首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
NEU3 sialidase, a key enzyme in ganglioside metabolism, is activated under hypoxic conditions in cultured skeletal muscle cells (C2C12). NEU3 up-regulation stimulates the EGF receptor signaling pathway, which in turn activates the hypoxia-inducible factor (HIF-1α), resulting in a final increase of cell survival and proliferation. In the same cells, stable overexpression of sialidase NEU3 significantly enhances cell resistance to hypoxia, whereas stable silencing of the enzyme renders cells more susceptible to apoptosis. These data support the working hypothesis of a physiological role played by NEU3 sialidase in protecting cells from hypoxic stress and may suggest new directions in the development of therapeutic strategies against ischemic diseases, particularly of the cerebro-cardiovascular system.  相似文献   

3.
The actin-associated protein palladin has been shown to be involved in differentiation processes in non-muscle tissues. However, but its function in skeletal muscle has rarely been studied. Palladin plays important roles in the regulation of diverse actin-related signaling in a number of cell types. Since intact actin-cytoskeletal remodeling is necessary for myogenesis, in the present study, we pursue to investigate the role of actin-associated palladin in skeletal muscle differentiation. Palladin in C2C12 myoblasts is knocked-down using specific small interfering RNA (siRNA). The results show that down-regulation of palladin decreased migratory activity of mouse skeletal muscle C2C12 myoblasts. Furthermore, the depletion of palladin enhances C2C12 vitality and proliferation. Of note, the loss of palladin promotes C2C12 to express the myosin heavy chain, suggesting that palladin has a role in the modulation of C2C12 differentiation. It is thus proposed that palladin is required for normal C2C12 myogenesis in vitro.  相似文献   

4.
5.
The functionally undefined Stac3 gene, predicted to encode a SH3 domain- and C1 domain-containing protein, was recently found to be specifically expressed in skeletal muscle and essential to normal skeletal muscle development and contraction. In this study we determined the potential role of Stac3 in myoblast proliferation and differentiation, two important steps of muscle development. Neither siRNA-mediated Stac3 knockdown nor plasmid-mediated Stac3 overexpression affected the proliferation of C2C12 myoblasts. Stac3 knockdown promoted the differentiation of C2C12 myoblasts into myotubes as evidenced by increased fusion index, increased number of nuclei per myotube, and increased mRNA and protein expression of myogenic markers including myogenin and myosin heavy chain. In contrast, Stac3 overexpression inhibited the differentiation of C2C12 myoblasts into myotubes as evidenced by decreased fusion index, decreased number of nuclei per myotube, and decreased mRNA and protein expression of myogenic markers. Compared to wild-type myoblasts, myoblasts from Stac3 knockout mouse embryos showed accelerated differentiation into myotubes in culture as evidenced by increased fusion index, increased number of nuclei per myotube, and increased mRNA expression of myogenic markers. Collectively, these data suggest an inhibitory role of endogenous Stac3 in myoblast differentiation. Myogenesis is a tightly controlled program; myofibers formed from prematurely differentiated myoblasts are dysfunctional. Thus, Stac3 may play a role in preventing precocious myoblast differentiation during skeletal muscle development.  相似文献   

6.
The sialidase activities with GM3 ganglioside and sialyllactitol were demonstrated in the conditioned medium of human fibroblasts. pH versus activity profiles of conditioned medium with GM3 as substrate suggested the presence of two sialidases with optimal activities at pH 4.5 and pH 6.5. The GM3 sialidase activity at pH 6.5 was suppressed in the medium of contact-inhibited cells. This sialidase may function in the metabolism of cell surface GM3 since there was a selective loss of labeled sialic acid from GM3 at different times of incubation after pulse-labeling with a radioactive sialic acid precursor ([3H]N-acetyl-mannosamine) and a radioactive ceramide precursor ([14C]serine). In addition, a sialidase inhibitor, 2-deoxy-2, 3-dehydro-N-acetyl-neuraminic acid (NeuAc-2-en) resulted in a reversible growth inhibitory effect and the suppression of the sialidase activity in the medium. We have speculated that GM3 hydrolysis on the cell surface by the sialidase may be coordinated with the cell cycle and may be at its maximum during early in the G1 phase.  相似文献   

7.
Gangliosides of the plasma membrane are important modulatorsof cellular functions. Previous work from our laboratory hadsuggested that a plasma membrane sialidase was involved in growthcontrol and differentiation in cultured human neuroblastomacells (SK-N-MC), but its substrates had remained obscure. Wenow performed sialidase specificity studies in subcellular fractionsand found ganglioside GM3 desialylating activity in presenceof Triton X-100 to be associated with the plasma membrane, butabsent in lysosomes. This Triton-activated plasma membrane enzymedesialylated also gangliosides GDla, GD1b, and GT1b, therebyforming GM1; cleavage of GM1 and GM2, however, was not observed.Sialidase activity towards the glycoprotein fetuin with modifiedC-7 sialic acids and towards 4-methylumbelliferyl neuraminatewas solely found in lysosomal, but not in plasma membrane fractions. The role of the plasma membrane sialidase in ganglioside desialylationof living cells was examined by following the fate of [3H]galactose-labelledindividual gangliosides in pulse-chase experiments in absenceand presence of the extracellular sialidase inhibitor 2-deoxy-2,3-dehydro-N-acetylneuraminicacid. When the plasma membrane sialidase was inhibited, radioactivityof all gangliosides chased at the same rate. In the absenceof inhibitor, GM3, GD1a, GD1b, GD2, GD3 and GT1b were degradedat a considerably faster rate in confluent cultures, whereasthe GM1-pool seemed to be filled by the desialylation of highergangliosides. The results thus suggest that the plasma membranesialidase causes selective ganglioside desialylation, and thatsuch surface glycolipid modification triggers growth controland differentiation in human neuroblastoma cells. ganglioside neuroblastoma cells plasma membrane sialidase  相似文献   

8.
The microvascular endothelial surface expresses multiple molecules whose sialylation state regulates multiple aspects of endothelial function. To better regulate these sialoproteins, we asked whether endothelial cells (ECs) might express one or more catalytically active sialidases. Human lung microvascular EC lysates contained heat-labile sialidase activity for a fluorogenic substrate, 2'-(4-methylumbelliferyl)-α-D-N-acetylneuraminic acid (4-MU-NANA), that was dose-dependently inhibited by the competitive sialidase inhibitor, 2,3-dehydro-2-deoxy-N-acetylneuraminic acid but not its negative control. The EC lysates also contained sialidase activity for a ganglioside mixture. Using real time RT-PCR to detect mRNAs for the four known mammalian sialidases, NEU1, -2, -3, and -4, NEU1 mRNA was expressed at levels 2700-fold higher that those found for NEU2, -3, or -4. Western analyses indicated NEU1 and -3 protein expression. Using confocal microscopy and flow cytometry, NEU1 was immunolocalized to both the plasma membrane and the perinuclear region. NEU3 was detected both in the cytosol and nucleus. Prior siRNA-mediated knockdown of NEU1 and NEU3 each decreased EC sialidase activity for 4-MU-NANA by >65 and >17%, respectively, and for the ganglioside mixture by 0 and 40%, respectively. NEU1 overexpression in ECs reduced their migration into a wound by >40%, whereas NEU3 overexpression did not. Immunohistochemical studies of normal human tissues immunolocalized NEU1 and NEU3 proteins to both pulmonary and extrapulmonary vascular endothelia. These combined data indicate that human lung microvascular ECs as well as other endothelia express catalytically active NEU1 and NEU3. NEU1 restrains EC migration, whereas NEU3 does not.  相似文献   

9.
The paramyxovirus Newcastle Disease Virus (NDV) binds to sialic acid-containing glycoconjugates, sialoglycoproteins and sialoglycolipids (gangliosides) of host cell plasma membrane through its hemagglutinin-neuraminidase (sialidase) HN glycoprotein. We hypothesized that the modifications of the cell surface ganglioside pattern determined by over-expression of the mammalian plasma-membrane associated, ganglioside specific, sialidase NEU3 would affect the virus-host cell interactions. Using COS7 cells as a model system, we observed that over-expression of the murine MmNEU3 did not affect NDV binding but caused a marked reduction in NDV infection and virus propagation through cell-cell fusion. Moreover, since GD1a was greatly reduced in COS7 cells following NEU3-over-expression, we added [(3)H]-labelled GD1a to COS7 cells under conditions that block intralysosomal metabolic processing, and we observed a marked increase of GD1a cleavage to GM1 during NDV infection, indicating a direct involvement of the virus sialidase and host cell GD1a in NDV infectivity. Therefore, the decrease of GD1a in COS7 cell membrane upon MmNEU3 over-expression is likely to be instrumental to NDV reduced infection. Evidence was also provided for the preferential association of NDV-HN at 4 degrees C to detergent resistant microdomains (DRMs) of COS7 cells plasma membranes.  相似文献   

10.
Lysosomal sialidase, encoded by neu1, is required for the removal of terminal sialic acid residues from a variety of sialoglycoconjugates. In humans, deficiency of this enzyme results in the inborn error of metabolism sialidosis, characterized by the accumulation of sialoglycoconjugates within the nervous system and in peripheral organs. A subset of sialidosis patients present with symptoms of profound muscle dysfunction, including progressive muscular atrophy. We have previously shown that the 5' regulatory region of murine neu1 is typical of skeletal muscle-specific genes due to the presence of several E-boxes and its responsiveness to stimulation by muscle regulatory factors (MRFs) such as MyoD. Here, we report that sialidase activity is increased 6-fold during the first 24 h of differentiation of C2C12 myoblasts followed by an attenuation to pre-differentiation levels by 48 h. We demonstrate that the lysosomal sialidase promoter is highly upregulated by MyoD through a mechanism that is dependent on the MyoD chromatin remodeling domain. We also show that the sialidase promoter is repressed by activated MEK. Inappropriate overexpression of sialidase 48 h after the onset of differentiation results in downregulation of myogenin as well as myosin heavy chain expression and in a halt of the differentiation cascade. This study indicates that lysosomal sialidase is a potent regulator of the early stages of myogenesis.  相似文献   

11.
Plasma membrane-associated sialidase is a key enzyme for ganglioside hydrolysis, thereby playing crucial roles in regulation of cell surface functions. Here we demonstrate that mice overexpressing the human ortholog (NEU3) develop diabetic phenotype by 18-22 weeks associated with hyperinsulinemia, islet hyperplasia, and increased beta-cell mass. As compared with the wild type, insulin-stimulated phosphorylation of the insulin receptor (IR) and insulin receptor substrate I was significantly reduced, and activities of phosphatidylinositol 3-kinase and glycogen synthase were low in transgenic muscle. IR phosphorylation was already attenuated in the younger mice before manifestation of hyperglycemia. Transient transfection of NEU3 into 3T3-L1 adipocytes and L6 myocytes caused a significant decrease in IR signaling. In response to insulin, NEU3 was found to undergo tyrosine phosphorylation and subsequent association with the Grb2 protein, thus being activated and causing negative regulation of insulin signaling. In fact, accumulation of GM1 and GM2, the possible sialidase products in transgenic tissues, caused inhibition of IR phosphorylation in vitro, and blocking of association with Grb2 resulted in reversion of impaired insulin signaling in L6 cells. The data indicate that NEU3 indeed participates in the control of insulin signaling, probably via modulation of gangliosides and interaction with Grb2, and that the mice can serve as a valuable model for human insulin-resistant diabetes.  相似文献   

12.
MicroRNAs (miRNAs) 是一类小非编码RNA,近年研究发现其在骨骼肌发育调控中发挥重要作用.为探明miR-143-3p在C2C12成肌细胞分化中的调控作用,采用 real-time PCR 检测了miR-143-3p在小鼠各组织及C2C12成肌细胞分化过程中的表达;使用miR-143-3p 的模拟物和特异性抑制剂分别处理细胞,采用 real-time PCR 和 Western印迹分别检测成肌因子 MyoG和成肌标志基因 MyHC mRNA和蛋白水平的变化;用免疫荧光染色的方法观察肌管的形成.结果显示,miR-143-3p在小鼠各组织中均有表达,并且随着细胞分化表达量逐渐增加;C2C12成肌细胞过表达 miR-143-3p,与对照组相比,成肌调控因子MyoG和成肌标志基因MyHC 的mRNA和蛋白表达均显著升高,肌管数量明显增多;抑制剂处理结果显示,细胞分化被显著抑制.检测miR-143-3p对MyHC各亚型表达的影响发现,miR-143-3p表达的变化并不直接影响MyHC各亚型的表达.以上结果说明, miR-143-3p在骨骼肌和成肌细胞中均有表达,能够促进C2C12成肌细胞分化,但并不直接调控MyHCs的表达.  相似文献   

13.
Variation in ACE activity is related to affect the skeletal muscle function. To elucidate the mechanism by which ACE affects skeletal muscle function, we examined the effects of loss and gain of ACE activity on myogenic differentiation in C2C12 myoblasts. The treatment of captopril, an ACE inhibitor, in differentiating cells significantly induced the up-regulation of myosin heavy chain, and the hypertrophic myotubes. In addition, an AT2 antagonist PD123319, not AT1 antagonist losartan, induced the up-regulation of myosin heavy chain. On the other hand, overexpression of ACE induced the down-regulation of myosin heavy chain. These results suggest that ACE negatively regulate the myogenesis through the mechanism at least in part via production of angiotensin II followed by its binding to AT2 receptor.  相似文献   

14.
15.
Cultured human fibroblasts contain two sialidases that degrade gangliosides such as GM3: a lysosomal activity that appears identical with the activity towards water-soluble substrates and that is deficient in the genetic lysosomal disorder sialidosis, and another enzyme that seems localized on the external surface of the plasma membrane. In this report we show that both enzymes can be differentiated in the presence of each other by choice of the detergent used for activation, and also by the inhibitory action of some polyanionic compounds such as sulphated glycosaminoglycans. The lysosomal ganglioside GM3 sialidase is greatly stimulated by sodium glycodeoxycholate and, to lesser degrees, by sodium glycocholate and sodium cholate. The ganglioside GM3 sialidase of the plasma membrane is not measurably active under the conditions of the lysosomal enzyme but is specifically activated by the non-ionic detergent Triton X-100. The glycodeoxycholate-stimulated, but not the Triton-activated, ganglioside GM3 sialidase activity was profoundly diminished in cell lines from patients with the lysosomal disorders sialidosis and galactosialidosis; however, both activities were normal in fibroblasts from patients with mucolipidosis IV, previously thought to be a ganglioside sialidase deficiency disorder. Both the lysosomal and the plasma membrane ganglioside GM3 sialidases were inhibited by sialic acids, suramin, dextran sulphate and sulphated glycosaminoglycans. Among the latter, heparin and heparan sulphate showed a much higher inhibitory potency towards the plasma membrane ganglioside GM3 sialidase than towards the lysosomal onw.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Gangliosides located in the outer leaflet of the plasma membrane are important modulators of cellular functions. Our previous work has shown that in cultured human SK-N-MC neuroblastoma cells a sialidase residing in the same membrane selectively desialylates gangliosides with terminal sialic acid residues, causing a shift from higher species to GM1 and a conversion of GM3 to lactosylceramide. Inhibition of this sialidase by 2-deoxy-2,3-dehydro-N-acetylneuraminic acid (NeuAc2en) resulted in increased cell proliferation and a loss of differentiation markers. In this study, we examined the occurrence and function of this ganglioside sialidase in other neuronal cells. Subcellular fractionation showed the sialidase to be located in the plasma membrane of all cell lines studied. The presence of the inhibitor NeuAc2en led to a profound decrease in the amount of the differentiation marker 200 kDa/70 kDa neurofilaments and an increase in cell proliferation in the cholinergic SK-N-MC and mixed cholinergic/adrenergic SK-N-FI and SK-N-DZ neuroblastoma lines, but had little or no effect in the human adrenergic SK-N-SH and SK-N-AS and the adrenergic/cholinergic PC12 cells from rat. The influence of the inhibitor on cell behaviour was paralleled by a diminished number of cholera toxin B-binding GM1 sites. The findings demonstrate that the plasma membrane ganglioside sialidase is an important element of proliferation and differentiation control in some, but not all, neuroblastoma cells and suggest that there might be a relationship between plasma membrane sialidase activity and cholinergic differentiation.  相似文献   

17.
Alignment of skeletal myoblasts is considered a critical step during myotube formation. The C2C12 cell line is frequently used as a model of skeletal muscle differentiation that can be induced by lowering the serum concentration in standard culture flasks. In order to mimic the striated architectures of skeletal muscles in vitro, micro‐patterning techniques and surface engineering have been proven as useful approaches for promoting elongation and alignment of C2C12 myoblasts, thereby enhancing the outgrowth of multi‐nucleated myotubes upon switching from growth media (GM) to differentiative media (DM). Herein, a layer‐by‐layer (LbL) polyelectrolyte multilayer deposition was combined with a micro‐molding in capillaries (MIMIC) method to simultaneously provide biochemical and geometrical instructive cues that induced the formation of tightly apposed and parallel arrays of differentiating myotubes from C2C12 cells maintained in GM media for 15 days. This study focuses on two different types of patterned/self‐assembled nanofilms based on alternated layers of poly (allylamine hydrochloride) (PAH)/poly(sodium 4‐styrene‐sulfonate) (PSS) as biocompatible but not biodegradable polymeric structures, or poly‐L ‐arginine sulfate salt (pARG)/dextran sulfate sodium salt (DXS) as both biocompatible and biodegradable surfaces. The influence of these microstructures as well as of the nanofilm composition on C2C12 skeletal muscle cells' differentiation and viability was evaluated and quantified, pointing to give a reference for skeletal muscle regenerative potential in culture conditions that do not promote it. At this regard, our results validate PEM microstructured devices, to a greater extent for (PAH/PSS)5‐coated microgrooves, as biocompatible and innovative tools for tissue engineering applications and molecular dissection of events controlling C2C12 skeletal muscle regeneration without switching to their optimal differentiative culture media in vitro. Biotechnol. Bioeng. 2013; 110: 586–596. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
Mammalian Neu3 is a ganglioside specific sialidase. Gangliosides are involved in various physiological events such as cell growth, differentiation and diseases. Significance of Neu3 and gangliosides is still unclear in aquaculture fish species. To gain more insights of fish Neu3 sialidases, molecular cloning and characterization were carried out in tilapia (Oreochromis niloticus). A tilapia genome-wide search for orthologues of human NEU1, NEU2, NEU3 and NEU4 yielded eight putative tilapia sialidases, five of which were neu3-like and designated as neu3a, neu3b, neu3c, neu3d and neu3e. Among five neu3 genes, neu3a, neu3d and neu3e were amplified by PCR from adult fish brain cDNA with consensus sequences of 1227 bp, 1194 bp and 1155 bp, respectively. Multiple alignments showed conserved three Asp-boxes (SXDXGXTW), YRIP and VGPG motifs. The molecular weights for Neu3a, Neu3d and Neu3e were confirmed using immunoblotting analysis as 45.9 kDa, 44.4 kDa and 43.6 kDa, respectively. Lysate from neu3 genes transfected HEK293 cells showed sialidase activity in Neu3a towards ganglioside mix optimally at pH 4.6. Using pure gangliosides as substrates, highest sialidase activity for Neu3a was observed towards GD3 followed by GD1a and GM3, but not GM1. On the other hand, sialidase activities were not observed in Neu3d and Neu3e towards various sialoglycoconjugates. Indirect immunofluorescence showed that tilapia Neu3a and Neu3d are localized at the plasma membrane, while most Neu3e showed a cytosolic localization. RT-PCR analyses for neu3a showed significant expression in the brain, liver, and spleen tissues, while neu3d and neu3e showed different expression patterns. Based on these results, tilapia Neu3 exploration is an important step towards full understanding of a more comprehensive picture of Neu3 sub-family of proteins in fish.  相似文献   

19.
Sensitive assays for the determination of the ganglioside sialidase activity of fibroblast homogenates were established using ganglioside GM3, 3H-labelled in the sphingosine moiety, as a substrate. Ganglioside GM3 sialidase activity was greatly stimulated by the presence of the non-ionic detergent Triton X-100 and was further enhanced by salts such as NaCl; the optimal pH was 4.5. The subcellular localization of this activity was determined by fractionation using free-flow electrophoresis and found to be exclusively associated with the marker for the plasma membrane, but not with that for lysosomes. This Triton-stimulated ganglioside sialidase activity was selectively inhibited by preincubating intact cells in the presence of millimolar concentrations of Cu2+, suggesting that the activity resides on the external surface of the plasma membrane. In normal fibroblasts homogenates, ganglioside GM3 sialidase was also greatly stimulated by sodium cholate. In contrast to the Triton X-100-activated reaction, however, it was not diminished by prior incubation of intact cells in the presence of Cu2+. Only after cell lysis was Cu2+ inhibitory. the cholate-stimulated ganglioside sialidase activity thus paralleled the behaviour of the lysosomal 4-methylumbelliferyl-alpha-D-N-acetylneuraminic acid (4-MU-NeuAc) sialidase. In fibroblasts from sialidosis patients, the cholate-stimulated ganglioside GM3 sialidase activity, but not that of the Triton-activated enzyme, was profoundly diminished. In fibroblasts from patients with mucolipidosis IV (ML IV), both the Triton X-100- and the cholate-stimulated ganglioside GM3 sialidase activities were in the range of normal controls. The Triton-activated enzyme was associated with the plasma membrane in the same manner as in normal cells. Our findings suggest that, in human fibroblasts, there exist two sialidases that degrade ganglioside GM3: one on the external surface of the plasma membrane, and another that is localized in lysosomes and seems identical with the activity that acts on sialyloligosaccharides and 4-MU-NeuAc. As neither activity was found to be deficient in ML IV fibroblasts, our results argue against the hypothesis of a primary involvement of a ganglioside GM3 sialidase in the pathogenesis of ML IV.  相似文献   

20.
An understanding of the mechanical and mechano-molecular responses that occur during the differentiation of mouse C2C12 [corrected] myoblasts in 3-D culture is critical for understanding growth, which is important for progress towards producing a tissue-engineered muscle construct. We have established the main differences in force generation between skeletal myoblasts, dermal fibroblasts, and smooth muscle cells in a 3-D culture model in which cells contract a collagen gel construct. This model was developed to provide a reproducible 3-D muscle organoid in which differences in force generation could be measured, as the skeletal myoblasts fused to form myotubes within a collagen gel. Maintenance of the 3-D culture under sustained uni-axial tension, was found to promote fusion of myoblasts to form aligned multi-nucleate myotubes. Gene expression of both Insulin Like Growth Factor (IGF-1 Ea) and an isoform of IGF-1 Ea, Mechano-growth factor (IGF-1 Eb, also termed MGF), was monitored in this differentiating collagen construct over the time course of fusion and maturation (0-7 days). This identified a transient surge in both IGF-1 and MGF expression on day 3 of the developing construct. This peak of IGF-1 and MGF expression, just prior to differentiation, was consistent with the idea that IGF-1 stimulates differentiation through a Myogenin pathway [Florini et al., 1991: Mol. Endocrinol. 5:718-724]. MGF gene expression was increased 77-fold on day 3, compared to a 36-fold increase with IGF-1 on day 3. This indicates an important role for MGF in either differentiation or, more likely, a response to mechanical or tensional cues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号