首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activation of glycolytic genes by HIF-1 is considered critical for metabolic adaptation to hypoxia through increased conversion of glucose to pyruvate and subsequently to lactate. We found that HIF-1 also actively suppresses metabolism through the tricarboxylic acid cycle (TCA) by directly trans-activating the gene encoding pyruvate dehydrogenase kinase 1 (PDK1). PDK1 inactivates the TCA cycle enzyme, pyruvate dehydrogenase (PDH), which converts pyruvate to acetyl-CoA. Forced PDK1 expression in hypoxic HIF-1alpha null cells increases ATP levels, attenuates hypoxic ROS generation, and rescues these cells from hypoxia-induced apoptosis. These studies reveal a hypoxia-induced metabolic switch that shunts glucose metabolites from the mitochondria to glycolysis to maintain ATP production and to prevent toxic ROS production.  相似文献   

2.
3.
4.
Many cancer cells rely more on aerobic glycolysis (the Warburg effect) than mitochondrial oxidative phosphorylation and catabolize glucose at a high rate. Such a metabolic switch is suggested to be due in part to functional attenuation of mitochondria in cancer cells. However, how oncogenic signals attenuate mitochondrial function and promote the switch to glycolysis remains unclear. We previously reported that tyrosine phosphorylation activates and inhibits mitochondrial pyruvate dehydrogenase kinase (PDK) and phosphatase (PDP), respectively, leading to enhanced inhibitory serine phosphorylation of pyruvate dehydrogenase (PDH) and consequently inhibition of pyruvate dehydrogenase complex (PDC) in cancer cells. In particular, Tyr-381 phosphorylation of PDP1 dissociates deacetylase SIRT3 and recruits acetyltransferase ACAT1 to PDC, resulting in increased inhibitory lysine acetylation of PDHA1 and PDP1. Here we report that phosphorylation at another tyrosine residue, Tyr-94, inhibits PDP1 by reducing the binding ability of PDP1 to lipoic acid, which is covalently attached to the L2 domain of dihydrolipoyl acetyltransferase (E2) to recruit PDP1 to PDC. We found that multiple oncogenic tyrosine kinases directly phosphorylated PDP1 at Tyr-94, and Tyr-94 phosphorylation of PDP1 was common in diverse human cancer cells and primary leukemia cells from patients. Moreover, expression of a phosphorylation-deficient PDP1 Y94F mutant in cancer cells resulted in increased oxidative phosphorylation, decreased cell proliferation under hypoxia, and reduced tumor growth in mice. Together, our findings suggest that phosphorylation at different tyrosine residues inhibits PDP1 through independent mechanisms, which act in concert to regulate PDC activity and promote the Warburg effect.  相似文献   

5.
6.
7.
The mechanism of tumorigenesis has not been fully identified in laryngeal cancer, which accounts for one fourth of patents with head and neck tumors. Long noncoding RNA PCAT19 has been shown to participate in the prostate cancer progression. However, little is known about the role of PCAT19 in the tumorigenesis of laryngeal cancer. In our study, it was shown that the expression levels of PCAT19 was increased in laryngeal tumor tissues and associated with decreased overall survival. Using laryngeal cancer cells lines HEp-2 and AMC-HN-8, it was demonstrated that knockdown of PCAT19 decreased the cell proliferation, increased the mitochondrial respiration, and inhibited the glycolysis. In detail, it showed that the PDK4 expression and PDHE1α phosphorylation levels were decreased upon the PCAT19 knockdown. Further studies indicated that miR-182 functioned as the bridge between PCAT19 and PDK4, which could also regulate the cellular metabolism thus affecting the cell proliferation. Furthermore, it was shown that the PCAT19/miR-182/PDK4 axis existed and regulated cell proliferation by modulating glycolysis and mitochondrial respiration. Finally, we showed that the PCAT19 knockdown decreased the tumor growth in vivo, possibly through regulating the miR-182/PDK4 axis. In conclusion, we demonstrated that lncRNA PCAT19 promoted cell proliferation and tumorigenesis by modulating the miR-182/PDK4 axis and the metabolism balance. PCAT19 might become a promising new target for laryngeal cancer therapeutics.  相似文献   

8.
Simon MC 《Cell metabolism》2006,3(3):150-151
Hypoxic cells induce glycolytic enzymes; this HIF-1-mediated metabolic adaptation increases glucose flux to pyruvate and produces glycolytic ATP. Two papers in this issue of Cell Metabolism (Kim et al., 2006; Papandreou et al., 2006) demonstrate that HIF-1 also influences mitochondrial function, suppressing both the TCA cycle and respiration by inducing pyruvate dehydrogenase kinase 1 (PDK1). PDK1 regulation in hypoxic cells promotes cell survival.  相似文献   

9.
10.
Many tumor cells rely on aerobic glycolysis instead of oxidative phosphorylation for their continued proliferation and survival. Myc and HIF-1 are believed to promote such a metabolic switch by, in part, upregulating gene expression of pyruvate dehydrogenase (PDH) kinase 1 (PDHK1), which phosphorylates and inactivates mitochondrial PDH and consequently pyruvate dehydrogenase complex (PDC). Here we report that tyrosine phosphorylation enhances PDHK1 kinase activity by promoting ATP and PDC binding. Functional PDC can form in mitochondria outside of the matrix in some cancer cells and PDHK1 is commonly tyrosine phosphorylated in human cancers by diverse oncogenic tyrosine kinases localized to different mitochondrial compartments. Expression of phosphorylation-deficient, catalytic hypomorph PDHK1 mutants in cancer cells leads to decreased cell proliferation under hypoxia and increased oxidative phosphorylation with enhanced mitochondrial utilization of pyruvate and reduced tumor growth in xenograft nude mice. Together, tyrosine phosphorylation activates PDHK1 to promote the Warburg effect and tumor growth.  相似文献   

11.
12.
13.
Increased conversion of glucose to lactic acid associated with decreased mitochondrial respiration is a unique feature of tumors first described by Otto Warburg in the 1920s. Recent evidence suggests that the Warburg effect is caused by oncogenes and is an underlying mechanism of malignant transformation. Using a novel approach to measure cellular metabolic rates in vitro, the bioenergetic basis of this increased glycolysis and reduced mitochondrial respiration was investigated in two human cancer cell lines, H460 and A549. The bioenergetic phenotype was analyzed by measuring cellular respiration, glycolysis rate, and ATP turnover of the cells in response to various pharmacological modulators. H460 and A549 cells displayed a dependency on glycolysis and an ability to significantly upregulate this pathway when their respiration was inhibited. The converse, however, was not true. The cell lines were attenuated in oxidative phosphorylation (OXPHOS) capacity and were unable to sufficiently upregulate mitochondrial OXPHOS when glycolysis was disabled. This observed mitochondrial impairment was intimately linked to the increased dependency on glycolysis. Furthermore, it was demonstrated that H460 cells were more glycolytic, having a greater impairment of mitochondrial respiration, compared with A549 cells. Finally, the upregulation of glycolysis in response to mitochondrial ATP synthesis inhibition was dependent on AMP-activated protein kinase activity. In summary, our results demonstrate a bioenergetic phenotype of these two cancer cell lines characterized by increased rate of glycolysis and a linked attenuation in their OXPHOS capacity. These metabolic alterations provide a mechanistic explanation for the growth advantage and apoptotic resistance of tumor cells. oxygen consumption; oxidative phosphorylation; Warburg effect; real time  相似文献   

14.
15.
The retina is the most metabolically active tissue in the human body and hypoxia-induced retinal ganglion cell (RGC) death has been implicated in glaucomatous optic neuropathy. The aim of this study is to determine whether muscarinic receptor agonist pilocarpine, a classic antiglaucoma drug, possesses neuroprotection against cobalt chloride (CoCl2)-mimetic hypoxia-induced apoptosis of rat retinal ganglion cells (RGC-5 cells) and its underlying mechanisms. Cell viability was determined by Cell Counting Kit-8 assay and apoptosis was examined by annexin V and mitochondrial membrane potential (MMP) assays. Expressions of hypoxia-induced factor-1α (HIF-1α), p53, and BNIP3 were investigated by quantitative real-time PCR and western blot analysis. After treatment of 200 μM CoCl2 for 24 h, RGC-5 cells showed a marked decrease of cell viability by approximately 30%, increased apoptosis rate and obvious decline in MMP, which could largely be reversed by the pretreatment of 1 μM pilocarpine mainly via the activation of muscarinic receptors. Meanwhile, pretreatment of 1 μM pilocarpine could significantly prevent CoCl2-induced HIF-1α translocation from cytoplasm to nucleus and down-regulate the expression of HIF-1α, p53, and BNIP3. These studies demonstrated that pilocarpine had effective protection against hypoxia-induced apoptosis in RGCs via muscarinic receptors and HIF-1α pathway. The findings suggest that HIF-1α pathway as a “master switch” may be used as a therapeutic target in the cholinergic treatment of glaucoma.  相似文献   

16.
Exposure of metazoan organisms to hypoxia engages a metabolic switch orchestrated by the hypoxia-inducible factor 1 (HIF-1). HIF-1 mediates induction of glycolysis and active repression of mitochondrial respiration that reduces oxygen consumption and inhibits the production of potentially harmful reactive oxygen species (ROS). Here, we show that FoxO3A is activated in hypoxia downstream of HIF-1 and mediates the hypoxic repression of a set of nuclear-encoded mitochondrial genes. FoxO3A is required for hypoxic suppression of mitochondrial mass, oxygen consumption, and ROS production and promotes cell survival in hypoxia. FoxO3A is recruited to the promoters of nuclear-encoded mitochondrial genes where it directly antagonizes c-Myc function via a mechanism that does not require binding to the consensus FoxO recognition element. Furthermore, we show that FoxO3A is activated in human hypoxic tumour tissue in vivo and that FoxO3A short-hairpin RNA (shRNA)-expressing xenograft tumours are decreased in size and metabolically changed. Our findings define a novel mechanism by which FoxO3A promotes metabolic adaptation and stress resistance in hypoxia.  相似文献   

17.
Pyruvate dehydrogenase kinase (PDK) can regulate the catalytic activity of pyruvate decarboxylation oxidation via the mitochondrial pyruvate dehydrogenase complex, and it further links glycolysis with the tricarboxylic acid cycle and ATP generation. This review seeks to elucidate the regulation of PDK activity in different species, mainly mammals, and the role of PDK inhibitors in preventing increased blood glucose, reducing injury caused by myocardial ischemia, and inducing apoptosis of tumor cells. Regulations of PDKs expression or activity represent a very promising approach for treatment of metabolic diseases including diabetes, heart failure, and cancer. The future research and development could be more focused on the biochemical understanding of the diseases, which would help understand the cellular energy metabolism and its regulation by pharmacological effectors of PDKs.  相似文献   

18.
Cancer cells display high rates of aerobic glycolysis, a phenomenon known historically as the Warburg effect. Lactate and pyruvate, the end products of glycolysis, are highly produced by cancer cells even in the presence of oxygen. Hypoxia-induced gene expression in cancer cells has been linked to malignant transformation. Here we provide evidence that lactate and pyruvate regulate hypoxia-inducible gene expression independently of hypoxia by stimulating the accumulation of hypoxia-inducible Factor 1alpha (HIF-1alpha). In human gliomas and other cancer cell lines, the accumulation of HIF-1alpha protein under aerobic conditions requires the metabolism of glucose to pyruvate that prevents the aerobic degradation of HIF-1alpha protein, activates HIF-1 DNA binding activity, and enhances the expression of several HIF-1-activated genes including erythropoietin, vascular endothelial growth factor, glucose transporter 3, and aldolase A. Our findings support a novel role for pyruvate in metabolic signaling and suggest a mechanism by which high rates of aerobic glycolysis can promote the malignant transformation and survival of cancer cells.  相似文献   

19.
Glucose oxidation modulates anoikis and tumor metastasis   总被引:1,自引:0,他引:1  
Cancer cells exhibit altered glucose metabolism characterized by a preference for aerobic glycolysis or the Warburg effect, and the cells resist matrix detachment-induced apoptosis, which is called anoikis, a barrier to metastasis. It remains largely unclear whether tumor metabolism influences anoikis and metastasis. Here we show that when detached from the matrix, untransformed mammary epithelial cells undergo metabolic reprogramming by markedly upregulating pyruvate dehydrogenase (PDH) kinase 4 (PDK4) through estrogen-related receptor gamma (ERRγ), thereby inhibiting PDH and attenuating the flux of glycolytic carbon into mitochondrial oxidation. To decipher the significance of this metabolic response, we found that depletion of PDK4 or activation of PDH increased mitochondrial respiration and oxidative stress in suspended cells, resulting in heightened anoikis. Conversely, overexpression of PDKs prolonged survival of cells in suspension. Therefore, decreased glucose oxidation following cell detachment confers anoikis resistance. Unlike untransformed cells, most cancer cells demonstrate reduced glucose oxidation even under attached conditions, and thus they inherently possess a survival advantage when suspended. Normalization of glucose metabolism by stimulating PDH in cancer cells restores their susceptibility to anoikis and impairs their metastatic potential. These results suggest that the Warburg effect, more specifically, diminished glucose oxidation, promotes anoikis resistance and metastasis and that PDKs are potential targets for antimetastasis therapy.  相似文献   

20.
Colorectal cancer (CRC) is the third leading cause of cancer-related deaths in the US. Understanding the mechanisms of CRC progression is essential to improve treatment. Mitochondria is the powerhouse for healthy cells. However, in tumor cells, less energy is produced by the mitochondria and metabolic reprogramming is an early hallmark of cancer. The metabolic differences between normal and cancer cells are being interrogated to uncover new therapeutic approaches. Mitochondria targeting PTEN-induced kinase 1 (PINK1) is a key regulator of mitophagy, the selective elimination of damaged mitochondria by autophagy. Defective mitophagy is increasingly associated with various diseases including CRC. However, a significant gap exists in our understanding of how PINK1-dependent mitophagy participates in the metabolic regulation of CRC. By mining Oncomine, we found that PINK1 expression was downregulated in human CRC tissues compared to normal colons. Moreover, disruption of PINK1 increased colon tumorigenesis in two colitis-associated CRC mouse models, suggesting that PINK1 functions as a tumor suppressor in CRC. PINK1 overexpression in murine colon tumor cells promoted mitophagy, decreased glycolysis and increased mitochondrial respiration potentially via activation of p53 signaling pathways. In contrast, PINK1 deletion decreased apoptosis, increased glycolysis, and reduced mitochondrial respiration and p53 signaling. Interestingly, PINK1 overexpression in vivo increased apoptotic cell death and suppressed colon tumor xenograft growth. Metabolomic analysis revealed that acetyl-CoA was significantly reduced in tumors with PINK1 overexpression, which was partly due to activation of the HIF-1α-pyruvate dehydrogenase (PDH) kinase 1 (PDHK1)-PDHE1α axis. Strikingly, treating mice with acetate increased acetyl-CoA levels and rescued PINK1-suppressed tumor growth. Importantly, PINK1 disruption simultaneously increased xenografted tumor growth and acetyl-CoA production. In conclusion, mitophagy protein PINK1 suppresses colon tumor growth by metabolic reprogramming and reducing acetyl-CoA production.Subject terms: Tumour-suppressor proteins, Cancer metabolism  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号