首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fukada M  Fujikawa A  Chow JP  Ikematsu S  Sakuma S  Noda M 《FEBS letters》2006,580(17):4051-4056
Receptor-type protein tyrosine phosphatases (RPTPs) are considered to transduce extracellular signals across the membrane through changes in their PTP activity, however, our understanding of the regulatory mechanism is still limited. Here, we show that pleiotrophin (PTN), a natural ligand for protein tyrosine phosphatase receptor type Z (Ptprz) (also called PTPzeta/RPTPbeta), inactivates Ptprz through oligomerization and increases the tyrosine phosphorylation of substrates for Ptprz, G protein-coupled receptor kinase-interactor 1 (Git1) and membrane associated guanylate kinase, WW and PDZ domain containing 1 (Magi1). Oligomerization of Ptprz by an artificial dimerizer or polyclonal antibodies against its extracellular region also leads to inactivation, indicating that Ptprz is active in the monomeric form and inactivated by ligand-induced oligomerization.  相似文献   

2.
Protein tyrosine phosphatase receptor type Z (Ptprz/PTPzeta/RPTPbeta) is a receptor-like protein tyrosine phosphatase (RPTP) preferentially expressed in the brain. ErbB4 is a member of the ErbB-family tyrosine kinases known as a neuregulin (NRG) receptor. Both are known to bind to postsynaptic density-95 (PSD95) on the second and the first/second PDZ (PSD95/Disc large/zona occludens1) domains, respectively, through the PDZ-binding motif of their carboxyl termini. Here we report a functional interaction between Ptprz and ErbB4. An intracellular carboxyl-terminal region of Ptprz pulled-down PSD95 and ErbB4 from an adult rat synaptosomal preparation. ErbB4 and Ptprz showed co-localization in cell bodies and apical dendrites of neurons in the prefrontal cortex. In HEK293T cells, phosphorylation of ErbB4 was raised by co-expression of PSD95, which was repressed by additional expression of Ptprz. In vitro experiments using the whole intracellular region (ICR) of ErbB4 also showed that PSD95 stimulates the autophosphorylation of ErbB4, and that the ICR of Ptprz dephosphorylates ErbB4 independent of the presence of PSD95. Taken together with the finding that the tyrosine phosphorylation level of ErbB4 was increased in Ptprz-deficient mice, these results suggest that Ptprz has a role in suppressing the autoactivation of ErbB4 by PSD95 at the postsynaptic density in the adult brain.  相似文献   

3.
The MET tyrosine kinase receptor activated by its ligand HGF/SF, induces several cellular responses, including survival. Nonetheless, the MET receptor is cleaved in stress conditions by caspases within its intracellular region, generating a 40 kDa fragment, p40 MET, with pro-apoptotic properties. Here, we established that this cleavage splits the receptor at the juxtamembrane ESVD site, causing the concomitant generation of p100 MET, corresponding to the entire extracellular region of the MET receptor still spanning the membrane. This fragment is able to bind HGF/SF and to prevent HGF-dependent signaling downstream of full MET, demonstrating its function as a decoy receptor.  相似文献   

4.
The extracellular domain of several membrane-anchored proteins can be released as a soluble fragment by the action of a cell surface endoproteolytic system. This cleavage results in the generation of a soluble and a cell-bound fragment. In the case of proteins with signaling capability, such as tyrosine kinase receptors, the cleavage process may have an effect on the kinase activity of the cell-bound receptor fragment. By using several cell lines that express the TrkA neurotrophin receptor, we show that this receptor tyrosine kinase is cleaved by a proteolytic system that mimics the one that acts at the cell surface. TrkA cleavage is regulated by protein kinase C and several receptor agonists (including the TrkA ligand NGF), occurs at the ectodomain in a membrane-proximal region, and is independent of lysosomal function. TrkA cleavage results in the generation of a cell- associated fragment that is phosphorylated on tyrosine residues. Tyrosine phosphorylation of this fragment is not detected in TrkA mutants devoid of kinase activity, suggesting that phosphorylation requires an intact TrkA kinase domain, and is not due to activation of an intermediate intracellular tyrosine kinase. The increased phosphotyrosine content of the cell-bound fragment may thus reflect higher catalytic activity of the truncated fragment. We postulate that cleavage of receptor tyrosine kinases by this naturally occurring cellular mechanism may represent an additional mean for the regulation of receptor activity.  相似文献   

5.
The receptor for parathyroid hormone (PTHR) is a main regulator of calcium homeostasis and bone maintenance. As a member of class B of G protein-coupled receptors, it harbors a large extracellular domain, which is required for ligand binding. Here, we demonstrate that the PTHR extracellular domain is cleaved by a protease belonging to the family of extracellular metalloproteinases. We show that the cleavage takes place in a region of the extracellular domain that belongs to an unstructured loop connecting the ligand-binding parts and that the N-terminal 10-kDa fragment is connected to the receptor core by a disulfide bond. Cleaved receptor revealed reduced protein stability compared with noncleaved receptor, suggesting degradation of the whole receptor. In the presence of the agonistic peptides PTH(1–34), PTH(1–14), or PTH(1–31), the processing of the PTHR extracellular domain was inhibited, and receptor protein levels were stabilized. A processed form of the PTHR was also detected in human kidney. These findings suggest a new model of PTHR processing and regulation of its stability.  相似文献   

6.
HER4 is a member of the epidermal growth factor receptor family and has an essential function in heart and neural development. Identification of two HER4 isoforms, HER4 JM-a and JM-b, which differ in their extracellular juxtamembrane region and in their susceptibility to cleavage after phorbol ester stimulation, showed that the juxtamembrane region of the receptor is critical for proteolysis. We now demonstrate that phorbol ester and pervanadate are effective stimuli for HER4 JM-a processing and that the HER4 JM-b isoform does not undergo cleavage in response to any of the stimuli studied. We also show that HER4 JM-a is not cleaved in cells lacking the metalloprotease tumor necrosis factor-alpha-converting enzyme (TACE) and that reexpression of TACE in these cells restores constitutive and regulated processing of HER4 JM-a. Moreover, we show that the sequence specific to the HER4 JM-a juxtamembrane region is sufficient to confer susceptibility to phorbol 12-myristate 13-acetate-induced cleavage of the HER2 receptor. In conclusion, we provide evidence that TACE is essential for the regulated shedding of the HER4 JM-a receptor.  相似文献   

7.
Oocytes are held in meiotic arrest in prophase I until ovulation, when gonadotropins trigger a subpopulation of oocytes to resume meiosis in a process termed "maturation." Meiotic arrest is maintained through a mechanism whereby constitutive cAMP production exceeds phosphodiesterase-mediated degradation, leading to elevated intracellular cAMP. Studies have implicated a constitutively activated Galpha(s)-coupled receptor, G protein-coupled receptor 3 (GPR3), as one of the molecules responsible for maintaining meiotic arrest in mouse oocytes. Here we characterized the signaling and functional properties of GPR3 using the more amenable model system of Xenopus laevis oocytes. We cloned the X. laevis isoform of GPR3 (XGPR3) from oocytes and showed that overexpressed XGPR3 elevated intraoocyte cAMP, in large part via Gbetagamma signaling. Overexpressed XGPR3 suppressed steroid-triggered kinase activation and maturation of isolated oocytes, as well as gonadotropin-induced maturation of follicle-enclosed oocytes. In contrast, depletion of XGPR3 using antisense oligodeoxynucleotides reduced intracellular cAMP levels and enhanced steroid- and gonadotropin-mediated oocyte maturation. Interestingly, collagenase treatment of Xenopus oocytes cleaved and inactivated cell surface XGPR3, which enhanced steroid-triggered oocyte maturation and activation of MAPK. In addition, human chorionic gonadotropin-treatment of follicle-enclosed oocytes triggered metalloproteinase-mediated cleavage of XGPR3 at the oocyte cell surface. Together, these results suggest that GPR3 moderates the oocyte response to maturation-promoting signals, and that gonadotropin-mediated activation of metalloproteinases may play a partial role in sensitizing oocytes for maturation by inactivating constitutive GPR3 signaling.  相似文献   

8.
Protein tyrosine phosphatase receptor type Z (Ptprz/Ptpzeta / RPTPbeta) is a receptor-like protein tyrosine phosphatase (RPTP) which is predominantly expressed in the central nervous system. Tropomyosin-related kinases (Trks) are single-pass transmembrane molecules that are highly expressed in the developing nervous system. Upon the ligand binding of neurotrophins, Trk receptors are activated through autophosphorylation of tyrosine residues; however, the PTPs responsible for the negative regulation of Trk receptors have not been fully elucidated. Here, we identified Ptprz as a specific PTP that efficiently dephosphorylates TrkA as a substrate. Co-expression of Ptprz with Trk receptors in 293T cells showed that Ptprz suppresses the ligand-independent tyrosine phosphorylation of TrkA, but not of TrkB or TrkC, and that Ptprz attenuates TrkA activation induced by nerve growth factor (NGF). Co-expression analyses with TrkA mutants revealed that Ptprz dephosphorylates phosphotyrosine residues in the activation loop of the kinase domain, which are requisite for activation of the TrkA receptor. Consistent with these findings, forced expression of Ptprz in PC12D cells markedly inhibited neurite extension induced by a low dose of NGF. In addition, an increment in the tyrosine phosphorylation of TrkA was observed in the brain of Ptprz-deficient mice. Ptprz thus appears to be one of the PTPs which regulate the activation and signalling of TrkA receptors.  相似文献   

9.
Huo X  Abe T  Misono KS 《Biochemistry》1999,38(51):16941-16951
The atrial natriuretic peptide (ANP) receptor is a 130-kDa transmembrane protein containing an extracellular ANP-binding domain, a single transmembrane sequence, an intracellular kinase-homologous domain, and a guanylate cyclase (GCase) domain. We observed that the receptor, when bound with ANP, was rapidly cleaved by endogenous or exogenously added protease to yield a 65-kDa ANP-binding fragment. No cleavage occurred without bound ANP. This ligand-induced cleavage abolished GCase activation by ANP. Cleavage occurred in an extracellular, juxtamembrane region containing six closely spaced Pro residues and a disulfide bond. Such structural features are shared among the A-type and B-type ANP receptors but not by ANP clearance receptors. The potential role of the hinge structure was examined by mutagenesis experiments. Mutation of Pro(417), but not other Pro residues, to Ala abolished GCase activation by ANP. Elimination of the disulfide bond by Cys to Ser mutations yielded a constitutively active receptor. Pro(417), and Cys(423) and Cys(432) forming the disulfide bond are strictly conserved among GCase-coupled receptors, while other residues are largely variable. The conserved Pro(417) and the disulfide bond may represent a consensus signaling motif in the juxtamembrane hinge structure that undergoes a marked conformational change upon ligand binding and apparently mediates transmembrane signal transduction.  相似文献   

10.
Growth factor deprivation of endothelial cells induces apoptosis, which is characterized by membrane blebbing, cell rounding, and subsequent loss of cell–matrix and cell–cell contacts. In this study, we show that initiation of endothelial apoptosis correlates with cleavage and disassembly of intracellular and extracellular components of adherens junctions. β-Catenin and plakoglobin, which form intracellular links between vascular endothelial cadherin (VE-cadherin) and actin-binding α-catenin in adherens junctions, are cleaved in apoptotic cells. In vitro incubations of cell lysates and immunoprecipitates with recombinant caspases indicate that CPP32 and Mch2 are involved, possibly by initiating proteolytic processing. Cleaved β-catenin from lysates of apoptotic cells does not bind to endogenous α-catenin, whereas plakoglobin retains its binding capacity. The extracellular portion of the adherens junctions is also altered during apoptosis because VE-cadherin, which mediates endothelial cell–cell interactions, dramatically decreases on the surface of cells. An extracellular fragment of VE-cadherin can be detected in the conditioned medium, and this “shedding” of VE-cadherin can be blocked by an inhibitor of metalloproteinases. Thus, cleavage of β-catenin and plakoglobin and shedding of VE-cadherin may act in concert to disrupt structural and signaling properties of adherens junctions and may actively interrupt extracellular signals required for endothelial cell survival.  相似文献   

11.
Proteolytic shedding is an important step in the functional down-regulation and turnover of most membrane proteins at the cell surface. Extracellular matrix metalloproteinase inducer (EMMPRIN) is a multifunctional glycoprotein that has two Ig-like domains in its extracellular portion and functions in cell adhesion as an inducer of matrix metalloproteinase (MMP) expression in surrounding cells. Although the shedding of EMMPRIN is reportedly because of cleavage by metalloproteinases, the responsible proteases, cleavage sites, and stimulants are not yet known. In this study, we found that human tumor HT1080 and A431 cells shed a 22-kDa EMMPRIN fragment into the culture medium. The shedding was enhanced by phorbol 12-myristate 13-acetate and inhibited by TIMP-2 but not by TIMP-1, suggesting the involvement of membrane-type MMPs (MT-MMPs). Indeed, down-regulation of the MT1-MMP expression in A431 cells using small interfering RNA inhibited the shedding. The 22-kDa fragment was purified, and the C-terminal amino acid was determined. A synthetic peptide spanning the cutting site was cleaved by MT1-MMP in vitro. The cleavage site is located in the linker region connecting the two Ig-like domains. The N-terminal Ig-like domain is important for the MMP inducing activity of EMMPRIN and for cell-cell interactions, presumably through its ability to engage in homophilic interactions, and the 22-kDa fragment retained the ability to augment MMP-2 expression in human fibroblasts. Thus, the MT1-MMP-dependent cleavage eliminates the functional N-terminal domain of EMMPRIN from the cell surface, which is expected to down-regulate its function. At the same time, the released 22-kDa fragment may mediate the expression of MMPs in tumor tissues.  相似文献   

12.
13.
The human interleukin-2 (IL-2) receptor was quantitatively cleaved into two large disulfide-bonded fragments by either trypsin or endoproteinase lys-C (endo lys-C). The smaller fragment contains both N-linked oligosaccharides found in the intact receptor and is derived from the amino terminus of the molecule. The larger proteolytic fragment was metabolically labeled with 32PO4 and represents the carboxy terminus. The predicted cleavage sites of both enzymes lie in the region of the molecule encoded by exon 3. This pattern of limited proteolysis provides biochemical evidence that the extracellular region of the receptor is organized into two domains. This supports a structural model of the receptor in which the regions of internal homology encoded by exons 2 and 4 form independent disulfide-bonded domains connected by a hydrophilic segment. To determine the role of these domains in IL-2 binding, [125I]IL-2 was chemically cross-linked to the proteolytically cleaved receptor on the cell surface. The 125I-labeled complex obtained displayed N-linked oligosaccharides and had an Mr consistent with one molecule of IL-2 cross-linked to the smaller proteolytic fragment of the receptor. Thus, the amino-terminal domain of the IL-2 receptor appears to form an integral part of the IL-2 binding site.  相似文献   

14.
The Nogo-66 receptor (NgR) plays a pivotal role in the inhibition of neuroregeneration as the receptor for multiple neurite outgrowth inhibitors such as Nogo-A. We have previously shown that NgR undergoes zinc metalloproteinase-mediated ectodomain shedding in neuroblastoma cells. Here, we demonstrate that the NgR-related protein NgR homologue-1 is released from neuroblastoma cells as a full-length ectodomain (NgRH1-ecto) and an N-terminal fragment (NTF-NgRH1) containing the leucine-rich repeat region of the protein. Inhibitors of the major protease classes failed to block the release of NgRH1-ecto, suggesting that this occurs via a protease-independent mechanism, presumably by a phospholipase-like enzyme. The release of NTF-NgRH1 was blocked by a hydroxamate-based zinc metalloproteinase inhibitor and tissue inhibitor of metalloproteinases-2 and -3, but not -1, implicating the involvement of membrane-type matrix metalloproteinases in this process. Our findings thus highlight the parallels between the ectodomain shedding of NgRH1 and that previously described for NgR.  相似文献   

15.
Alpha- and gamma-protocadherins (Pcdhs) are type I transmembrane receptors expressed predominantly in the central nervous system and located in part in synapses. They are transcribed from complex genomic loci, giving rise in the mouse to 14 alpha-Pcdh and 22 gamma-Pcdh isoforms consisting of variable domains, each encompassing the extracellular region, the transmembrane region, and part of the intracellular region harboring the alpha- or gamma-Pcdh-specific invariant cytoplasmic domain. Presenilin-dependent intramembrane proteolysis (PS-IP) of gamma-Pcdhs and the formation of alpha/gamma-Pcdh heteromers led us to investigate the effects of homo- and heteromer formation on gamma- and putative alpha-Pcdh membrane processing and signaling. We find that upon surface delivery, alpha-Pcdhs, like gamma-Pcdhs, are subject to matrix metallo-protease cleavage followed by PS-IP in neurons. We further demonstrate that the combinatorial expression of alpha- and gamma-Pcdhs modulates the extent of their PS-IP, indicating the formation of alpha/gamma-Pcdh heteromers with an altered susceptibility to processing. Cell-specific expression of alpha/gamma-Pcdh isoforms could thus determine cell and synapse adhesive properties as well as intracellular and nuclear signaling by their soluble cytoplasmic cleavage products, alpha C-terminal fragment 2 (alpha-CTF-2) and gamma-CTF-2.  相似文献   

16.
The recently described protocadherin gene clusters encode cadherin-related proteins, which are highly expressed in the vertebrate nervous system. Here, we report biochemical studies addressing proteolytic processing of gamma-protocadherins. These type-I transmembrane proteins are cleaved by a metalloproteinase in vivo, generating a soluble extracellular fragment and a carboxyl-terminal fragment associated with the cellular membrane. In addition, we show that the carboxyl-terminal fragment is a substrate for further cleavage mediated by presenilin. Consequently, accumulation of the fragment is found when gamma-secretase is inactivated either by the specific presenilin-inhibitor L685,458 or in double mutant murine embryonic fibroblasts lacking both presenilin genes. The gamma-secretase-generated carboxyl-terminal fragment is largely unstable but accumulates when proteasomal degradation is inhibited. Interestingly, the proteolytic fragment generated by gamma-secretase can localize to the nucleus. This is the first report providing experimental evidence for a cell surface receptor signaling function of protocadherins regulated by proteolytic events.  相似文献   

17.
Protein-tyrosine phosphatase receptor type Z (Ptprz) has multiple substrate proteins, including G protein-coupled receptor kinase-interactor 1 (Git1), membrane-associated guanylate kinase, WW and PDZ domain-containing 1 (Magi1), and GTPase-activating protein for Rho GTPase (p190RhoGAP). We have identified a dephosphorylation site at Tyr-1105 of p190RhoGAP; however, the structural determinants employed for substrate recognition of Ptprz have not been fully defined. In the present study, we revealed that Ptprz selectively dephosphorylates Git1 at Tyr-554, and Magi1 at Tyr-373 and Tyr-858 by in vitro and cell-based assays. Of note, the dephosphorylation of the Magi1 Tyr-858 site required PDZ domain-mediated interaction between Magi1 and Ptprz in the cellular context. Alignment of the primary sequences surrounding the target phosphotyrosine residue in these three substrates showed considerable similarity, suggesting a consensus motif for recognition by Ptprz. We then estimated the contribution of surrounding individual amino acid side chains to the catalytic efficiency by using fluorescent peptides based on the Git1 Tyr-554 sequence in vitro. The typical substrate motif for the catalytic domain of Ptprz was deduced to be Glu/Asp-Glu/Asp-Glu/Asp-Xaa-Ile/Val-Tyr(P)-Xaa (Xaa is not an acidic residue). Intriguingly, a G854D substitution of the Magi1 Tyr-858 site matching better to the motif sequence turned this site to be susceptible to dephosphorylation by Ptprz independent of the PDZ domain-mediated interaction in cells. Furthermore, we found by database screening that the substrate motif is present in several proteins, including paxillin at Tyr-118, its major phosphorylation site. Expectedly, we verified that Ptprz efficiently dephosphorylates paxillin at this site in cells. Our study thus provides key insights into the molecular basis for the substrate recognition of Ptprz.  相似文献   

18.
The MET tyrosine kinase is the hepatocyte growth factor/scatter factor (HGF/SF) receptor, which elicits multiple biological responses in epithelial cells, including cell survival. We previously demonstrated that in stress conditions, the MET receptor is cleaved by caspases within its juxtamembrane region, generating a pro-apoptotic intracellular fragment of 40 kDa. The caspase cleavage site at aspartic acid D1000 is adjacent to tyrosine Y1001, which when phosphorylated upon MET activation, is involved in CBL recruitment, allowing receptor ubiquitination and down regulation. Scanning mutagenesis of the MET juxtamembrane region led us to demonstrate that V999 and D1000 are essential for the caspase cleavage, while D1000 and Y1001 are essential for CBL recruitment. By examining whether overlapping of these sites leads to a functional interference, an inverse relationship was found between generation of p40 MET and phosphorylation of MET, with a direct involvement of phosphorylated Y1001 in protecting MET against its caspase cleavage. A molecular modeling analysis of caspase 3 interaction with the juxtamembrane region of MET confirmed that phosphorylation of this tyrosine is not compatible with its recognition by active caspase 3. These data demonstrate a direct protection mechanism of an activated phosphorylated MET receptor, against its caspase-dependent cleavage.  相似文献   

19.
20.
The homologous proteinase inhibitors, human alpha 2-macroglobulin (alpha 2M) and chicken ovostatin, have been compared with respect to their "bait" region sequences and interactions with two human matrix metalloproteinases, collagenase and stromelysin. A stretch of 34 amino acid residues of the ovostatin bait region sequence was determined and the matrix metalloproteinase cleavage sites identified. Collagenase cleaved a X-Leu bond where X was unidentified, whereas the major cleavage site by stromelysin was at the Gly-Phe bond, 4 residues on the COOH-terminal side of the collagenase cleavage site. Collagenase cleaved the alpha 2M bait region at the Gly679-Leu680 bond, and stromelysin at Gly679-Leu680 and Phe684-Tyr685 bonds. Sequence similarity in the bait region of members of the alpha-macroglobulin family is strikingly low. The kinetic studies indicate that alpha 2M is a 150-fold better substrate for collagenase than type I collagen. Structural predictions based on the bait region sequences suggest that a collagen-like triple helical structure is not a prerequisite for the efficient binding of tissue collagenase to a substrate. The binding of stromelysin to alpha 2M is slower than that of collagenase. Stromelysin reacts with ovostatin even more slowly. Despite the preference of chicken ovostatin for metalloproteinases, human alpha 2M, a far less selective inhibitor, reacts more rapidly with collagenase and stromelysin. These results suggest that alpha 2M may play an important role in regulating the activities of matrix metalloproteinases in the extracellular space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号