首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A two-substrate mathematical model of microspherical optical enzymatic glucose sensors is presented. The sensors are based on the well-known oxidation of glucose by glucose oxidase, and are constructed by the encapsulation of glucose oxidase within hydrogel microspheres coated with ultrathin polyelectrolyte multilayer films. In order to measure glucose via changes in oxygen concentration, a fluorescent oxygen indicator is co-encapsulated with the enzyme. The model was used to predict the temporal and spatial distributions of glucose and oxygen within the sphere for step increases in bulk glucose concentration. In addition, the model was used to observe the effect of varying sensor parameters, namely sphere size, film thickness, enzyme concentration, and mass transport of substrate and co-substrate within the sphere and film coatings, on the response of the sensors. A major finding was that the application of {PSS/PAH} films as thin as 12 nm can drastically improve the sensor performance over uncoated sensors based on calcium alginate microspheres. The model is proposed as an important tool for a priori design of these complex sensor structures.  相似文献   

2.
Chemical sensors utilizing immobilized enzymes and proteins are important for monitoring chemical processes and biological systems. In this study, calcium-cross-linked alginate hydrogel microspheres were fabricated as enzyme carriers by an emulsification technique. Glucose oxidase (GOx) was encapsulated in alginate microspheres using three different methods: physical entrapment (emulsion), chemical conjugation (conjugation), and a combination of physical entrapment and chemical conjugation (emulsion-conjugation). Nano-organized coatings were applied on alginate/GOx microspheres using the layer-by-layer self-assembly technique in order to stabilize the hydrogel/enzyme system under biological environment. The encapsulation of GOx and formation of nanofilm coating on alginate microspheres were verified with FTIR spectral analysis, zeta-potential analysis, and confocal laser scanning microscopy. To compare both the immobilization properties of enzyme encapsulation techniques and the influence of nanofilms with uncoated microspheres, the relationship between enzyme loading, release, and effective GOx activity (enzyme activity per unit protein loading) were studied over a period of four weeks. The results produced four key findings: (1) the emulsion-conjugation technique improved the stability of GOx in alginate microspheres compared to the emulsion technique, reducing the GOx leaching from microsphere from 50% to 17%; (2) the polyelectrolyte nanofilm coatings increased the GOx stability over time, but also reduced the effective GOx activity; (3) the effective GOx activity for the emulsion-conjugation technique (about 3.5 x 10(-)(5) AU microg(-)(1) s(-)(1)) was higher than that for other methods, and did not change significantly over four weeks; and (4) the GOx concentration, when compared after one week for microspheres with three bilayers of poly(allylamine hydrochloride)/sodium poly(styrene sulfonate) ({PAH/PSS}) coating, was highest for the emulsion-conjugation technique. As a result, the comparison of these three techniques showed the emulsion-conjugation technique to be a potentially effective and practical way to fabricate alginate/GOx microspheres for implantable glucose biosensor application.  相似文献   

3.
In this article, we describe the use of pH- responsive hydrogels as matrices for the immobilization of two enzymes, glucose oxidase (GOx) and glutamate oxidase (GlutOx). Spherical hydrogel beads were prepared by inverse suspension polymerization and the enzymes were immobilized by either physical entrapment or covalent immobilization within or on the hydrogel surface. Packed-bed bioreactors were prepared containing the bioactive hydrogels and these incorporated into flow injection (FI) systems for the quantitation of glucose and monosodium glutamate (MSG) respectively. The FI amperometric detector comprised a microfabricated interdigitated array within a thin-layer flow cell. For the FI manifold incorporating immobilized GOx, glucose response curves were found to be linear over the concentration range 1.8-280 mg dL(-1) (0.1-15.5 mM) with a detection limit of 1.4 mg dL(-1) (0.08 mM). Up to 20 samples can be manually analyzed per hour, with the hydrogel-GOx bioreactor exhibiting good within-day (0.19%) precision. The optimized FI manifold for MSG quantitation yielded a linear response range of up to 135 mg dL(-1) (8 mM) with a detection limit of 3.38 mg dL(-1) (0.2 mM) and a throughput of 30 samples h(-1). Analysis of commercially produced soup samples gave a within-day precision of 3.6%. Bioreactors containing these two physically entrapped enzymes retained > 60% of their initial activities after a storage period of up to 1 year.  相似文献   

4.
《Endocrine practice》2015,21(6):613-620
Objective: To understand how patients use continuous glucose monitoring (CGM) data in their diabetes management.Methods: We surveyed patients who regularly used CGM (>6 days per week), using 70 questions, many scenario-based. The survey had 6 sections: patient characteristics, general CGM use, hypoglycemia prevention and management, hyperglycemia prevention and management, insulin dosing adjustments (both for incidental hyperglycemia not at meals and at mealtimes), and real-time use versus retrospective analysis.Results: The survey was completed by 222 patients with type 1 diabetes. In response to a glucose of 220 mg/dL, the average correction dose adjustment based on rate of change arrows varied dramatically. Specifically, when the CGM device showed 2 arrows up (glucose increasing >3 mg/dL/minute), respondents stated they would increase their correction bolus, on average, by 140% (range, 0 to 600%). Conversely, 2 arrows down (glucose decreasing >3 mg/dL/minute) caused respondents to reduce their dose by 42%, with 24% omitting their dose entirely. Furthermore, 59% of respondents stated they would delay a meal in response to rapidly rising glucose, whereas 60% would wait until after a meal to bolus in response to falling glucose levels. With a glucose value of 120 mg/dL and a falling glucose trend, 70% of respondents would prophylactically consume carbohydrates to avoid hypoglycemia.Conclusion: CGM users utilize CGM data to alter multiple aspects of their diabetes care, including insulin dose timing, dose adjustments, and in hypoglycemia prevention. The insulin adjustments are much larger than common recommendations. Additional studies are needed to determine appropriate insulin adjustments based on glucose trend data.Abbreviations: A1c = hemoglobin A1c CGM = continuous glucose monitoring ROC = rate of change SMBG = self-monitored blood glucose  相似文献   

5.
Objective: Glucose intolerance has been shown to be a better predictor of morbidity and mortality than impaired fasting glucose. However, glucose tolerance tests are inconvenient and expensive. This study evaluated the relative frequencies of glucose intolerance and impaired fasting glucose and sought to determine if 2‐hour glucose could be predicted from simple demographic and laboratory data in an obese population. Research Methods and Procedures: Eighty‐nine obese subjects (median BMI 35 kg/m2, range 30 to 40 kg/m2) underwent glucose tolerance testing. Using step‐wise linear and logistic regression analysis, fasting glucose, high‐sensitivity C‐reactive protein (hsCRP), fasting insulin, high‐density lipoprotein cholesterol, triglycerides, weight, height, BMI, waist circumference, hip circumference, waist‐to‐hip ratio, sex, and age were assessed as predictors of glucose intolerance. Results: Impaired glucose tolerance was more prevalent (27%) than impaired fasting glucose (5.6%). Only fasting glucose and hsCRP were significant (p < 0.05) independent predictors of impaired 2‐hour glucose (>140 mg/dL). A fasting glucose ≥ 100 mg/dL or an hsCRP > 0.32 mg/dL (upper quartile of the normal range) detected 81% (sensitivity) of obese subjects with impaired glucose tolerance; however, specificity was poor (46%). Fasting insulin ≥ 6 μU/mL had better sensitivity (92%) but poorer specificity (30%). Discussion: Impaired glucose tolerance is more common than impaired fasting glucose in an obese population. Possible strategies to avoid doing glucose tolerance tests in all obese patients would be to do glucose tolerance testing only in those whose fasting glucose is ≥ 100 mg/dL or whose hsCRP exceeds 0.32 mg/dL or those whose fasting insulin is ≥ 6 μU/mL.  相似文献   

6.
Li C  Han J  Ahn CH 《Biosensors & bioelectronics》2007,22(9-10):1988-1993
New flexible biosensors on a spirally rolled micro tube have been designed, fabricated and characterized for microcatheter-based cardiovascular in vivo monitoring. With this new microfabrication method, sensors, wires and circuits can be fabricated first on the flexible polymer substrate (Kapton film) and then rolled spirally to make micro tubes with different diameters. This approach provides a unique method for mounting multiple sensors on both the inside and outside the tube. So, the new spirally rolled polymer tube flexibly conceives physical, biomedical and physiological microsensors, elevating most problems arisen from wiring and assembling of microsensors in conventional microcatheters. As a demonstration vehicle, we fabricated glucose biosensors on the 25 microm thick Kapton film first, then the film was spirally rolled to make a polymer micro tube with the glucose sensors on the inside wall of the tube. To verify the performance of the spirally rolled glucose biosensor, we characterized it both in a planar unrolled and rolled conditions and compared their performances. The spirally rolled glucose sensors showed good performance in the typical glucose concentration range in human blood from 60 mg/dL to 120 mg/dL with different rolled diameters at different working temperature.  相似文献   

7.
 一种酶电极流动注射分析系统(EFIA)用于血糖和发酵葡萄糖的快速测定。研究了酶电极及其工作系统的性能和各种影响参数,,奠定了实用化基础。  相似文献   

8.
Platinum nanowires (PtNWs) prepared by electrodeposition method with the help of porous anodic aluminum oxide (AAO) templates have been solubilized in chitosan (CHIT) together with carbon nantubes (CNTs) to form a PtNW-CNT-CHIT organic-inorganic system. The resulting PtNW-CNT-CHIT material brings capabilities for utilizing synergic action of PtNWs and CNTs to facilitate electron-transfer process in electrochemical sensor design. The PtNW-CNT-CHIT film modified electrode offered a significant decrease in the overvoltage for the hydrogen peroxide and showed to be excellent amperometric sensors for hydrogen peroxide at -0.1 V over a wide range of concentrations, and the sensitivity is 260 microAmM-1cm-2. As an application example, by linking glucose oxidase (GOx), an amplified biosensor toward glucose was prepared. The glucose biosensor exhibits a selective determination of glucose at -0.1 V with a linear response range of 5 x 10(-6) to 1.5 x 10(-2)M with a correlation coefficient of 0.997, and response time <10s. The high sensitivity of the glucose biosensor is up to 30 microAmM-1cm-2 and the detection limit was 3 microM. The biosensor displays rapid response and expanded linear response range, and excellent repeatability and stability.  相似文献   

9.
For biosensor fabrication, it is important to optimize materials and methods in order to create predictable function in vitro and in vivo. For this reason, we designed a new glucose sensor ('revised protocol') that utilized an outer permselective membrane made of amphiphobic polyurethane which allows glucose passage through hydrophilic segments. An inner polyethersulfone membrane, stabilized with a trimethoxysilane, provided specificity. Before application of the inner membrane, it was necessary to etch the platinum electrode with a radio frequency oxygen plasma. The revised protocol sensors (n=185) were compared with sensors fabricated with an earlier ('original') protocol (n=204) which used an outer polyurethane without hydrophilic segments and a complex inner membrane of cellulose acetate and Nafion. The function of revised protocol sensors was more predictable in vitro as evidenced by a much lower variation of glucose sensitivity than the original protocol sensors. Revised and original protocol sensors were nearly linear up to a glucose concentration of 20 mM. In vitro interference from 0.1 mM acetaminophen was minimal in both groups of sensors and would be expected to represent about 2% of the total sensor response at normal glucose levels for revised protocol sensors. Prolonged testing of the revised protocol sensors for 11 days during immersion in buffer revealed stable sensitivities (day 1: 6.12+/-1.34 nA/mM; day 3: 6.33+/-1.40; day 8: 7.13+/-1.39; and day 11: 7.56+/-1.47; sensitivity for day 1 vs. each other day: not significant) and no critical loss of glucose oxidase activity. The response of the revised protocol sensors (n=7) to intraperitoneal glucose was tested in rats approximately one day after subcutaneous implantation and the sensors tracked glucose closely with a slight lag of 3-6 min.  相似文献   

10.
《Endocrine practice》2008,14(6):678-685
ObjectiveTo evaluate data from patients with normal oral glucose tolerance test (OGTT) results and a normal or impaired glycemic profile (GP) to determine whether lower cutoff values for the OGTT and GP (alone or combined) could identify pregnant women at risk for excessive fetal growth.MethodsWe classified 701 pregnant women with positive screening for gestational diabetes mellitus (GDM) into 2 categories-(i) normal 100-g OGTT and normal GP and (2) normal 100-g OGTT and impaired GP—to evaluate the influence of lower cutoff points in a 100-g OGTT and GP (alone or in combination) for identification of pregnant women at excessive fetal growth risk. The OGTT is considered impaired if 2 or more values are above the normal range, and the GP is impaired if the fasting glucose level or at least 1 postprandial glucose value is above the normal range. To establish the criteria for the OGTT (for fasting and 1,2, and 3 hours after an oral glucose load, respectively), we considered the mean (75 mg/dL, 120 mg/dL, 113 mg/dL, and 97 mg/dL), mean plus 1 SD (85 mg/dL, 151 mg/dL, 133 mg/dL, and 118 mg/dL), and mean plus 2 SD (95 mg/dL, 182 mg/dL, 153 mg/dL, and 139 mg/dL); and for the GP, we considered the mean and mean plus 1 SD (78 mg/dL and 92 mg/dL for fasting glucose levels and 90 mg/dL and 130 mg/dL for 1- or 2- hour postprandial glucose levels, respectively).ResultsSubsequently, the women were reclassified according to the new cutoff points for both tests (OGTT and GP). Consideration of values, in isolation or combination, yielded 6 new diagnostic criteria. Excessive fetal growth was the response variable for analysis of the new cutoff points. Odds ratios and their respective confidence intervals were estimated, as were the sensitivity and specificity related to diagnosis of excessive fetal growth for each criterion. The new cutoff points for the tests, when used independently rather than collectively, did not help to predict excessive fetal growth in the presence of mild hyperglycemia.ConclusionDecreasing the cutoff point for the 100g OGTT (for fasting and 1, 2, and 3 hours) to the mean (75 mg/dL, 120 mg/dL, 113 mg/dL, and 97 mg/dL) in association with the GP (mean or mean plus 1 SD—78 mg/dL and 92 mg/dL for the fasting state and 90 mg/dL and 130 mg/dL for 1- or 2-hour postprandial values—increased the sensitivity and specificity, and both criteria had statistically significant predictive power for detection of excessive fetal growth. (Endocr Pract. 2008;14:678-685)  相似文献   

11.
Mu Y  Jia D  He Y  Miao Y  Wu HL 《Biosensors & bioelectronics》2011,26(6):2948-2952
Development of fast and sensitive sensors for glucose determination is important in food industry, clinic diagnostics, biotechnology and many other areas. In these years, considerable attention has been paid to develop non-enzymatic electrodes to solve the disadvantages of the enzyme-modified electrodes, such as instability, high cost, complicated immobilization procedure and critical operating situation et al. Nano nickel oxide (NiO) modified non-enzymatic glucose sensors with enhanced sensitivity were investigated. Potential scanning nano NiO modified carbon paste electrodes up to high potential in alkaline solution greatly increases the amount of redox couple Ni(OH)(2)/NiOOH derived from NiO, and thus improves their electrochemical properties and electrocatalytical performance toward the oxidation of glucose. The non-enzymatic sensors response quickly to glucose and the response time is less than 5s, demonstrating excellent electrocatalytical activity and assay performance. The calibration plot is linear over the wide concentration range of 1-110 μM with a sensitivity of 43.9 nA/μM and a correlation coefficient of 0.998. The detection limit of the electrode was found to be 0.16 μM at a signal-to-noise ratio of 3. The proposed non-enzymatic sensors can be used for the assay of glucose in real sample.  相似文献   

12.
A fast estimation of biochemical oxygen demand using microbial sensors   总被引:7,自引:0,他引:7  
Summary Microbial amperometric sensors for biochemical oxygen demand (BOD) determination using Bacillus subtilis or Trichosporon cutaneum cells immobilized in polyvinylalcohol have been developed. These sensors allow BOD measurements with very short response times (15–30s), a level of precision of ±5% and an operation stability of 30 days. A linear range was obtained for a B. subtilis-based sensor up to 20 mg/l BOD and for a T. cutaneum-based sensor up to 100 mg/l BOD using a glucose/glutamic acid standard.  相似文献   

13.
《Endocrine practice》2007,13(6):583-589
ObjectiveTo identify the fasting plasma glucose (FPG) value with the best performance for detecting an abnormal response on the oral glucose tolerance test (OGTT) in patients at risk for having type 2 diabetes.MethodsAll patients who underwent a 2-hour OGTT during an 18-month period were included in this study. Pretest and posttest odds, likelihood ratios, and receiver operating characteristic curves were used to identify the FPG value most strongly associated with an abnormal result on the OGTT (either diabetes or impaired glucose tolerance [IGT]).ResultsOf the 1,371 patients who underwent an OGTT during the designated study period, 1,239 fulfilled the inclusion criteria. The prevalence of IGT was 25.34% (314 patients). Diabetes was diagnosed in 141 patients (11.38%). IGT was more commonly found in the FPG strata below 115 mg/dL; above this value, diabetes was more frequently diagnosed. In general, the percentage of cases of IGT increased progressively throughout the “normal” FPG range. The prevalence varied from 11.4% (in patients with FPG values < 80 mg/dL) to 32% (in those with FPG levels from 95 to 99.9 mg/dL). FPG values between 95 and 99.9 mg/dL had a likelihood ratio of 2.1 for detecting an abnormal OGTT response, of 1.8 for detecting diabetes, and of 1.66 for detecting IGT. The odds ratio for detecting either IGT or diabetes was increased 2-fold by performing an OGTT. The FPG threshold with the best ability for detecting an abnormal response on the OGTT was 95 mg/dL (sensitivity of 0.72 and specificity of 0.65).ConclusionIn patients at risk for type 2 diabetes, the FPG cut point (95 mg/dL) most useful for detecting an abnormal OGTT response is included in the normal range of the FPG. (Endocr Pract. 2007;13:583-589)  相似文献   

14.
We examined the effect of three daily foot-shock stress sessions on glucose homeostasis, insulin secretion by isolated pancreatic islets, insulin sensitivity of white adipocytes, and glycogen stores in the liver and soleus muscle of rats. Stressed rats had plasma glucose (128.3 +/- 22.9 mg/dL) and insulin (1.09 +/- 0.33 ng/mL) levels higher than the controls (glucose, 73.8 +/- 3.5 mg/dL; insulin, 0.53 +/- 0.11 ng/mL, ANOVA plus Fisher's test; p < 0.05). After a glucose overload, the plasma glucose, but not insulin, levels remained higher (area under the curve 8.19 +/- 1.03 vs. 4.84 +/- 1.33 g/dL 30 min and 102.7 +/- 12.2 vs. 93.2 +/- 16.1 ng/mL 30 min, respectively). Although, the area under the insulin curve was higher in stressed (72.8 +/- 9.8 ng/mL) rats than in control rats (34.9 +/- 6.9 ng/mL) in the initial 10 min after glucose overload. The insulin release stimulated by glucose in pancreatic islets was not modified after stress. Adipocytes basal lipolysis was higher (stressed, 1.03 +/- 0.14; control, 0.69 +/- 0.11 micromol of glycerol in 60 min/100 mg of total lipids) but maximal lipolysis stimulated by norepinephrine was not different (stressed, 1.82 +/- 0.35; control, 1.46 +/- 0.09 micromol of glycerol in 60 min/100 mg of total lipids) after stress. Insulin dose-dependently inhibited the lipolytic response to norepinephrine by up to 35% in adipocytes from control rats but had no effect on adipocytes from stressed rats. The liver glycogen content was unaltered by stress, but was lower in soleus muscle from stressed rats than in control rats (0.45 +/- 0.04 vs. 0.35 +/- 0.04 mg/100 mg of wet tissue). These results suggest that rats submitted to foot-shock stress develop hyperglycemia along with hyperinsulinemia as a consequence of insulin subsensitivity in adipose tissue, with no alteration in the pancreatic sensitivity to glucose. Foot-shock stress may therefore provide a useful short-term model of insulin subsensitivity.  相似文献   

15.
This work shows excellent catalytic activity of soluble carbon nanofiber (CNF), which was obtained with a simple nitric acid treatment, toward the electroreduction of dissolved oxygen at a low operating potential. Thus the CNF was applied in the construction of amperometric biosensors for oxidase substrates using glucose oxidase as a model. The good dispersion of CNF led to convenient preparation and acceptable repeatability of the proposed sensors. UV-vis spectra, Fourier transform infrared spectra, X-ray photoelectron spectra and titration curves demonstrated that the good dispersion resulted from the large numbers of surface oxygen-rich groups produced in the treatment process. The membrane of CNF showed good stability and provided fast response to dissolved oxygen with a linear range from 0.1 to 78 microM and detection limit of 0.07 microM. The proposed glucose biosensor could monitor glucose ranging from 10 to 350 microM with detection limit of 2.5 microM and sensitivity of 36.3 nA cm(-2) microM(-1). The coefficients of variation for intra-assay were 4.7 and 3.2% at glucose concentrations of 20 and 210 microM, respectively. The use of a low operating potential (-0.3 V) and Nafion membrane produced good selectivity toward the glucose detection. CNF-based biosensors would provide wide range of bioelectrochemical applications in different fields.  相似文献   

16.
The microorganisms Trichosporon cutaneum and Bacillus licheniformis were used to develop a microbial biochemical oxygen demand (BOD) sensor. It was found that T. cutaneum gave a greater response to glucose, whereas B. licheniformis gave a better response to glutamic acid. Hence, co-immobilized T. cutaneum and B. licheniformis were used to construct a glucose and glutamic acid sensor with improved sensitivity and dynamic range. A membrane loading of T. cutaneum at 1.1x10(8 )cells ml(-1) cm(-2) and B. licheniformis at 2.2x10(8) cells ml(-1) cm(-2) gave the optimum result: a linear range up to 40 mg BOD l(-1) with a sensitivity of 5.84 nA mg(-1) BOD l. The optimized BOD sensor showed operation stability for 58 intermittent batch measurements, with a standard deviation of 0.0362 and a variance of 0.131 nA. The response time of the co-immobilized microbial BOD sensor was within 5-10 min by steady-state measurement and the detection limit was 0.5 mg BOD l(-1). The BOD sensor was insensitive to pH in the range of pH 6.8-7.2.  相似文献   

17.
ObjectiveFlash glucose monitoring has been widely used in Israel for diabetes treatment and since 2018, the cost is reimbursed for all people with type 1 diabetes nationally. In the current study, we present the daily scanning behavior for FreeStyle Libre users in Israel and how this was associated with a range of metrics for glycemic assessment.MethodsDeidentified data from FreeStyle Libre readers were collected between September 2014 and October 2020. Scan-rate data from Israel was extracted and sorted into 10 equal-sized groups based on scan frequency. The glucose parameters derived for each group were: estimated HbA1c (eA1c), time in range (TIR) between 70 and 180 mg/dL, and time with glucose levels of <70 mg/dL, <54 mg/dL, and >180 mg/dL.ResultsThe data set for Israel included 12 370 readers, with data from 131 639 separate glucose sensors representing 152 million automatically recorded individual glucose readings. Users performed an average of 15 daily glucose scans, ranging from a mean of 4.1 scans per day (lowest, 10%), rising to a mean of 38.7 scans/day (highest, 10%) (median, 12; IQR, 8-18 for all readers). As the scan rates increased, the eA1c decreased from 7.6% to 6.7% (P < .001). Mean TIR increased from 56.9% to 70.0% with increasing scan rates (P < .001). Concordantly, time with glucose levels of >180 mg/dL and <54 mg/dL decreased from 37.2% to 23.6% (P < .001) and from 2.23% to 1.99%, respectively, as scan frequency increased.ConclusionIn Israel, people with diabetes under real-world conditions record higher rates of FreeStyle Libre scanning. These are associated with improvements in TIR, eA1c, and reduced time with glucose levels of >180 mg/dL or <54 mg/dL.  相似文献   

18.
In present work, porous dextran microspheres with good morphology were synthesized by reversed-phase suspension polymerization. Dextran was used as raw material, epichlorohydrin (ECH) as crosslinker, and dimethyl ether of polyethylene glycol (DMPE) as porogen. And porous dextran microspheres were prepared by freezing-drying method. The morphology of the porous dextran microspheres was characterized by the scanning electronic microscope (SEM). The dry and hydrated densities, average pore volume, porosity, hydroxyl content and equilibrium water content were measured. Micropore structure was found on the dextran microspheres. With the increase of porogen amount, the dry density decreased, the hydrated density, the average pore volume, porosity and equilibrium water content initially increased and then decreased, while the hydroxyl content increased. Bovine serum albumin (BSA) was used as an adsorbate model to examine the adsorption behavior of the porous microspheres. The saturated adsorption capacities of these microspheres ranged from 59.1 mg/g to 138.9 mg/g while the amount of porogen increased from 10% to 50%.  相似文献   

19.
The nanoassembly and photo-crosslinking of diazo-resin (DAR) coatings on small alginate microspheres for stable enzyme entrapment is described. Multilayer nanofilms of DAR with poly(styrene sulfonate) (PSS) were used in an effort to stabilize the encapsulation of glucose oxidase enzyme for biosensor applications. The activity and physical encapsulation of the trapped enzyme were measured over 24 weeks to compare the effectiveness of nanofilm coatings and crosslinking for stabilization. Uncoated spheres exhibited rapid loss of activity, retaining only 20% of initial activity after one week, and a dramatic reduction in effective activity over 24 weeks, whereas the uncrosslinked and crosslinked {DAR/PSS}-coated spheres retained more than 50% of their initial activity after 4 weeks, which remained stable even after 24 weeks for the two and three bilayer films. Nanofilms comprising more polyelectrolyte layers maintained higher overall activity compared to films of the same composition but fewer layers, and crosslinking the films increased retention of activity over uncrosslinked films after 24 weeks. These findings demonstrate that enzyme immobilization and stabilization can be achieved by using simple modifications to the layer-by-layer self-assembly technique.  相似文献   

20.

Background

Increased fasting plasma glucose (FPG), which includes impaired fasting glucose (IFG), impaired glucose tolerance (IGT), and diabetes, is a risk factor for arterial stiffness. While IFG is widely accepted as a cardiovascular risk factor, recent studies have argued that subjects with high-normal glucose level were characterized by a high incidence of cardiovascular disease. The purpose of this study is to investigate the relationship between FPG and arterial stiffness in non-diabetic healthy subjects.

Methods

We recruited 697 subjects who visited the health promotion center of a university hospital from May 2007 to August 2008. Age, sex, body mass index (BMI), resting heart rate, smoking habits, alcohol intake, exercise, blood pressure, medical history, FPG, lipid profile, high sensitivity C-reactive protein (hs-CRP), and Brachial-ankle pulse wave velocity (ba-PWV) were measured. We performed correlation and multiple linear regression analyses to divide the research subjects into quartiles: Q1(n = 172), 65 mg/dL ≤FPG < 84 mg/dL; Q2(n = 188), 84 mg/dL ≤FPG < 91 mg/dl; Q3(n = 199), 91 mg/dL ≤FPG < 100 mg/dL; Q4(n = 138), 100 mg/dL ≤FPG < 126 mg/dL.

Results

FPG has an independent, positive association with ba-PWV in non-diabetic subjects after correcting for confounding variables, including age, sex, BMI, blood pressure, resting heart rate, hs-CRP, lipid profile, and behavioral habits. The mean ba-PWV of the high-normal glucose group (Q3, 1384 cm/s) was higher than that of the low-normal glucose group (1303 ± 196 cm/s vs.1328 ± 167 cm/s, P < 0.05). The mean ba-PWV value in the IFG group (1469 ± 220 cm/s) was higher than that in the normoglycemic group (P < 0.05, respectively).

Conclusions

An increase in FPG, even within the normal range, was associated with aggravated arterial stiffness. Further research is needed to determine the glycemic target value for the prevention of arterial stiffness in clinical and public health settings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号