating single-site mutants, focusing on amino acid residues conserved among the mammalian RyRs. Replacement of two acidic residues immediately after the GGGIG motif in skeletal muscle ryanodine receptor (RyR1-D4899 and -E4900) with asparagine and glutamine profoundly affected ion permeation and selectivity. By comparison, mutagenesis of aspartate and glutamate residues in the putative linker regions showed a K+ conductance and selectivity for Ca2+ compared to K+ (P(Ca)/P(K)) close to wild-type. The results show that the negatively charged carboxyl oxygens of D4899 and E4900 side chains are major determinants of RyR ion conductance and selectivity.  相似文献   

17.
The physical effects of 3-phenylindole, an antimicrobial compound which interacts with phospholipids, on ion transport across phosphatidylcholine-cholesterol bilayers have been investigated using three lipophilic ions and one ion-carrier complex. It was found that 3-phenylindole increased membrane electrical conductance of positively charged membrane probes and decreased electrical conductance of negatively charged probes. The enhancement of conductance detected by nonactin-K+ complex and tetraphenylarsonium+ was several orders of magnitude, whereas the suppression of conductance due to tetraphenylborate- and dipicrylamine- was less than a factor of ten. Presence of 3-phenylindole in aqueous phase slightly decreased adsorption of tetraphenylborate- and dipicrylamine- at the membrane surface. From the voltage dependence of the steady-state conductance it was shown that 3-phenylindole induced kinetic limitation of membrane transport of potassium mediated by nonactin. No such limitation was found in the case of tetraphenylarsonium+ transport. These results are shown to be consistent with the present concept of ion diffusion in membranes and the assumption that 3-phenylindole decreases the electric potential in the membrane interior. The asymmetry of the effect of 3-phenylindole on the magnitude of conductance changes for positively and negatively charged membrane permeable ions is also discussed as a reflection of the discreteness of both the absorbed 3-phenylindole and lipid dipoles.  相似文献   

18.
Potassium (K+) channels are membrane proteins with the remarkable ability to very selectively conduct K+ ions across the membrane. High-resolution structures have revealed that dehydrated K+ ions permeate through the narrowest region of the pore, formed by the backbone carbonyls of the signature selectivity filter (SF) sequence TxGYG. However, the existence of nonselective channels with similar SF sequences, as well as effects of mutations in other regions on selectivity, suggest that the SF is not the sole determinant of selectivity. We changed the selectivity of the KirBac1.1 channel by introducing mutations at residue I131 in transmembrane helix 2 (TM2). These mutations increase Na+ flux in the absence of K+ and introduce significant proton conductance. Consistent with K+ channel crystal structures, single-molecule FRET experiments show that the SF is conformationally constrained and stable in high-K+ conditions but undergoes transitions to dilated low-FRET states in high-Na+/low-K+ conditions. Relative to wild-type channels, I131M mutants exhibit marked shifts in the K+ and Na+ dependence of SF dynamics to higher K+ and lower Na+ concentrations. These results illuminate the role of I131, and potentially other structural elements outside the SF, in controlling ion selectivity, by suggesting that the physical interaction of these elements with the SF contributes to the relative stability of the constrained K+-induced SF configuration versus nonselective dilated conformations.  相似文献   

19.
The proton-gated ion channel from Gloeobacter violaceus (GLIC) is a prokaryotic homolog of the eukaryotic nicotinic acetylcholine receptor that responds to the binding of neurotransmitter acetylcholine and mediates fast signal transmission. Recent emergence of a high-resolution crystal structure of GLIC captured in a potentially open state allowed detailed, atomic-level insight into ion conduction and selectivity mechanisms in these channels. Herein, we have examined the barriers to ion conduction and origins of ion selectivity in the GLIC channel by the construction of potential-of-mean-force profiles for sodium and chloride ions inside the transmembrane region. Our calculations reveal that the GLIC channel is open for a sodium ion to transport, but presents a ∼11 kcal/mol free energy barrier for a chloride ion. Our collective findings identify three distinct contributions to the observed preference for the permeant ions. First, there is a substantial contribution due to a ring of negatively charged glutamate residues (E-2′) at the narrow intracellular end of the channel. The negative electrostatics of this region and the ability of the glutamate side chains to directly bind cations would strongly favor the passage of sodium ions while hindering translocation of chloride ions. Second, our results imply a significant hydrophobic contribution to selectivity linked to differences in the desolvation penalty for the sodium versus chloride ions in the central hydrophobic region of the pore. This hydrophobic contribution is evidenced by the large free energy barriers experienced by Cl in the middle of the pore for both GLIC and the E-2′A mutant. Finally, there is a distinct contribution arising from the overall negative electrostatics of the channel.  相似文献   

20.
Role of lysines in ion selectivity of bacterial outer membrane porins   总被引:3,自引:0,他引:3  
The epsilon-amino groups of available lysine residues of the OmpC, OmpF and PhoE porin proteins of Escherichia coli and of the protein P porin of Pseudomonas aeruginosa, were modified by the bulky reagent trinitrobenzenesulphonic acid. Approximately 78% of the lysines of the anion-selective protein P and PhoE porins were modified whereas only 40-50% of the lysines of the cation selective OmpF and OmpC porins were altered. After modification, the three E. coli porins had very similar high selectivities for cations over anions, in contrast to the native porins which varied 86-fold in ion selectivity. Despite the large size of the trinitrophenyl group attached to modified lysines (i.e., a disc of approx. 0.86 nm diameter X 0.36 nm high) relative to the reported size of the constrictions of the E. coli porins (1.0-1.2 nm diameter), only the anion-selective PhoE porin was substantially blocked after trinitrophenylation. The protein P porin channel was relatively unaffected by trinitrophenylation, in contrast to previous data showing dramatic effects of acetylation of lysines on protein P conductance and selectivity. This favoured a model in which the critical lysines involved in anion binding by protein P were present in a constriction of the channel that was too small for trinitrobenzenesulphonic acid to enter. Overall, the data suggest that both the number and relative position of charged lysines are major determinants of ion selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号