首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The contribution of osteoclasts to the process of bone loss in inflammatory arthritis has recently been demonstrated. Studies in osteoclast biology have led to the identification of factors responsible for the differentiation and activation of osteoclasts, the most important of which is the receptor activator of NF-kappa B ligand/osteoclast differentiation factor (RANKL/ODF), a tumor necrosis factor (TNF)-like protein. The RANKL/ODF receptor, receptor activator of NF-kappa B (RANK), is a TNF-receptor family member present on both osteoclast precursors and mature osteoclasts. Like other TNF-family receptors and the IL-1 receptor, RANK mediates its signal transduction via TNF receptor-associated factor (TRAF) proteins, suggesting that the signaling pathways activated by RANK and other inflammatory cytokines involved in osteoclast differentiation and activation are interconnected.  相似文献   

2.
The contribution of osteoclasts to the process of bone loss in inflammatory arthritis has recently been demonstrated. Studies in osteoclast biology have led to the identification of factors responsible for the differentiation and activation of osteoclasts, the most important of which is the receptor activator of NF-κB ligand/osteoclast differentiation factor (RANKL/ODF), a tumor necrosis factor (TNF)-like protein. The RANKL/ODF receptor, receptor activator of NF-κB (RANK), is a TNF-receptor family member present on both osteoclast precursors and mature osteoclasts. Like other TNF-family receptors and the IL-1 receptor, RANK mediates its signal transduction via TNF receptor-associated factor (TRAF) proteins, suggesting that the signaling pathways activated by RANK and other inflammatory cytokines involved in osteoclast differentiation and activation are interconnected.  相似文献   

3.
4.
Cells with monocyte/macrophage lineage expressing receptor activator of NF-κB (RANK) differentiate into osteoclasts following stimulation with the RANK ligand (RANKL). Cell adhesion signaling is also required for osteoclast differentiation from precursors. However, details of the mechanism by which cell adhesion signals induce osteoclast differentiation have not been fully elucidated. To investigate the participation of cell adhesion signaling in osteoclast differentiation, mouse bone marrow-derived macrophages (BMMs) were used as osteoclast precursors, and cultured on either plastic cell culture dishes (adherent condition) or the top surface of semisolid methylcellulose gel loaded in culture tubes (non-adherent condition). BMMs cultured under the adherent condition differentiated into osteoclasts in response to RANKL stimulation. However, under the non-adherent condition, the efficiency of osteoclast differentiation was markedly reduced even in the presence of RANKL. These BMMs retained macrophage characteristics including phagocytic function and gene expression profile. Lipopolysaccharide (LPS) and tumor necrosis factor –αTNF-α activated the NF-κB-mediated signaling pathways under both the adherent and non-adherent conditions, while RANKL activated the pathways only under the adherent condition. BMMs highly expressed RANK mRNA and protein under the adherent condition as compared to the non-adherent condition. Also, BMMs transferred from the adherent to non-adherent condition showed downregulated RANK expression within 24 hours. In contrast, transferring those from the non-adherent to adherent condition significantly increased the level of RANK expression. Moreover, interruption of cell adhesion signaling by echistatin, an RGD-containing disintegrin, decreased RANK expression in BMMs, while forced expression of either RANK or TNFR-associated factor 6 (TRAF6) in BMMs induced their differentiation into osteoclasts even under the non-adherent condition. These results suggest that cell adhesion signaling regulates RANK expression in osteoclast precursors.  相似文献   

5.
Signaling through receptor activator of nuclear factor-kappaB (RANK) is essential for the differentiation and activation of osteoclasts, the cell principally responsible for bone resorption. Animals genetically deficient in RANK or the cognate RANK ligand are profoundly osteopetrotic because of the lack of bone resorption and remodeling. RANK provokes biochemical signaling via the recruitment of intracellular tumor necrosis factor receptor-associated factors (TRAFs) after ligand binding and receptor oligomerization. To understand the RANK-mediated signal transduction mechanism in osteoclastogenesis, we have designed a system to recapitulate osteoclast differentiation and activation in vitro by transfer of the RANK cDNA into hematopoietic precursors genetically deficient in RANK. Gene transfer of RANK constructs that are selectively incapable of binding different TRAF proteins revealed that TRAF pathways downstream of RANK that affect osteoclast differentiation are functionally redundant. In contrast, the interaction of RANK with TRAF6 is absolutely required for the proper formation of cytoskeletal structures and functional resorptive activity of osteoclasts. Moreover, signaling via the interleukin-1 receptor, which also utilizes TRAF6, rescues the osteoclast activation defects observed in the absence of RANK/TRAF6 interactions. These studies are the first to define the functional domains of the RANK cytoplasmic tail that control specific differentiation and activation pathways in osteoclasts.  相似文献   

6.
Osteoprotegerin (OPG) is a decoy receptor for receptor activator of nuclear factor kappaB ligand (RANKL), an inducer of osteoclastogenesis via its receptor RANK. We recently demonstrated that OPG also exerts a direct effect in osteoclasts by regulating protease expression. Herein, we showed that OPG-induced pro-matrix metalloproteinase-9 activity was abolished by ras/MAPK inhibitors in purified osteoclasts. OPG induced the phosphorylation of p38 and ERK1/2 in RAW264.7 cells. Only p38 activation was totally abolished by a blocking anti-RANKL antibody or an excess of RANKL. Surface plasmon resonance experiments revealed that RANK, RANKL and OPG are able to form a tertiary complex. These results suggested a potential formation of a tertiary complex RANK-RANKL-OPG on osteoclasts. Thus, OPG is not only a soluble decoy receptor for RANKL but must be also considered as a direct effector of osteoclast functions.  相似文献   

7.
Membrane lipid rafts play a key role in immune cell activation by recruiting and excluding specific signaling components of immune cell surface receptors upon the receptor engagement. Despite this, the role of these microdomains in the regulation of osteoclasts as controlled by receptor activator of nuclear factor kappaB (RANK) has yet to be established. In this study, we demonstrate that the raft microdomain expression plays an essential role in osteoclast function and differentiation. Expression of raft component flotillin greatly increased during osteoclast differentiation, whereas engagement of RANK induced the translocation of tumor necrosis factor receptor-associated factor 6 to rafts where Src was constitutively resident. Disruption of rafts blocked TRAF6 translocation and Akt activation by RANK ligand in osteoclasts and further reduced the survival of osteoclasts. Actin ring formation and bone resorption by osteoclasts were also found to require the integrity of rafts. Our observations demonstrate for the first time that RANK-mediated signaling and osteoclast function are critically dependent on the expression and integrity of raft membrane microdomains.  相似文献   

8.
9.
RANKing intracellular signaling in osteoclasts   总被引:3,自引:0,他引:3  
Feng X 《IUBMB life》2005,57(6):389-395
RANKL plays a pivotal role in the differentiation, function and survival of osteoclasts, the principal bone-resorbing cells. RANKL exerts the effects by binding RANK, the receptor activator of NF-kappaB, in osteoclasts and its precursors. Upon binding RANKL, RANK activates six major signaling pathways: NFATc1, NF-kappaB, Akt/PKB, JNK, ERK and p38, which play distinct roles in osteoclast differentiation, function and survival. Recent studies have not only provided more insights into RANK signaling but have also revealed that several factors, including INF-gamma, IFN-beta, and ITAM-activated costimulatory signals, regulate osteoclastogenesis via direct crosstalk with RANK signaling. It was recently shown that RANK contains three functional motifs capable of mediating osteoclastogenesis. Moreover, although both IFN-gamma and IFN-beta inhibit osteoclastogenesis, they exert the inhibitory effects by distinct mechanisms. Whereas IFN-gamma has been shown to block osteoclastogenesis by promoting degradation of TRAF6, IFN-beta inhibits osteoclastogenesis by down-regulating c-fos expression. In contrast, the ITAM-activated costimulatory signals positively regulate osteoclastogenesis by mediating the activation of NFATc1 through two ITAM-harboring adaptors: FcRgamma and DAP12. This review is focused on discussing the current understanding of RANK signaling and signaling crosstalk between RANK and the various factors in osteoclasts.  相似文献   

10.
11.
12.
Ryu J  Kim H  Lee SK  Chang EJ  Kim HJ  Kim HH 《Proteomics》2005,5(16):4152-4160
Osteoclasts are cells specialized for bone resorption. For osteoclast activation, tumor necrosis factor receptor-associated factor 6 (TRAF6) plays a pivotal role. To find new molecules that bind TRAF6 and have a function in osteoclast activation, we employed a proteomic approach. TRAF6-binding proteins were purified from osteoclast cell lysates by affinity chromatography and their identity was disclosed by MS. The identified proteins included several heat shock proteins, actin and actin-binding proteins, and vacuolar ATPase (V-ATPase). V-ATPase, documented for a great increase in expression during osteoclast differentiation, is an important enzyme for osteoclast function; it transports proton to resorption lacunae for hydroxyapatite dissolution. The binding of V-ATPase with TRAF6 was confirmed both in vitro by GST pull-down assays and in osteoclasts by co-immunoprecipitation and confocal microscopy experiments. In addition, the V-ATPase activity associated with TRAF6 increased in osteoclasts stimulated with receptor activator of nuclear factor kappaB ligand (RANKL). Furthermore, a dominant-negative form of TRAF6 abrogated the RANKL stimulation of V-ATPase activity. Our study identified V-ATPase as a TRAF6-binding protein using a proteomics strategy and proved a direct link between these two important molecules for osteoclast function.  相似文献   

13.
Receptor activator of NF-kappaB ligand (RANKL) is essential for differentiation and function of osteoclasts. The negative signaling pathways downstream of RANKL are not well characterized. By retroviral transduction of RAW264.7 cells with a dominant negative Src homology 2 domain-containing phosphatase-1 (SHP-1)(C453S), we studied the role of tyrosine phosphatase SHP-1 in RANKL-induced osteoclastogenesis. Over-expression of SHP-1(C453S) significantly enhanced the number of tartrate-resistant acid phosphatase-positive multinuclear osteoclast-like cells in response to RANKL in a dose-dependent manner. RANKL induced the recruitment of SHP-1 to a complex containing TNFR-associated factor (TRAF)6. GST pull down experiments indicated that the association of SHP-1 with TRAF6 is mediated by SHP-1 lacking the two Src homology 2 domains. RANKL-stimulated IkappaB-alpha phosphorylation, IkappaB-alpha degradation and DNA binding ability of NF-kappaB were increased after over-expression of SHP-1(C453S). However, RANKL-induced phosphorylation of mitogen-activated protein kinases, extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 mitogen-activated protein kinase, was unchanged. In addition, SHP-1 regulated RANKL-stimulated tyrosine phosphorylation of p85 subunit of phosphatidylinositol 3 kinase and the phosphorylation of Akt. Increased numbers of osteoclasts contribute to severe osteopenia in Me(v)/Me(v) mice due to mutation of SHP-1. Like RAW264.7 cells expressing SHP-1(C453S), the bone marrow macrophages of Me(v)/Me(v) mice generated much more osteoclast-like cells than that of littermate controls in response to RANKL. Furthermore compared with controls, RANKL induces enhanced association of TRAF6 and RANK in both RAW264.7 cells expressing SHP-1(C453S) and bone marrow macrophages from Me(v)/Me(v) mice. Therefore, SHP-1 plays a role in signals downstream of RANKL by recruitment to the complex containing TRAF6 and these observations may help to understand the mechanism of osteoporosis in Me(v)/Me(v) mice.  相似文献   

14.
15.
A variety of surface receptors eliciting diverse cellular responses have been shown to recruit tumor necrosis factor receptor-associated factor (TRAF) adaptor molecules. However, a few TRAF-interacting intracellular proteins that serve as downstream targets or regulators of TRAF function have been identified. In search of new intracellular molecules that bind TRAF6, we carried out a yeast two-hybrid cDNA library screening with an N-terminal segment of TRAF6 as the bait. A novel human C(2)H(2)-type zinc finger family protein was identified, which when coexpressed with TRAF6 led to a suppression of TRAF6-induced activation of NF-kappa B and c-Jun N-terminal kinase. This novel protein was designated TIZ (for TRAF6-inhibitory zinc finger protein). TIZ expression also inhibited the signaling of RANK (receptor activator of NF-kappa B), which together with TRAF6 has been shown to be essential for osteoclastogenesis. Furthermore, the expression level of TIZ appeared to be regulated during the differentiation of human peripheral blood monocytes into osteoclasts. More significantly, transfection of TIZ into the monocyte/macrophage cell line Raw264.7 reduced the RANK ligand-induced osteoclastogenesis of this cell line. Our findings suggest that the novel zinc finger protein TIZ may play a role during osteoclast differentiation by modulating TRAF6 signaling activity.  相似文献   

16.
Morphogenesis and remodeling of bone involve synthesis of bone matrix by osteoblasts and coordinate resorption of bone by osteoclasts. Defective bone remodeling caused by altered osteoclast activity underlies a multitude of osteopenic disorders. Receptor activator of NF-kappaB (RANK) and its ligand RANKL have been identified as essential factors involved in osteoclast development and bone remodeling, but their mechanism and interacting factors have not been fully characterized. Here we report that the molecular adapter Grb-2-associated binder-2 (Gab2) associates with RANK and mediates RANK-induced activation of NF-kappaB, Akt and Jnk. Inactivation of the gene encoding Gab2 in mice results in osteopetrosis and decreased bone resorption as a result of defective osteoclast differentiation. We also show that Gab2 has a crucial role in the differentiation of human progenitor cells into osteoclasts. We have thus identified a new, key regulatory scaffold molecule, Gab2, that controls select RANK signaling pathways and is essential for osteoclastogenesis and bone homeostasis.  相似文献   

17.
18.
19.
20.
Osteoclastogenesis is comprised of several stage s including progenitor survival, differentiation to mononuclear preosteoclasts, cell fusion to multinuclear mature osteoclasts, and activation to osteoclasts with bone resorbing activity. Botanical antioxidants are now being increasingly investigated for their health-promoting effects on bone. This study investigated that fisetin, a flavonol found naturally in many fruits and vegetables, suppressed osteoclastogenesis by disturbing receptor activator of nuclear factor (NF)-κB ligand (RANKL)-mediated signaling pathway and demoting osteoclastogenic protein induction. Nontoxic fisetin at ≤10μM inhibited the induction of RANK, tumor necrosis factor receptor associated factor 6 (TRAF6) and the activation of NF-κB in RANKL-stimulated RAW 264.7 macrophages. In RANKL-differentiated osteoclasts cell fusion protein of E-cadherin was induced, which was dampened by fisetin. The formation of tartrate-resistance acid phosphatase-positive multinucleated osteoclasts was suppressed by adding fisetin to RANKL-exposed macrophages. It was also found that fisetin reduced actin ring formation and gelsolin induction of osteclasts enhanced by RANKL through disturbing c-Src-proline-rich tyrosine kinase 2 signaling. Fisetin deterred preosteoclasts from the cell-cell fusion and the organization of the cytoskeleton to seal the resorbing area and to secret protons for bone resorption. Consistently, the 5 day-treatment of fisetin diminished RANKL-induced cellular expression of carbonic anhydrase II and integrin β3 concurrently with a reduction of osteoclast bone-resorbing activity. Therefore, fisetin was a natural therapeutic agent retarding osteoclast fusion and cytoskeletal organization such as actin rings and ruffled boarder, which is a property of mature osteoclasts and is required for osteoclasts to resorb bone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号