首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Essential differences are established between the activities in enzymes of monophosphohexoses' transformation in the Zajdela hepatoma and liver of tumour-bearing rats. So, a very low hexokinase activity is observed in the liver, the activity of phosphoglucomutase and glucose-6-phosphate being high. In hepatoma cells the activity of hexokinase is relatively high and that of phosphoglucomutase, glucose-6-phosphate phosphatase and dehydrogenases--glucose-6-phosphate and 6-phosphogluconate inhibiting the activity of phosphoglucomutase is considerably lower. Significant differences are also found in the ratios of the glucose, glucose-6-phosphate, fructose and fructose-6-phosphate concentrations, that evidences for changes in the regulatory mechanisms in the hepatoma cells.  相似文献   

2.
1. Glucose-6-phosphate and 6-phosphogluconate dehydrogenases have been found in homogenates of Arbacia eggs; 95 per cent of the activity toward each substrate is recovered in the supernatant fraction after centrifuging at 20,000 g for 30 minutes. 2. With glucose-6-phosphate as substrate) the rate of TPN reduction by the supernatant fraction from 1 gm. wet weight unfertilized or fertilized eggs was 1.8 to 3.0 micromoles per minute; this rate is sufficient to support a rate of oxygen consumption 24 times that observed for unfertilized, and 6 times that for fertilized, eggs. Pentose was formed from glucose-6-phosphate at a rate 0.3 to 0.5 that of TPN reduction, when both rates were expressed as micromoles per minute. 3. The concentrations of glucose-6-phosphate and 6-phosphogluconate for half maximal activity were each approximately 0.00004 M for the respective enzymes in the supernatant fraction. Maximal activity toward 6-phosphogluconate was 50 to 60 per cent of that toward glucose-6-phosphate. Glucose-6-phosphate dehydrogenase activity was 50 per cent inhibited in presence of 0.00006 M 2,4,5-trichlorophenol. 4. Reduction of DPN by the supernatant fraction in presence of fructose-1,6-diphosphate and ADP was 0.1 to 0.2 micromoles per minute per gm. wet eggs, indicating that the glycolytic pathway can metabolize glucose-6-phosphate at about 5 per cent the rate at which it can be oxidized by the TPN system from unfertilized or fertilized Arbacia eggs. 5. Phosphoglucomutase, hexose isomerase, and a phosphatase for fructose-1,6-diphosphate also appear to be present in Arbacia eggs.  相似文献   

3.
Phosphofructokinase from the host fraction of chickpea nodules   总被引:2,自引:0,他引:2  
Two phosphofructokinases (EC 2.7.1.11; PFK) have been isolated from the host fraction of nitrogen–fixing chickpea ( Cicer arietinum L.) root nodules that were formed with Rhizobium sp. (Cicer) CC1192. The predominant enzyme, which is suggested to be cytosolic, was isolated as a large aggregate of molecular mass near 2 000 kDa and was purified to a high degree. The less abundant enzyme, suggested to be of plastid origin, had a native molecular mass of 186 kDa. Both forms of PFK displayed typical hyperbolic kinetics with MgATP and fructose-6-phosphate. The major form of PFK was strongly inhibited by phosphoenolpyruvate, 2-phosphoglycerate and 3-phos-phoglycerate, and to a lesser extent by ADP, pyrophosphate, glucose-6-phosphate and 6-phosphogluconate. KCl and phosphate were activators and relieved the effect of inhibitors. The major PFK was disaggregated in the presence of ATP into a species which had a molecular mass of approximately 550 kDa and a lower affinity for fructose-6-phosphate.  相似文献   

4.
1. Lactic acid formation in supernatant fractions of homogenates of cat or rat small-intestinal mucosa was measured under optimum conditions with glucose, fructose, glucose 6-phosphate, fructose 1,6-diphosphate or 3-phosphoglycerate as substrate. 2. Between 80 and 107% of the glycolytic activity of the homogenate was recovered in these particle-free preparations when glucose, fructose, glucose 6-phosphate or fructose 1,6-diphosphate was used as substrate. 3. Evidence was obtained that hexokinase and phosphofructokinase were the rate-limiting enzymes in the initial sequence of glycolytic reactions. The limitation of rate by hexokinase was much more pronounced in preparations from the cat than in those from the rat. 4. With subcellular preparations from cat or rat small intestine lactic acid was also formed from ribose 5-phosphate and at rates similar to those observed with glucose. 5. A higher rate of glycolysis was observed with glucose 6-phosphate as substrate with preparations from the proximal half of the small intestine of the rat as compared with the distal half. 6. Mucosal preparations from rats starved for 24-48hr. exhibited only about one-quarter of the glycolytic activity of those of fed control groups. The decreased rate of formation of lactic acid from either glucose or fructose was mainly due to a decrease in the activity of hexokinase(s). The activities of glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase and a number of other enzymes were not significantly decreased by starvation. 7. The results are discussed in relation to metabolic control of glycolysis in other mammalian tissues.  相似文献   

5.
6-Phosphofructo-2-kinase was purified from rat liver and hepatoma (HTC) cells. The HTC cell enzyme had kinetic properties different from those of the liver enzyme (more sensitive to inhibition by citrate and not inhibited by sn-glycerol 3-phosphate) and was not a substrate of the cyclic-AMP-dependent protein kinase. Unlike the liver enzyme, which is bifunctional and phosphorylated by fructose 2,6-[2-32P]bisphosphate, the HTC cell enzyme contained no detectable fructose-2,6-bisphosphatase activity and phosphorylation by fructose 2,6-[2-32P]-bisphosphate could not be detected. HTC cell fructose-2,6-bisphosphatase could be separated from 6-phosphofructo-2-kinase activity by purification. Antibodies raised against liver 6-phosphofructo-2-kinase did not precipitate HTC cell fructose-2,6-bisphosphatase whose kinetic properties were completely different from those of the liver enzyme.  相似文献   

6.
Fructose-1,6-bisphosphate and triosephosphates have been separated by high performance liquid chromatography utilizing a SynChropack AX anion exchange column with 50-200 mM KH2PO4, pH 2.5-4.6 as mobile phase. The best resolution for each compound was reached in a system of 150 mM KH2PO4, pH 2.5. If radioactive fructose-1,6-bisphosphate as initial substrate was enzymatically converted in triosephosphates, the recoveries of metabolites after the precipitation and chromatographic procedures were higher than 95%. The concentration of radioactive 3-phosphoglycerate measured by liquid scintillation shows a good correlation (correlation coefficient: 0.997) with the spectrophotometrically determined concentration of NADH, which is formed from [U-14C]fructose-1,6-bisphosphate in equimolar concentration with 3-phosphoglycerate in aldolase and glyceraldehyde-3-phosphate dehydrogenase system. The method developed was applied to detect the inhibitory effect of triosephosphate isomerase on aldolase activity which takes place due to the heterologous complex formation.  相似文献   

7.
The analogue of fructose 1,6-bisphosphate in which the phosphate group, -O-PO3H2, on C-6 is replaced by the phosphonomethyl group, -CH2-PO3H2, was made enzymically from the corresponding analogue of 3-phosphoglycerate. It was a substrate for aldolase, which was used to form it, but not for fructose 1,6-bisphosphatase. It was hydrolysed chemically to yield the corresponding analogue of fructose 6-phosphate [i.e. 6-deoxy-6-(phosphonomethyl)-D-fructose, or, more strictly, 6,7-dideoxy-7-phosphono-D-arabino-2-heptulose]. This proved to be a substrate for the sequential actions of glucose 6-phosphate isomerase, glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase. Thus seven out of the nine enzymes of the glycolytic and pentose phosphate pathways so far tested catalyse the reactions of the phosphonomethyl isosteres of their substrates.  相似文献   

8.
The hyperbolic dependence of the initial rate of 6-phosphogluconate dehydrogenase-catalyzed reaction on 6-phosphogluconate and NADP concentrations has been established. The Lineweaver-Burk plots of V0 against concentration of one substrate with constant unsaturating concentrations of another substrate cross left from the ordinate axis. The Km value for 6-phosphogluconate is equal ot 0.035 mM, for NADP--0.018 mM. It has been shown that NADPH inhibits 6-phosphogluconate dehydrogenase by the competitive type with respect to NADP and by the noncompetitive one with respect to 6-phosphogluconate. Ribulose-5-phosphate inhibits the reaction by the mixed type with respect to NADP and by the noncompetitive type with respect to 6-phosphogluconate. Kinetic data are in agreement with the consecutive mechanism of the reaction: the first substrate is NADP, the last product--NADPH. The Arrhenius plot for the reaction shows a break at 27 degrees C.  相似文献   

9.
With an enzyme degradative technique, isotope inequilibrium of glucose metabolites was demonstrated in intact cells and particlefree supernatants of Ehrlich ascites tumor using 1-14C-glucose as tracer. Inequilibrium was found between glucose and glucose-6-phosphate, glucose and fructose-6-phosphate, glucose and 6-phosphogluconate, while glucose-6-phosphate were found to be in near-equilibrium within the incubation time investigated. Glucose and lactate were found to be in near equilibrium after 8 min in intact cells. Calculations based on the equilibrium levels found, showed that these inequilibria could not be explained by the effects of the pentose cycle.  相似文献   

10.
6-phosphofructo-1-kinase (PFK) was purified to homogeneity from liver of gilthead sea bream (Sparus aurata) and kinetic properties of the enzyme were determined. The native enzyme had an apparent molecular mass of 510 kDa and was composed of 86 kDa subunits, suggesting homohexameric structure. At pH 7, S. aurata liver PFK (PFKL) showed sigmoidal kinetics for fructose-6-phosphate (fru-6-P) and hyperbolic kinetics for ATP. Fructose-2,6-bisphosphate (fru-2,6-P2) converted saturation curves for fru-6-P to hyperbolic and activated PFKL synergistically with AMP. Fru-2,6-P2 counteracted the inhibition caused by ATP, ADP and citrate. Compared to the S. aurata muscle isozyme, PFKL had lower affinity for fru-6-P, higher cooperativity, hyperbolic kinetics in relation to ATP, increased susceptibility to inhibition by ATP, and was less affected by AMP, ADP and inhibition by 3-phosphoglycerate, phosphoenolpyruvate, 6-phosphogluconate or phosphocreatine. The effect of starvation-refeeding on PFKL expression was studied at the levels of enzyme activity and protein content in the liver of S. aurata. Our findings indicate that short-term recovery of PFKL activity after refeeding previously starved fish, may result from allosteric regulation by fru-2,6-P2, whereas combination of activation by fru-2,6-P2 and increase in protein content may determine the long-term recovery of the enzyme activity.  相似文献   

11.
The nonglycolytic, anaerobic organism Veillonella parvula M4 has been shown to contain an active pyruvate kinase. The enzyme was purified 126-fold and was shown by disc-gel electrophoresis to contain only two faint contaminating bands. The purified enzyme had a pH optimum of 7.0 in the forward direction and exhibited sigmoidal kinetics at varying concentrations o-f phosphoenol pyruvate (PEP), adenosine 5'-monophosphate (AMP), and Mg-2+ ions with S0.5 values of 1.5, 2.0, and 2.4 mM, respectively. Substrate inhibition was observed above 4 m PEP. Hill plots gave slope values (n) of 4.4 (PEP), 2.8 (adenosine 5'-diphosphate), and 2.0 (Mg-2+), indicating a high degree of cooperativity. The enzyme was inhibited non-competitively by adenosine 5'-triphosphate (Ki = 3.4 mM), and this inhibition was only slightly affected by increasing concentration of Mg-2+ ions to 30 mM. Competitive inhibition was observed with 3-phosphoglycerate, malate, and 2,3-diphosphoglycerate but only at higher inhibitor concentrations. The enzyme was activated by glucose-6-phosphate (P), fructose-6-P, fructose-1,6-diphosphate (P2), dihydroxyacetone-P, and AMP; the Hill coefficients were 2.2, 1.8, 1.5, 2.1, and 2.0, respectively. The presence of each these metabolites caused substrate velocity curves to change from sigmoidal to hyperbolic curves, and each was accompanied by an increase in the maximum activity, e.g., AMP greater than fructose-1,6-P2 greater than dihydroxyacetone-P greater than glucose-6-P greater than fructose-6-P. The activation constants for fructose-1,6-P2, AMP, and glucose-6-P were 0.3, 1.1, and 5.3 mM, respectively. The effect of 5 mM fructose-1,6-P2 was significantly different from the other compounds in that this metabolite was inhibitory between 1.2 and 3 mM PEP. Above this concentration, fructose-1,6-P2 activated the enzyme and abolished substrate inhibition by PEP. The enzyme was not affected by glucose, glyceraldehyde-3-P, 2-phosphoglycerate, lactate, malate, fumerate, succinate, and cyclic AMP. The results suggest that the pyruvate kinase from V. parvula M4 plays a central role in the control of gluconeogenesis in this organism by regulating the concentration of PEP.  相似文献   

12.
1. Glycolysis by the supernatant fraction of homogenates of liver from guinea pigs and rats at various stages of development (foetal, newborn and adult) has been examined in a suitably fortified medium by measurement of inorganic phosphate uptake and production of lactate and glycerol 1-phosphate. 2. Starting with glucose as substrate, two rate-determining steps in glycolysis occur at the stages of glucose phosphorylation and the phosphofructokinase reaction in liver tissue from animals of all ages. Effects of the post-natal development of glucokinase are recorded. 3. The appearance of microsomal glucose 6-phosphatase activity around birth has an effect on glycolysis owing to competition for glucose 6-phosphate. 4. A stimulating effect of the nuclear fraction, especially from foetal liver, on glycolysis by the supernatant fraction is interpreted as being due to stimulation by adenosine-triphosphatase activity at the 3-phosphoglycerate-kinase stage.  相似文献   

13.
Metabolism of glucose by unicellular blue-green algae   总被引:32,自引:0,他引:32  
Summary A facultative photo- and chemoheterotroph, the unicellular bluegreen alga Aphanocapsa 6714, dissimilates glucose with formation of CO2 as the only major product. A substantial fraction of the glucose consumed is assimilated and stored as polyglucose (probably glycogen). The oxidation of glucose proceeds through the pentose phosphate pathway. The first enzyme of this pathway, glucose-6-phosphate dehydrogenase, is partly inducible. In addition, the rate of glucose oxidation is controlled, at the level of glucose-6-phosphate dehydrogenase function, by the intracellular level of an intermediate of the Calvin cycle, ribulose-1,5-diphosphate, which is a specific allosteric inhibitor of this enzyme. As a consequence, the rate of glucose oxidation is greatly reduced by illumination, an effect reversed by the presence of DCMU, an inhibitor of photosystem II.Two obligate photoautotrophs, Synechococcus 6301 and Aphanocapsa 6308, produce CO2 from glucose at extremely low rates, although their levels of pentose pathway enzymes and of hexokinase are similar to those in Aphanocapsa 6714. Failure to grow with glucose appears to reflect the absence of an effective glucose permease. A general hypothesis concerning the primary pathways of carbon metabolism in blue-green algae is presented.Abbreviations A (U)DPG ADP-glucose or UDP-glucose - G-1-P glucose-1-phosphate - G-6-P glucose-6-phosphate - G(int.) intracellular glucose - F-6-P fructose-6-phosphate - 6-PG 6-phosphogluconate - Ru-5-P ribulose-5-phosphate - RUDP ribulose-1,5-diphosphate - PGA 3-phosphoglycerate - GAP glyceraldehyde-3-phosphate  相似文献   

14.
The 1-phosphofructokinase (1-PFK, EC 2.7.1.56) from Pseudomonas putida was partially purified by a combination of (NH4)2SO4 fractionation and DEAE-Sephadex column chromatography. In its kinetic properties, this enzyme resembled the 1-PFK's from other bacteria. With the substrates fructose-1-phosphate (F-1-P) and adenosine triphosphate (ATP) Michaelis-Menten kinetics were observed, the Km for one substrate being unaffected by a variation in the concentration of the other substrate. At pH 8.0, the Km values for F-1-P and ATP were 1.64 X 10(-4) M and 4.08 X 10(-4) M, respectively. At fixed concentrations of F-1-P and ATP, an increase in the Mg2+ resulted in sigmoidal kinetics. Activity was inhibited by ATP when the ratio of ATP:Mg2+ was greater than 0.5 suggesting that ATP:2 Mg2+ was the substrate and free ATP was inhibitory. Activity of 1-PFK was stimulated by K+ and to a lesser extent by NH4+ and Na+. The reaction rate was unaffected by 2 mM K2HPO4, pyruvate, phosphoenolpyruvate, adenosine monophosphate, adenosine 3',5'-cyclic monophosphate, fructose-6-phosphate, glucose-6-phosphate, 6-phosphogluconate, 2-keto-3-deoxy-6-phosphogluconate, or citrate. The results indicated that the 1-PFK from P. putida was not allosterically regulated by a number of metabolites which may play an important role in the catabolism of D-fructose.  相似文献   

15.
6-phosphogluconate, potentiated activation of ribulose bisphosphate carboxylase from Pseudomonasoxalaticus whereas fructose-1,6-bisphosphate inhibited activation and fructose-6-phosphate had no effect. The presence of 1 mM 6-phosphogluconate during activation reduced the Kact for Mg2+ from 1.4 mM to approximately 0.2 mM. In the absence of 6-phosphogluconate, the enzyme responded sigmoidally to increasing CO2 (Hill coefficient, h, of 1.8), with a concentration causing half maximal activation, Act0.5, of 15 mM NaHCO3. In the presence of 1 mM 6-phosphogluconate h was reduced to 1.1 and an Act0.5 value of 5 mM NaHCO3 was obtained. 6-phosphogluconate appeared to saturate at or below 20 μmM.  相似文献   

16.
1. The orthophosphate inhibition of photosynthesis by isolated spinach chloroplasts can be reversed by 3-phosphoglycerate, dihydroxyacetone phosphate, glyceraldehyde 3-phosphate, fructose 6-phosphate and fructose 1,6-diphosphate. 2. Metabolically related compounds such as ribulose 1,5-diphosphate, glucose 6-phosphate, 6-phosphogluconate and phosphoenolpyruvate are ineffective. 3. The kinetics of reversal are characteristic of the intermediate used, but, in each instance, the onset of oxygen evolution is accompanied by a carbon dioxide fixation and except with 3-phosphoglycerate the stoicheiometry is close to unity. 4. The nature of orthophosphate inhibition and its reversal is discussed in relation to metabolic control of photosynthesis.  相似文献   

17.
The aim of this study was to examine: the 24 h variation of 6-phosphogluconate dehydrogenase and glucose-6-phosphate dehydrogenase activities, key enzymes for the maintenance of intracellular NADPH concentration, in rat liver in control and streptozotocin-induced diabetic animals. Adult male rats were fed ad libitum and synchronized on a 12:12 h light-dark cycle (lights on 08:00 h). One group of animals was treated with streptozotocin (STZ, 55 mg/kg, intraperitoneal) to induce experimental diabetes. Eight weeks after STZ injection, the animals were sacrificed at six different times of day—1, 5, 9, 13, 17 and 21 Hours After Lights On (HALO)—and livers were obtained. Enzyme activities were determined spectrophotometrically in triplicate in liver homogenates and expressed as units per mg protein. 6-phosphogluconate dehydrogenase activity was measured by substituting 6-phosphogluconate as substrate. Glucose-6-phosphate dehydrogenase activity was determined by monitoring NADPH production. Treatment, circadian time, and interaction between treatment and circadian time factors were tested by either one or two way analysis of variance (ANOVA). Two-way ANOVA revealed that 6-phosphogluconate dehydrogenase activity significantly depended on both the treatment and time of sacrifice. 6-phosphogluconate dehydrogenase activity was higher in control than diabetic animals; whereas, glucose-6-phosphate dehydrogenase activity did not vary over the 24 h in animals made diabetic by STZ treatment. Circadian variation in the activity of 6-phosphogluconate dehydrogenase was also detected in both the control and STZ treatment groups (one-way ANOVA). Time-dependent variation in glucose-6-phosphate dehydrogenase activity during the 24 h was detected in control but not in diabetic rats. No significant interaction was detected between STZ-treatment and time of sacrifice for both hepatic enzyme activities. These results suggest that the activities of NADPH-generating enzymes exhibit 24 h variation, which is not influenced by diabetes.  相似文献   

18.
The capacity of the triose-phosphate shuttle and various combinations of glycolytic intermediates to substitute for the ATP requirement for fatty-acid and glycerolipid biosynthesis in pea (Pisum sativum L.) root plastids was assessed. In all cases, ATP gave the greatest rates of fatty-acid and glycerolipid biosynthesis. Rates of up to 66 and 27 nmol·(mg protein)–1·h–1 were observed for the incorporation of acetate and glycerol-3-phosphate into lipids in the presence of ATP. In the absence of exogenously supplied ATP, the triose-phosphate shuttle gave up to 44 and 33% of the ATP-control activity in promoting fatty-acid and glycerolipid biosynthesis from acetate and glycerol-3-phosphate, respectively. The optimum shuttle components were 2 mM dihydroxyacetonephosphate (DHAP), 2 mM oxaloacetic acid and 4 mM inorganic phosphate (referred to as the DHAP shuttle). Glyceraldehyde-3-phosphate, as a shuttle triose, was approximately 82% as effective as DHAP in promoting fatty-acid synthesis while 2-phosphoglycerate, 3-phosphoglycerate, and phosphoenolpyruvate were only 27–37% as effective as DHAP. When glycolytic intermediates were used as energy sources for fatty-acid synthesis, in the absence of both exogenously supplied ATP and the triose-phosphate shuttle, phosphoenolpyruvate, 2-phosphoglycerate, fructose-6-phosphate and glucose-6-phosphate each gave 48%, 17%, 23% and 17%, respectively, of the ATP-control activity. Other triose phosphates tested were much less effective in promoting fatty-acid synthesis. When exogenously supplied ATP was supplemented with the DHAP shuttle or glycolytic intermediates, the complete shuttle increased fatty-acid biosynthesis by 37% while DHAP alone resulted in 24% stimulation. Glucose-6-phosphate, fructose-6-phosphate and glycerol-3-phosphate similarly all improved the rates of fatty-acid synthesis by 20–30%. In contrast, 3-phosphoglycerate, 2-phosphoglycerate and phosphoenolpyruvate all inhibited fatty-acid synthesis by approximately 10% each. The addition of the DHAP shuttle and glycolytic intermediates with or without exogenously supplied ATP caused an increase in the proportion of radioactive oleate and a decrease in the proportion of radioactive palmitate synthesized. The use of these alternative energy sources resulted in higher amounts of free fatty acids and triacylglycerol, and lower amounts of diacylglycerol and phosphatidic acid. The data presented here indicate that ATP is superior in promoting in-vitro fatty-acid biosynthesis in pea root plastids; however, both the triose-phosphate shuttle and glycolytic metabolism can produce some of the ATP required for fatty-acid biosynthesis in these plastids.Abbreviations DHAP dihydroxyacetonephosphate - Fru6P fructose-6-phosphate - G3P glycerol-3-phosphate - Glc6P glucose-6-phosphate - OAA oxaloacetate - PEP phosphoenolpyruvate - 2PGA 2-phosphoglycerate - 3PGA 3-phosphoglycerate - 3PGalde glyceraldehyde-3-phosphate This research was supported by grants from the Natural Sciences and Engineering Research Council of Canada.  相似文献   

19.
1. A mutant of Escherichia coli, devoid of phosphopyruvate synthetase, glucosephosphate isomerase and 6-phosphogluconate dehydrogenase activities, grew readily on gluconate and inducibly formed an uptake system for gluconate, gluconate kinase and 6-phosphogluconate dehydratase while doing so. 2. This mutant also grew on glucose 6-phosphate and inducibly formed 6-phosphogluconate dehydratase; however, the formation of the gluconate uptake system and gluconate kinase was not induced under these conditions. 3. The use of the Entner–Doudoroff pathway for the dissimilation of 6-phosphogluconate, derived from either gluconate or glucose 6-phosphate, by this mutant was also demonstrated by the accumulation of 2-keto-3-deoxy-6-phosphogluconate (3-deoxy-6-phospho-l-glycero-2-hexulosonate) from both these substrates in a similar mutant that also lacked phospho-2-keto-3-deoxygluconate aldolase activity. 4. Glucose 6-phosphate inhibits the continued utilization of fructose by cultures of the mutants growing on fructose, as it does in wild-type E. coli. 5. The mutants do not use glucose for growth. This is shown to be due to insufficiency of phosphopyruvate, which is required for glucose uptake.  相似文献   

20.
Glucose-adapted Streptococcus faecalis produced little if any (14)CO(2) from glucose-1-(14)C, although high levels of glucose-6-phosphate dehydrogenase (EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (EC 1.1.1.44) were detected in cell-free extracts. Metabolism of glucose through the oxidative portion of the hexose-monophosphate pathway was shown to be regulated in this organism by the specific inhibitory interaction of the Embden-Meyerhof intermediate, fructose-1, 6-diphosphate (FDP), with 6-phosphogluconate dehydrogenase. Glucose-6-phosphate dehydrogenase activity was unaffected by FDP. The S. faecalis 6-phosphogluconate dehydrogenase was partially purified from crude extracts by standard fractionation procedures and certain kinetic parameters of the FDP-mediated inhibition were investigated. The negative effector was shown to cause a decrease in V(max) and an increase in the apparent K(m) for both 6-phosphogluconate and nicotinamide adenine dinucleotide phosphate (NADP). These effects were apparently a consequence of the ligand interacting with the enzyme at a site distinct from either the substrate or the coenzyme sites. Among the evidence supporting this was the fact that beta-mercaptoethanol blocked completely FDP inhibition, but had no effect on catalytic activity. The possibility that the regulation of 6-phosphogluconate dehydrogenase activity by FDP might be of some general significance was suggested by the observation that this enzyme from several other sources was also sensitive to FDP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号