首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Liu H  Frankel LK  Bricker TM 《Biochemistry》2007,46(25):7607-7613
The Arabidopsis thaliana mutant psbo1 (formerly the mutant LE18-30), which contains a point mutation in the psbO-1 gene leading to defective expression of the PsbO-1 protein, has recently been described [Murakami, R. et al. (2002) FEBS Lett. 523, 138-142]. This mutant completely lacks the PsbO-1 protein and overexpresses the PsbO-2 protein. To further study the effect of PsbO-1 deficiency on the function of photosystem II, the polyphasic chlorophyll a fluorescence rise and flash fluorescence induction and decay of the relative fluorescence quantum yield were measured in whole leaves from wild type and the psbo1 mutant. Additionally, flash oxygen yield experiments were performed on thylakoid membranes isolated from wild type and the psbo1 mutant. The results obtained indicate that during fluorescence induction the psbo1 gene exhibited an enhanced O to P transition. Additionally, while the J to I transition in wild type accounted for more than 30% of the total fluorescence yield, in the mutant it accounted for less than 2% rise in the total. Analysis of the flash-induced fluorescence rise in the presence of DCMU indicated that in wild type the ratio of PS IIalpha to PS IIbeta reaction centers was approximately 1.2 while in the mutant the ratio was approximately 0.3. Fluorescence decay kinetics in the absence of DCMU indicated that electron transfer to QB was significantly altered in the mutant. Fluorescence decay kinetics in the presence of DCMU indicated that the charge recombination between QA- and the S2 state of the oxygen-evolving complex was retarded. Furthermore, flash oxygen yield analysis indicated that both the S2 and S3 states exhibited significantly longer lifetimes in the psbo1 mutant than in wild type. Our data indicate that while PsbO-1-deficient plants can grow photoautotrophically (although at a reduced growth rate) the photochemistry of PS II is significantly altered.  相似文献   

2.
Haijun Liu 《BBA》2009,1787(8):1029-1038
The Arabidopsis thaliana mutant psbo1 has recently been described and characterized. Loss of expression of the PsbO-1 protein leads to a variety of functional perturbations including elevated levels of the PsbO-2 protein and defects on both the oxidizing- and reducing-sides of Photosystem II. In this communication, two plant lines were produced using the psbo1 mutant as transgenic host, which contained an N-terminally histidine6-tagged PsbO-1 protein. This protein was expressed and correctly targeted into the thylakoid lumen. Immunological analysis indicated that different levels of expression of the modified PsbO-1 protein were obtained in different transgenic plant lines and that the level of expression in each line was stable over several generations. Examination of the Photosystem II closure kinetics demonstrated that the defective double reduction of QB and the delayed exchange of QBH2 with the plastoquinone pool which were observed during the characterization of the psbo1 mutant were effectively restored to wild-type levels by the His6-tagged PsbO-1 protein. Flash fluorescence induction and decay were also examined. Our results indicated that high expression of the modified PsbO-1 was required to increase the ratio of PS IIα/PS IIβ reaction centers to wild-type levels. Fluorescence decay kinetics in the absence of DCMU indicated that the expression of the His6-tagged PsbO-1 protein restored efficient electron transfer to QB, while in the presence of DCMU, charge recombination between QA and the S2 state of the oxygen-evolving complex occurred at near wild-type rates. Our results indicate that high expression of the His6-tagged PsbO-1 protein efficiently complements nearly all of the photochemical defects observed in the psbo1 mutant. Additionally, this study establishes a platform on which the in vivo consequences of site-directed mutagenesis of the PsbO-1 protein can be examined.  相似文献   

3.
Photosystem II activity of oxygen-evolving membranes can be quantified by their capacity to do charge separation or their capacity to transport electrons. In this study using flash excitation of saturating intensity, charge separation is measured by absorption changes in the ultraviolet region of the spectra associated with primary-quinone reduction, and electron transport is measured by oxygen flash yield. These methods are applied to thylakoids and three different types of Photosystem II particles. In thylakoids electron-transport activity is 75–85% of charge separation activity. In Photosystem II particles this percentage is 60–70%, except for the BBY type (Berthold, D.A., Babcock, G.T. and Yocum, C.F. (1981) FEBS Lett. 135, 231–234), in which it is only 29%. These estimates of non-functional oxygen-evolving centers agree within experimental error, except for the BBY particle, with the quantum requirement for oxygen evolution measured under light-limited conditions. These reaction centers that are non-functional in oxygen evolution occur during sample preparation and are not a result of inhibition by ferricyanide or quinone acceptor systems. In thylakoids on the first flash, absorption changes at 325 nm do not show significant contributions from oxygen evolution S-state transitions. In the presence of ferricyanide the absorption change at 325 nm does have a significant contribution from Q400 in thylakoids, but considerably less in Photosystem II particles.  相似文献   

4.
The water-oxidizing complex of Photosystem II is an important target of ultraviolet-B (280-320 nm) radiation, but the mechanistic background of the UV-B induced damage is not well understood. Here we studied the UV-B sensitivity of Photosystem II in different oxidation states, called S-states of the water-oxidizing complex. Photosystem II centers of isolated spinach thylakoids were synchronized to different distributions of the S(0), S(1), S(2) and S(3) states by using packages of visible light flashes and were exposed to UV-B flashes from an excimer laser (lambda=308 nm). The loss of oxygen evolving activity showed that the extent of UV-B damage is S-state-dependent. Analysis of the data obtained from different synchronizing flash protocols indicated that the UV-sensitivity of Photosystem II is significantly higher in the S(3) and S(2) states than in the S(1) and S(0) states. The data are discussed in terms of a model where UV-B-induced inhibition of water oxidation is caused either by direct absorption within the catalytic manganese cluster or by damaging intermediates of the water oxidation process.  相似文献   

5.
RNA interference was used to simultaneously suppress the expression of the two genes that encode the PsbQ proteins of Photosystem II (PS II) in Arabidopsis thaliana, psbQ-1 (At4g21280) and psbQ-2 (At4g05180). Two independent PsbQ-deficient plant lines were examined. These plant lines produced little detectable PsbQ protein. Under normal growth light conditions, the wild type and mutant plants were visually indistinguishable. Additionally, analysis of steady state oxygen evolution rates and chlorophyll fluorescence characteristics indicated little alteration of photosynthetic capacity in the mutant plants. No loss of other PS II proteins was evident. Interestingly, flash oxygen yield analysis performed on thylakoid membranes isolated from the mutant and wild type plants indicated that the oxygen-evolving complex was quite unstable in the mutants. Furthermore, the lifetime of the S2 state of the oxygen-evolving complex appeared to be increased in these plants. Incubation of the wild type and mutant plants under low light growth conditions led to a significantly stronger observed phenotype in the mutants. The mutant plants progressively yellowed (after 2 weeks) and eventually died (after 3-4 weeks). The wild type plants exhibited only slight yellowing after 4 weeks under low light conditions. The mutant plants exhibited a large loss of a number of PS II components, including CP47 and the D2 protein, under low light conditions. Additionally, significant alterations of their fluorescence characteristics were observed, including an increased FO and decreased FV, yielding a large loss in PS II quantum efficiency (FV/FM). Analysis of QA- decay kinetics in the absence of 3-(3,4-dichlorophenyl)-1,1-dimethyl urea indicated a defect in electron transfer from QA- to QB, whereas experiments performed in the presence of this herbicide indicated that the recombination rate between QA- and the S2 state was strongly retarded. These results indicate that the loss of the PsbQ protein induces significant changes in Photosystem II function, particularly in low light-grown plants, and that the PsbQ protein is required for photoautotrophic growth under low light conditions.  相似文献   

6.
I. Vass  H. Koike  Y. Inoue 《BBA》1985,810(3):302-309
The influence of high pH on the functioning of the oxygen-evolving system was studied with isolated thylakoids by measuring flash oxygen yield in parallel with thermoluminescence B band which originates in the recombination between the positive charges on S2 and S3, the oxidized states of the water-oxidizing enzyme, and the negative charges on QB, the semireduced form of the secondary quinone acceptor of Photosystem II. It was found that a mild alkaline incubation of thylakoids (3 min at pH = 8.8–9.1 in darkness) largely inhibits O2 evolution, while much less the B-band amplitude. The flash-induced period-four oscillation of the B band was abolished at high pH, showing normal oscillatory response only after the 1st and 2nd flashes, but no more oscillation after the 3rd flash. These observations indicated an inhibition of S3-to-S4 transition by high pH and were correlated primarily with the liberation of the 33 kDa peripheral protein followed by release of functional Mn. The above phenomena were largely reversed when the pH was returned to neutral. A possible mechanism of high pH inhibition of oxygen-evolving system is discussed.  相似文献   

7.
The functional state of the Photosystem (PS) II complex in Arabidopsis psbR T-DNA insertion mutant was studied. The DeltaPsbR thylakoids showed about 34% less oxygen evolution than WT, which correlates with the amounts of PSII estimated from Y(D)(ox) radical EPR signal. The increased time constant of the slow phase of flash fluorescence (FF)-relaxation and upshift in the peak position of the main TL-bands, both in the presence and in the absence of DCMU, confirmed that the S(2)Q(A)(-) and S(2)Q(B)(-) charge recombinations were stabilized in DeltaPsbR thylakoids. Furthermore, the higher amount of dark oxidized Cyt-b559 and the increased proportion of fluorescence, which did not decay during the 100s time span of the measurement thus indicating higher amount of Y(D)(+)Q(A)(-) recombination, pointed to the donor side modifications in DeltaPsbR. EPR measurements revealed that S(1)-to-S(2)-transition and S(2)-state multiline signal were not affected by mutation. The fast phase of the FF-relaxation in the absence of DCMU was significantly slowed down with concomitant decrease in the relative amplitude of this phase, indicating a modification in Q(A) to Q(B) electron transfer in DeltaPsbR thylakoids. It is concluded that the lack of the PsbR protein modifies both the donor and the acceptor side of the PSII complex.  相似文献   

8.
Genome sequence of Arabidopsis thaliana (Arabidopsis) revealed two psbO genes (At5g66570 and At3g50820) which encode two distinct PsbO isoforms: PsbO1 and PsbO2, respectively. To get insights into the function of the PsbO1 and PsbO2 isoforms in Arabidopsis we have performed systematic and comprehensive investigations of the whole photosynthetic electron transfer chain in the T-DNA insertion mutant lines, psbo1 and psbo2.The absence of the PsbO1 isoform and presence of only the PsbO2 isoform in the psbo1 mutant results in (i) malfunction of both the donor and acceptor sides of Photosystem (PS) II and (ii) high sensitivity of PSII centers to photodamage, thus implying the importance of the PsbO1 isoform for proper structure and function of PSII. The presence of only the PsbO2 isoform in the PSII centers has consequences not only to the function of PSII but also to the PSI/PSII ratio in thylakoids. These results in modification of the whole electron transfer chain with higher rate of cyclic electron transfer around PSI, faster induction of NPQ and a larger size of the PQ-pool compared to WT, being in line with apparently increased chlororespiration in the psbo1 mutant plants. The presence of only the PsbO1 isoform in the psbo2 mutant did not induce any significant differences in the performance of PSII under standard growth conditions as compared to WT. Nevertheless, under high light illumination, it seems that the presence of also the PsbO2 isoform becomes favourable for efficient repair of the PSII complex.  相似文献   

9.
PsbO protein is an extrinsic subunit of photosystem II (PSII) and has been proposed to play a central role in stabilization of the catalytic manganese cluster. Arabidopsis thaliana has two psbO genes that express two PsbO proteins; PsbO1 and PsbO2. We reported previously that a mutant plant that lacked PsbO1 (psbo1) showed considerable growth retardation despite the presence of PsbO2 [Murakami, R., Ifuku, K., Takabayashi, A., Shikanai, T., Endo, T., and Sato, F. (2002) FEBS Lett523, 138-142]. In the present study, we characterized the functional differences between PsbO1 and PsbO2. We found that PsbO1 is the major isoform in the wild-type, and the amount of PsbO2 in psbo1 was significantly less than the total amount of PsbO in the wild-type. The amount of PsbO as well as the efficiency of PSII in psbo1 increased as the plants grew; howeVER, it neVER reached the total PsbO level observed in the wild-type, suggesting that the poor activity of PSII in psbo1 was caused by a shortage of PsbO. In addition, an in vitro reconstitution experiment using recombinant PsbOs and urea-washed PSII particles showed that oxygen evolution was better recoVERed by PsbO1 than by PsbO2. Further analysis using chimeric and mutated PsbOs suggested that the amino acid changes Val186-->Ser, Leu246-->Ile, and Val204-->Ile could explain the functional difference between the two PsbOs. Therefore we concluded that both the lower expression level and the inferior functionality of PsbO2 are responsible for the phenotype observed in psbo1.  相似文献   

10.
Oxygen-evolving Photosystem II (PS II) particles were prepared from the thylakoid membranes of a chlorophyll b-less rice mutant, which totally lacks light-harvesting chlorophyll a/b proteins, after solubilization with β-octylglucoside. The preparation was essentially free of Photosystem I as judged from its low-temperature fluorescence spectrum and polypeptide composition. The PS II particles contained all the major subunit polypeptides of the PS II reaction center core complexes and the three extrinsic proteins related to oxygen evolution. The relative abundances of the 33, 21 and 15 kDa proteins were 100, 64 and 20%, respectively, of the corresponding proteins in the mutant thylakoids. The chlorophyll-to-QA ratio was 53 and there was only one bound Ca2+ per QA. Thus, one of the two bound Ca2+ present in the oxygen-evolving PS II membrane preparations from wild-type rice (Shen J.-R., Satoh, K. and Katoh, S. (1988) Biochim. Biophys. Acta 933, 358–364) is missing. The mutant PS II particles were highly active in oxygen evolution in the absence of exogenously added Ca2+, although addition of 5 mM Ca2+ enhanced the activity by 30%. When the 21 and 15 kDa proteins were supplemented to the particles, the Ca2+-effect disappeared and the rate of oxygen evolution increased to a level exceeding 1000 μmol O2 per mg chlorophyll per h. The results indicate that the number of Ca2+ needed to promote a high rate of oxygen evolution is one per PS II in higher plants.  相似文献   

11.
《BBA》1987,890(2):151-159
The effect of the extrinsic 33-kDa protein on the photosynthetic oxygen evolution was studied by comparing spinach Photosystem II particles depleted of the 33-kDa protein with those reconstituted with the protein. The light-intensity dependence of the oxygen-evolution activity under continuous illumination suggests that a dark step, but not a light step, in the oxygen-evolving reaction is accelerated by the 33-kDa protein. Consistently, the pattern of oxygen yield with a series of short saturating flashes, which showed a maximum on the third flash and a damped oscillation with a period of 4, was not much affected by the removal and rebinding of the 33-kDa protein, when the dark interval between the flashes was long enough, i.e., longer than 0.5 s. The millisecond kinetics of oxygen release after the third flash was retarded by the removal of the 33-kDa protein and stimulated by its rebinding, suggesting that the transition from S3 to S0 is accelerated by the 33-kDa protein. The stability of the S2 and S3 states in darkness was higher in the absence of the 33-kDa protein than its presence.  相似文献   

12.
We have applied flash-induced FTIR spectroscopy to study structural changes upon the S(2)-to-S(3) state transition of the oxygen-evolving complex (OEC) in Photosystem II (PSII). We found that several modes in the difference IR spectrum are associated with bond rearrangements induced by the second laser flash. Most of these IR modes are absent in spectra of S(2)/S(1), of the acceptor-side non-heme ion, of Yradical(D)/Y(D) and of S(3)'/S(2)' from Ca-depleted PSII preparations. Our results suggest that these IR modes most likely originate from structural changes in the oxygen-evolving complex itself upon the S(2)-to-S(3) state transition in PSII.  相似文献   

13.
EPR spectroscopy is very useful in studies of the oxygen evolving cycle in Photosystem II and EPR signals from the CaMn(4) cluster are known in all S states except S(4). Many signals are insufficiently understood and the S(0), S(1), and S(3) states have not yet been quantifiable through their EPR signals. Recently, split EPR signals, induced by illumination at liquid helium temperatures, have been reported in the S(0), S(1), and S(3) states. These split signals provide new spectral probes to the S state chemistry. We have studied the flash power dependence of the S state turnover in Photosystem II membranes by monitoring the split S(0), split S(1), split S(3) and S(2) state multiline EPR signals. We demonstrate that quantification of the S(1), S(3) and S(0) states, using the split EPR signals, is indeed possible in samples with mixed S state composition. The amplitudes of all three split EPR signals are linearly correlated to the concentration of the respective S state. We also show that the S(1) --> S(2) transition proceeds without misses following a saturating flash at 1 degrees C, whilst substantial misses occur in the S(2) --> S(3) transition following the second flash.  相似文献   

14.
Bricker TM  Lowrance J  Sutton H  Frankel LK 《Biochemistry》2001,40(38):11483-11489
We have shown previously that a mutant which contained the alteration (448)R --> (448)S (R448S) in the CP47 protein of photosystem II exhibited a defect in its ability to grow and assemble functional photosystem II reaction centers under chloride-limiting conditions [Wu, J., Masri, N., Lee, W., Frankel, L. K., and Bricker, T. M. (1999) Plant Mol. Biol. 39, 381-386]. In this paper we have examined the function of the oxygen-evolving complex under chloride-sufficient (480 microM) and chloride-limiting (< 20 microM) conditions. When placed under chloride-limiting conditions, both the control strain K3 and R448S cells exhibit a loss of steady-state oxygen evolution, with t(1/2) of 16 and 17 min, respectively. Upon the addition of chloride, both recover their oxygen-evolving capacity relatively rapidly. However, R448S exhibits a much slower reactivation of oxygen evolution than does K3 (t(1/2) of 308 and 50 s, respectively). This may indicate a defect at the low-affinity, rapidly exchanging chloride-binding site [Lindberg, K., and Andréasson, L.-E. (1996) Biochemistry 35, 14259-14267]. Additionally, alterations in the distribution of S states and S-state lifetimes were observed. Under chloride-sufficient conditions, the R448S mutant exhibits a significant increase in the proportion of reaction centers in the S(3) state and a greatly increased lifetime of the S(3) state. Under chloride-limiting conditions, the proportion of reaction centers in both the S(2) and S(3) states increases significantly, and there is a marked increase in the lifetime of the S(2) state. These alterations are not observed in the control strain K3. Our observations support the hypothesis that (448)R of CP47 may participate in the formation of the binding domain for chloride in photosystem II and/or in the functional interaction with the 33 kDa protein with the photosystem.  相似文献   

15.
Four procedures utilizing different detergent and salt conditions were used to isolate oxygen-evolving Photosystem II (PS II) preparations from spinach thylakoid membranes. These PS II preparations have been characterized by freeze-fracture electron microscopy, SDS-polyacrylamide gel electrophoresis, steady-state and pulsed oxygen evolution, 77 K fluorescence, and room-temperature electron paramagnetic resonance. All of the O2-evolving PS II samples were found to be highly purified grana membrane fractions composed of paired, appressed membrane fragments. The lumenal surfaces of the membranes and thus the O2-evolving enzyme complex, are directly exposed to the external environment. Biochemical and biophysical analyses indicated that all four preparations are enriched in the chlorophyll ab-light-harvesting complex and Photosystem II, and depleted to varying degrees in the stroma-associated components, Photosystem I and the CF1-ATPase. The four PS II samples also varied in their cytochrome f content. All preparations showed enhanced stability of oxygen production and oxygen-rate electrode activity compared to control thylakoids, apparently promoted by low concentrations of residual detergent in the PS II preparations. A model is presented which summarizes the effects of the salt and detergent treatments on thylakoid structure and, consequently, on the configuration and composition of the oxygen-evolving PS II samples.  相似文献   

16.
The photosystem II (PSII) complex of photosynthetic oxygen evolving membranes comprises a number of small proteins whose functions remain unknown. Here we report that the low molecular weight protein encoded by the psbJ gene is an intrinsic component of the PSII complex. Fluorescence kinetics, oxygen flash yield, and thermoluminescence measurements indicate that inactivation of the psbJ gene in Synechocystis 6803 cells and tobacco chloroplasts lowers PSII-mediated oxygen evolution activity and increases the lifetime of the reduced primary acceptor Q(A)(-) (more than a 100-fold in the tobacco DeltapsbJ mutant). The decay of the oxidized S(2,3) states of the oxygen-evolving complex is considerably accelerated, and the oscillations of the Q(B)(-)/S(2,3) recombination with the number of exciting flashes are damped. Thus, PSII can be assembled in the absence of PsbJ. However, the forward electron flow from Q(A)(-) to plastoquinone and back electron flow to the oxidized Mn cluster of the donor side are deregulated in the absence of PsbJ, thereby affecting the efficiency of PSII electron flow following the charge separation process.  相似文献   

17.
J Messinger  G Renger 《FEBS letters》1990,277(1-2):141-146
The decay kinetics of the redox states S2 and S3 of the water-oxidizing enzyme have been analyzed in isolated spinach thylakoids in the absence and presence of the exogenous reductant hydrazine. In control samples without NH2NH2 a biphasic decay is observed. The rapid decline of S2 and S3 with YD as reductant exhibits practically the same kinetics with t1/2 = 6-7 s at pH = 7.2 and 7 degrees C. The slow reduction (order of 5-10 min at 7 degrees C) of S2 and S3 with endogenous electron donors other than YD is about twice as fast for S2 as for S3 under these conditions. In contrast, the hydrazine-induced reductive shifts of the formal redox states Si (i = 0...3) are characterized by a totally different kinetic pattern: (a) at 1 mM NH2NH2 and incubation on ice the decay of S2 is estimated to be at least 25 times faster (t1/2 less than or equal to 0.4 min) than the corresponding reaction of S3 (t1/2 approximately 13 min); (b) the NH2NH2-induced decay of S3 is even slower (about twice) than the transformation of S1 into the formal redox state 'S-1' (t1/2 approximately 6 min), which gives rise to the two-digit phase shift of the oxygen-yield pattern induced by a flash train in dark adapted thylakoids. (c) the NH2NH2-induced transformation S0----'S-2' [Renger, Messinger and Hanssum (1990) in: Curr.' Res. Photosynth. (Baltscheffsky, M., ed), Vol. 1, pp. 845-848, Kluwer, Dordrecht] is about three times faster (t1/2 approximately 2 min) than the reaction [see text]. Based on these results, the following dependence on the redox state Si of the reactivity towards NH2NH2 is obtained: S3 less than S1 less than S0 much less than S2. The implications of this surprising order of reactivity are discussed.  相似文献   

18.
Photosystem II (PSII) catalyzes the oxidation of water to O2 at the manganese-containing, oxygen-evolving complex (OEC). Photoexcitation of PSII results in the oxidation of the OEC; four sequential oxidation reactions are required for the generation and release of molecular oxygen. Therefore, with flash illumination, the OEC cycles among five S n states. Chloride depletion inhibits O2 evolution. However, the binding site of chloride in the OEC is not known, and the role of chloride in oxygen evolution has not as yet been elucidated. We have employed reaction-induced FT-IR spectroscopy and selective flash excitation, which cycles PSII samples through the S state transitions. On the time scale employed, these FT-IR difference spectra reflect long-lived structural changes in the OEC. Bromide substitution supports oxygen evolution and was used to identify vibrational bands arising from structural changes at the chloride-binding site. Contributions to the vibrational spectrum from bromide-sensitive bands were observed on each flash. Sulfate treatment led to an elimination of oxygen evolution activity and of the FT-IR spectra assigned to the S3 to S0 (third flash) and S0 to S1 transitions (fourth flash). However, sulfate treatment changed, but did not eliminate, the FT-IR spectra obtained with the first and second flashes. Solvent isotope exchange in chloride-exchanged samples suggests flash-dependent structural changes, which alter protein dynamics during the S state cycle. Supported by NSF MCB 03-55421.  相似文献   

19.
András Szilárd 《BBA》2007,1767(6):876-882
The water-oxidizing complex of Photosystem II is an important target of ultraviolet-B (280-320 nm) radiation, but the mechanistic background of the UV-B induced damage is not well understood. Here we studied the UV-B sensitivity of Photosystem II in different oxidation states, called S-states of the water-oxidizing complex. Photosystem II centers of isolated spinach thylakoids were synchronized to different distributions of the S0, S1, S2 and S3 states by using packages of visible light flashes and were exposed to UV-B flashes from an excimer laser (λ = 308 nm). The loss of oxygen evolving activity showed that the extent of UV-B damage is S-state-dependent. Analysis of the data obtained from different synchronizing flash protocols indicated that the UV-sensitivity of Photosystem II is significantly higher in the S3 and S2 states than in the S1 and S0 states. The data are discussed in terms of a model where UV-B-induced inhibition of water oxidation is caused either by direct absorption within the catalytic manganese cluster or by damaging intermediates of the water oxidation process.  相似文献   

20.
The presence of Ca2+ causes a twentyfold or greater increase in the rate of oxygen evolution by cell-free preparations of Phormidium luridum. The requirement for Ca2+ is specific; other divalent cations are much less effective or are inhibitory. The rate of the Hill reaction is maximal at 30 mM CaCl2 in both detergent-free and Brij 35 preparations. The 3-(3,4-dichlorophenyl)-1,1-dimethylurea-insensitive component of oxygen-evolving activity in each preparation also shows the requirement for added Ca2+. This indicates that Ca2+ is acting close to the oxygen-evolving reaction center of Photosystem II. Defatted bovine serum albumin increases the rate of oxygen evolution in the detergent-free preparation, but does not compete with Ca2+, discounting fatty acid mediation of the effects of Ca2+. Neither excess Hill acceptor nor uncouplers of photophosphorylation diminish the stimulatory effects of Ca2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号