首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The common cytokine receptor chain, gp130, controls the activity of a group of cytokines, namely, IL-6, IL-11, IL-27, ciliary neurotrophic factor (CNTF), leukemia inhibitory factor (LIF), oncostatin M (OSM), cardiotrophin-1 (CT-1), cardiotrophin-like cytokine (CLC) and neuropoietin (NPN). This family of cytokines is involved in multiple different biological processes, including inflammation, acute phase response, immune responses and cell survival. To analyze the different components of the gp130 network, mouse mutants for the single cytokine were generated by conventional gene targeting. However, since the cytokines of the IL-6 family show redundancy, it does not reveal the complete picture. Therefore, the study of mice with a cell type specific inactivation of the gp130 receptor chain is an approach that will subsequently allow the dissection of the cellular cytokine network. Here, we summarize the experimental results of the conditional gp130 mutants published so far.  相似文献   

2.
Ciliary neurotrophic factor (CNTF) is involved in the survival of a number of different neural cell types, including motor neurons. CNTF functional responses are mediated through a tripartite membrane receptor composed of two signalling receptor chains, gp130 and the leukaemia inhibitory factor receptor (LIFR), associated with a non-signalling CNTF binding receptor alpha component (CNTFR). CNTFR-deficient mice show profound neuronal deficits at birth, leading to a lethal phenotype. In contrast, inactivation of the CNTF gene leads only to a slight muscle weakness, mainly during adulthood, suggesting that CNTFR binds to a second ligand that is important for development. Modelling studies of the interleukin-6 family member cardiotrophin-like cytokine (CLC) revealed structural similarities with CNTF, including the conservation of a site I domain involved in binding to CNTFR. Co-expression of CLC and CNTFR in mammalian cells generates a secreted composite cytokine, displaying activities on cells expressing the gp130-LIFR complex on their surface. Correspondingly, CLC-CNTFR activates gp130, LIFR and STAT3 signalling components, and enhances motor neuron survival. Together, these observations demonstrate that CNTFR induces the secretion of CLC, as well as mediating the functional responses of CLC.  相似文献   

3.
The cytokines of the interleukin-6 family are multifunctional proteins that regulate cell growth, differentiation, and other cell functions in a variety of biological systems including the immune, inflammatory, hematopoietic, and nervous systems. One member of this family, ciliary neurotrophic factor (CNTF), displays biological functions more restricted to the neuromuscular axis. We have recently identified two additional ligands for the CNTF receptor complex. Both are composite cytokines formed by cardiotrophin-like cytokine (CLC) associated to either the soluble type I cytokine receptor CLF or the soluble form of CNTF receptor alpha (CNTFRalpha). The present study was aimed at analyzing the interactions between the cytokine CLC and its different receptor chains. For this purpose, we modeled CLC/receptor interactions to define the residues potentially involved in the contact sites. We then performed site-directed mutagenesis on these residues and analyzed the biological interactions between mutants and receptor chains. Importantly, we found that CLC interacts with the soluble forms of CNTFRalpha and CLF via sites 1 and 3, respectively. For site 1, the most crucial residues involved in the interaction are Trp67, Arg170, and Asp174, which interact with CNTFRalpha. Surprisingly, the residues that are important for the interaction of CLC with CLF are part of the conserved FXXK motif of site 3 known to be the interaction site of LIFRbeta. Obtained results show that the Phe151 and Lys154 residues are effectively involved in the interaction of CLC with LIFRbeta. This study establishes the molecular details of the interaction of CLC with CLF, CNTFRalpha, and LIFRbeta and helps to define the precise role of each protein in this functional receptor complex.  相似文献   

4.
Ciliary neurotrophic factor (CNTF) is a neuroprotective cytokine initially identified in chick embryo. It has been evaluated for the treatment of neurodegenerative diseases. CNTF also acts on non-neuronal cells such as oligodendrocytes, astrocytes, adipocytes and skeletal muscles cells. CNTF has regulatory effects on body weight and is currently in clinical trial for the treatment of diabetes and obesity. CNTF mediates its function by activating a tripartite receptor comprising the CNTF receptor alpha chain (CNTFRalpha), the leukemia inhibitory factor receptor beta chain (LIFRbeta) and gp130. Human, rat and chicken CNTF have been expressed as recombinant proteins, and most preclinical studies in murine models have been performed using rat recombinant protein. Rat and human CNTF differ in their fine specificities: in addition to CNTFR, rat CNTF has been shown to activate the LIFR (a heterodimer of LIFRbeta and gp130), whereas human CNTF can bind and activate a tripartite receptor comprising the IL-6 receptor alpha chain (IL-6Ralpha) and LIFR. To generate tools designed for mouse models of human diseases; we cloned and expressed in E. coli both mouse CNTF and the CNTFRalpha chain. Recombinant mouse CNTF was active and showed a high level of specificity for mouse CNTFR. It shares the arginine residue with rat CNTF which prevents binding to IL-6Ralpha. It did not activate the LIFR at all concentrations tested. Recombinant mouse CNTF is therefore specific for CNTFR and as such represents a useful tool with which to study CNTF in mouse models. It appears well suited for the comparative evaluation of CNTF and the two additional recently discovered CNTFR ligands, cardiotrophin-like cytokine\cytokine-like factor-1 and neuropoietin.  相似文献   

5.
6.
7.
During inflammatory states, hepatocytes are induced to synthesize and secrete a group of proteins called acute-phase proteins. It has recently been shown that besides interleukin-6 (IL-6), related cytokines such as leukemia inhibitory factor, oncostation M and interleukin-11 are also mediators of the hepatic acute-phase response. All these mediators belong to the hematopoietic family of alpha-helical cytokines. Here we show that an additional member of this cytokine family, ciliary neurotrophic factor (CNTF), induces the hepatic acute-phase protein genes haptoglobin, alpha 1-antichymotrypsin, alpha 2-macroglobulin and beta-fibrinogen in human hepatoma cells (HepG2) and in primary rat hepatocytes with a time course and dose-response comparable with that of IL-6. Our next aim was to define the receptor components used by CNTF on hepatic cells. Using a cell-free binding assay we exclude that CNTF binds to the 80 kDa IL-6 receptor, a protein with significant homology to the CNTF receptor which has recently been cloned from neuroblastoma cells. In human hepatoma cells (Hep3B) which lack the leukemia inhibitory factor receptor, CNTF was not able to induce acute-phase protein synthesis, indicating that this receptor protein may be part of the functional CNTF receptor on hepatic cells.  相似文献   

8.
The glial cell line-derived neurotrophic factor (GDNF) family comprise a subclass of cystine-knot superfamily ligands that interact with a multisubunit receptor complex formed by the c-Ret tyrosine kinase and a cystine-rich glycosyl phosphatidylinositol-anchored binding subunit called GDNF family receptor alpha (GFRalpha). All four GDNF family ligands utilize c-Ret as a common signaling receptor, whereas specificity is conferred by differential binding to four distinct GFRalpha homologues. To understand how the different GFRalphas discriminate ligands, we have constructed a large set of chimeric and truncated receptors and analyzed their ligand binding and signaling capabilities. The major determinant of ligand binding was found in the most conserved region of the molecule, a central domain predicted to contain four conserved alpha helices and two beta strands. Distinct hydrophobic and positively charged residues in this central region were required for binding of GFRalpha1 to GDNF. Interaction of GFRalpha1 and GFRalpha2 with GDNF and neurturin required distinct subsegments within this central domain, which allowed the construction of chimeric receptors that responded equally well to both ligands. C-terminal segments adjacent to the central domain are necessary and have modulatory function in ligand binding. In contrast, the N-terminal domain was dispensable without compromising ligand binding specificity. Ligand-independent interaction with c-Ret also resides in the central domain of GFRalpha1, albeit within a distinct and smaller region than that required for ligand binding. Our results indicate that the central region of this class of receptors constitutes a novel binding domain for cystine-knot superfamily ligands.  相似文献   

9.
GDNF (glial cell-line-derived neurotrophic factor), and the closely related cytokines artemin and neurturin, bind strongly to heparin. Deletion of a basic amino-acid-rich sequence of 16 residues N-terminal to the first cysteine of the transforming growth factor beta domain of GDNF results in a marked reduction in heparin binding, whereas removal of a neighbouring sequence, and replacement of pairs of other basic residues with alanine had no effect. The heparin-binding sequence is quite distinct from the binding site for the high affinity GDNF polypeptide receptor, GFRalpha1 (GDNF family receptor alpha1), and heparin-bound GDNF is able to bind GFRalpha1 simultaneously. The heparin-binding sequence of GDNF is dispensable both for GFRalpha1 binding, and for activity for in vitro neurite outgrowth assay. Surprisingly, the observed inhibition of GDNF bioactivity with the wild-type protein in this assay was still found with the deletion mutant lacking the heparin-binding sequence. Heparin neither inhibits nor potentiates GDNF-GFRalpha1 interaction, and the extracellular domain of GFRalpha1 does not bind to heparin itself, precluding heparin cross-bridging of cytokine and receptor polypeptides. The role of heparin and heparan sulfate in GDNF signalling remains unclear, but the present study indicates that it does not occur in the first step of the pathway, namely GDNF-GFRalpha1 engagement.  相似文献   

10.
BACKGROUND: The ciliary neurotrophic factor (CNTF) receptor is composed of two signalling receptor chains, gp130 and the leukaemia inhibitory factor receptor, associated with a non-signalling CNTF binding receptor alpha component (CNTFR). This tripartite receptor has been shown to play important roles in the development of motor neurons, but the identity of the relevant ligand(s) is still not clearly established. Recently, we have identified two new ligands for the CNTF receptor complex. These are heterodimeric cytokines composed of cardiotrophin-like cytokine (CLC) associated either with the soluble receptor subunit cytokine-like factor-1 (CLF) or the soluble form of the binding receptor itself (sCNTFR). RESULTS: Here we show that, during development, clc is expressed in lung, kidney, vibrissae, tooth, epithelia and muscles during the period of development corresponding to when motoneuron loss is observed in mice lacking a functional CNTF receptor. In addition, we demonstrate that it is co-expressed at the single cell level with clf and cntfr, supporting the idea that CLC might be co-secreted with either CLF or sCNTFR. CONCLUSION: This expression pattern is in favor of CLC, associated either with CLF or sCNTFR, being an important player in the signal triggered by the CNTF receptor being required for motoneuron development.  相似文献   

11.
Cytokines of the gp130 family are fundamental regulators of immune responses and signal through multimeric receptors to initiate intracellular second-messenger cascades. Here, we provide the first characterization of two full-length gp130 cytokine receptors from the cDNA of the red-legged salamander (Plethodon shermani). The first, gp130 (2745 bp), is a common signaling receptor for several multi-functional cytokines in vertebrates. We also isolated the full-length (1104 bp) sequence of the ciliary neurotrophic factor receptor (CNTFR), which forms a heteromeric signaling complex with gp130. The open reading frames of both receptors were predicted to contain many of the conserved features found in mammalian gp130s, such as cytokine binding homology regions and residues known to form disulfide bonds. Finally, we used RT-PCR to show that gp130 and CNTFR were expressed in most P. shermani tissues, including brain, intestine and muscle. The expression profiles, along with the structural predictions, show that gp130, CNTFR, and their cytokine ligands are parts of the immune system of P. shermani and other caudate amphibians.  相似文献   

12.
Neuropoietin (NP) is a member of the gp130 cytokine family that is closely related to cardiotrophin-1(CT-1) and shares functional and structural features with other family members, including ciliary neurotrophic factor (CNTF) and cardiotrophin-like cytokine (CLC). Studies have shown that NP can play a role in the development of the nervous system, as well as affect adipogenesis and fat cell function. However, the signaling mechanisms utilized by NP in adipocytes have not been examined. In our present studies, we demonstrate that NP-induced activation of STAT3 tyrosine phosphorylation is independent of leukemia inhibitory factor receptor (LIFR) phosphorylation and degradation. Although it is widely accepted that NP signals via the LIFR, our studies reveal that NP results in phosphorylation of gp130, but not LIFR. These observations suggest that the profound effects that NP has on adipocytes are not mediated via LIFR signaling.  相似文献   

13.
Glial cell line-derived neurotrophic factor (GDNF) plays a critical role in neurodevelopment and survival of midbrain dopaminergic and spinal motor neurons in vitro and in vivo. The biological actions of GDNF are mediated by a two-receptor complex consisting of a glycosylphosphatidylinositol-linked cell surface molecule, the GDNF family receptor alpha1 (GFRalpha1), and receptor protein tyrosine kinase Ret. Although structural analysis of GDNF has been extensively examined, less is known about the structural basis of GFRalpha1 function. In this study, based on evolutionary trace method and relative solvent accessibility prediction of residues, a set of trace residues that are solvent-accessible was selected for site-directed mutagenesis. A series of GFRalpha1 mutations was made, and PC12 cell lines stably expressing different GFRalpha1 mutants were generated. According to the survival and differentiation responses of these stable PC12 cells upon GDNF stimulation and the GDNF-GFRalpha1-Ret interaction assay, residues 152NN153, Arg259, and 316SNS318 in the GFRalpha1 central region were found to be critical for GFRalpha1 binding to GDNF and eliciting downstream signal transduction. The single mutation R259A in the GFRalpha1 molecule simultaneously lost its binding ability to GDNF and Ret. However N152A/N153A or S316A/N317A/S318A mutation in the GFRalpha1 molecule still retained the ability to bind with Ret. These findings suggest that distinct structural elements in GFRalpha1 may be involved in binding to GDNF and Ret.  相似文献   

14.
Membrane-associated neurotransmitter stimulating factor (MANS) can modulate sympathetic neurotransmitter expression and promote ciliary neuron survival in cell culture. Previous studies have shown that its biological effects and biochemical properties are similar to those of ciliary neurotrophic factor (CNTF). In addition, CNTF is present in spinal cord, the source of MANS. These observations raised the possibility that MANS preparations contain CNTF. We find that partially purified MANS fractions contain a 24-kD protein that is recognized in Western blots by an antiserum generated against recombinant rat CNTF (rCNTF). This antiserum immunoprecipitates virtually all the cholinergic-inducing and the ciliary neurotrophic activities present in MANS preparations. When iodinated rCNTF is incubated with spinal cord membranes, a significant proportion of the labeled CNTF segregates with the membrane pellet. The membrane-associated exogenous CNTF can be eluted from the membrane fraction by treatment with high-salt solutions, similar to that used to solubilize MANS from spinal cord membranes. Our data suggest that a substantial portion of the cholinergic differentiation and ciliary neurotrophic activities present in MANS preparations can be attributed to CNTF or a CNTF-like molecule.  相似文献   

15.
Ciliary neurotrophic factor (CNTF), originally identified for its ability to promote survival of neurons of the ciliary ganglion, is now known to have additional survival and differentiative actions on cells of the nervous system. CNTF is, however, unrelated in structure to the nerve growth factor family of neurotrophic factors. Instead, CNTF is distantly related to, and in fact shares receptor components with, a number of hemopoietic cytokines. This review focuses on the biological actions of CNTF, the shared and unique features of the CNTF receptor complex and signaling pathways, and the distribution of CNTF and its receptor during development, in the adult and in response to injury.  相似文献   

16.
Cytokines of the interleukin-6 (IL-6)-type family all bind to the glycoprotein gp130 on the cell surface and require interaction with two gp130 or one gp130 and another related signal transducing receptor subunit. In addition, some cytokines of this family, such as IL-6, interleukin-11, ciliary neurotrophic factor, neuropoietin, cardiotrophin-1, and cardiotrophin-1-like-cytokine, interact with specific ligand binding receptor proteins. High- and low-affinity binding sites have been determined for these cytokines. So far, however, the stoichiometry of the signaling receptor complexes has remained unclear, because the formation of the cytokine/cytokine-receptor complexes has been analyzed with soluble receptor components in solution, which do not necessarily reflect the situation on the cellular membrane. Consequently, the binding affinities measured in solution have been orders of magnitude below the values obtained with whole cells. We have expressed two gp130 extracellular domains in the context of a Fc-fusion protein, which fixes the receptors within one dimension and thereby restricts the flexibility of the proteins in a fashion similar to that within the plasma membrane. We measured binding of IL-6 and interleukin-b receptor (IL-6R) by means of fluorescence-correlation spectroscopy. For the first time we have succeeded in recapitulating in a cell-free condition the binding affinities and dynamics of IL-6 and IL-6R to the gp130 receptor proteins, which have been determined on whole cells. Our results demonstrate that a dimer of gp130 first binds one IL-6/IL-6R complex and only at higher ligand concentrations does it bind a second IL-6/IL-6R complex. This view contrasts with the current perception of IL-6 receptor activation and reveals an alternative receptor activation mechanism.  相似文献   

17.
The functional receptor complex of ciliary neurotrophic factor (CNTF), a member of the gp130 family of cytokines, is composed of CNTF, the CNTF receptor alpha (CNTFR), gp130, and the leukemia inhibitory factor receptor (LIFR). However, the nature of the receptor-mediated interactions in this complex has not yet been resolved. To address this issue we have determined the solution structure of the C-terminal or BC domain of CNTFR and studied the interactions of CNTFR with LIFR and gp130. We reported previously that the membrane distal cytokine-binding domain (CBD1) of LIFR could interact in vitro with soluble CNTFR (sCNTFR) in the absence of CNTF. Here we show that the CBD of human gp130 can also bind in vitro to sCNTFR in the absence of CNTF. In addition, the gp130 CBD could compete with the LIFR CBD1 for the binding of sCNTFR. Substitution of residues in the gp130 CBD, the LIFR CBD1, and the CNTFR BC domain that are expected to be involved in receptor-receptor interactions significantly reduced their interactions. An NMR chemical shift perturbation study of the interaction between the BC domains of CNTFR and gp130 further mapped the interaction surface. These data suggest that both the gp130 CBD and the LIFR CBD1 interact with CNTFR in a similar way and provide insights into the nature of the CNTF receptor complex.  相似文献   

18.
Glial cell line-derived neurotrophic factor (GDNF), a neuronal survival factor, binds its co-receptor GDNF family receptor alpha1 (GFR alpha 1) in a 2:2 ratio and signals through the receptor tyrosine kinase RET. We have solved the GDNF(2).GFR alpha 1(2) complex structure at 2.35 A resolution in the presence of a heparin mimic, sucrose octasulfate. The structure of our GDNF(2).GFR alpha 1(2) complex and the previously published artemin(2).GFR alpha 3(2) complex are unlike in three ways. First, we have experimentally identified residues that differ in the ligand-GFR alpha interface between the two structures, in particular ones that buttress the key conserved Arg(GFR alpha)-Glu(ligand)-Arg(GFR alpha) interaction. Second, the flexible GDNF ligand "finger" loops fit differently into the GFR alphas, which are rigid. Third, and we believe most importantly, the quaternary structure of the two tetramers is dissimilar, because the angle between the two GDNF monomers is different. This suggests that the RET-RET interaction differs in different ligand(2)-co-receptor(2)-RET(2) heterohexamer complexes. Consistent with this, we showed that GDNF(2).GFR alpha1(2) and artemin(2).GFR alpha 3(2) signal differently in a mitogen-activated protein kinase assay. Furthermore, we have shown by mutagenesis and enzyme-linked immunosorbent assays of RET phosphorylation that RET probably interacts with GFR alpha 1 residues Arg-190, Lys-194, Arg-197, Gln-198, Lys-202, Arg-257, Arg-259, Glu-323, and Asp-324 upon both domains 2 and 3. Interestingly, in our structure, sucrose octasulfate also binds to the Arg(190)-Lys(202) region in GFR alpha 1 domain 2. This may explain how GDNF.GFR alpha 1 can mediate cell adhesion and how heparin might inhibit GDNF signaling through RET.  相似文献   

19.
20.
Membrane-anchored adaptor proteins FRS2alpha/beta (also known as SNT-1/2) mediate signaling of fibroblast growth factor receptors (FGFRs) and neurotrophin receptors (TRKs) through their N-terminal phosphotyrosine binding (PTB) domains. The FRS2 PTB domain recognizes tyrosine-phosphorylated TRKs at an NPXpY (where pY is phosphotyrosine) motif, whereas its constitutive association with FGFR involves a receptor juxtamembrane region lacking Tyr and Asn residues. Here we show by isothermal titration calorimetry that the FRS2alpha PTB domain binding to peptides derived from TRKs or FGFR is thermodynamically different. TRK binding is largely enthalpy-driven, whereas the FGFR interaction is governed by a favorable entropic contribution to the free energy of binding. Furthermore, our NMR spectral analysis suggests that disruption of an unstructured region C-terminal to the PTB domain alters local conformation and dynamics of the residues at the ligand-binding site, and that structural disruption of the beta8-strand directly weakens the PTB domain association with the FGFR ligand. Together, our new findings support a molecular mechanism by which conformational dynamics of the FRS2alpha PTB domain dictates its association with either fibroblast growth factor or neurotrophin receptors in neuronal development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号