首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plants interact with their environment by modifying gene expression patterns. One mechanism for this interaction involves epigenetic modifications that affect a number of aspects of plant growth and development. Thus, the epigenome is highly dynamic in response to environmental cues and developmental changes. Flowering is controlled by a set of genes that are affected by environmental conditions through an alteration in their expression pattern. This ensures the production of flowers even when plants are growing under adverse conditions, and thereby enhances transgenerational seed production. In this review recent findings on the epigenetic changes associated with flowering in Arabidopsis thaliana grown under abiotic stress conditions such as cold, drought, and high salinity are discussed. These epigenetic modifications include DNA methylation, histone modifications, and the production of micro RNAs (miRNAs) that mediate epigenetic modifications. The roles played by the phytohormones abscisic acid (ABA) and auxin in chromatin remodelling are also discussed. It is shown that there is a crucial relationship between the epigenetic modifications associated with floral initiation and development and modifications associated with stress tolerance. This relationship is demonstrated by the common epigenetic pathways through which plants control both flowering and stress tolerance, and can be used to identify new epigenomic players.  相似文献   

2.
The transition from vegetative to reproductive development is a highly regulated process that, in many plant species, is sensitive to environmental cues that provide seasonal information to initiate flowering during optimal times of the year. One environmental cue is the cold of winter. Winter annuals and biennials typically require prolonged exposure to the cold of winter to flower rapidly in the spring. This process by which flowering is promoted by cold exposure is known as vernalization. The winter-annual habit of Arabidopsis thaliana is established by the ability of FRIGIDA to promote high levels of expression of the potent floral repressor FLOWERING LOCUS C (FLC). In Arabidopsis, vernalization results in the silencing of FLC in a mitotically stable (i.e., epigenetic) manner that is maintained for the remainder of the plant life cycle. The repressed "off" state of FLC has features characteristic of facultative heterochromatin. Upon passing to the next generation, the "off" state of FLC is reset to the "on" state. The environmental induction and mitotic stability of vernalization-mediated FLC repression as well as the subsequent resetting in the next generation provides a system for studying several aspects of epigenetic control of gene expression.  相似文献   

3.
4.
Quantitative effects of vernalization on FLC and SOC1 expression   总被引:2,自引:0,他引:2  
Prolonged exposure to cold results in early flowering in Arabidopsis winter annual ecotypes, with longer exposures resulting in a greater promotion of flowering than shorter exposures. The promotion of flowering is mediated through an epigenetic down-regulation of the floral repressor FLOWERING LOCUS C (FLC). We present results that provide an insight into the quantitative regulation of FLC by vernalization. Analysis of the effect of seed or plant cold treatment on FLC expression indicates that the time-dependent nature of vernalization on FLC expression is mediated through the extent of the initial repression of FLC and not by affecting the ability to maintain the repressed state. In the over-expression mutant flc-11, the time-dependent repression of FLC correlates with the proportional deacetylation of histone H3. Our results indicate that sequences within intron 1 and the activities of both VERNALIZATION1 (VRN1) and VERNALIZATION2 (VRN2) are required for efficient establishment of FLC repression; however, VRN1 and VRN2 are not required for maintenance of the repressed state during growth after the cold exposure. SUPPRESSOR OF OVER-EXPRESSION OF CO 1 (SOC1), a downstream target of FLC, is quantitatively induced by vernalization in a reciprocal manner to FLC. In addition, we show that SOC1 undergoes an acute induction by both short and long cold exposures.  相似文献   

5.
Vernalization, the acceleration of flowering by the prolonged cold of winter, ensures that plants flower in favorable spring conditions. During vernalization in Arabidopsis, cold temperatures repress FLOWERING LOCUS C (FLC) expression in a mechanism involving VERNALIZATION INSENSITIVE 3 (VIN3), and this repression is epigenetically maintained by a Polycomb-like chromatin regulation involving VERNALIZATION 2 (VRN2), a Su(z)12 homolog, VERNALIZATION 1 (VRN1), and LIKE-HETEROCHROMATIN PROTEIN 1. In order to further elaborate how cold repression triggers epigenetic silencing, we have targeted mutations that result in FLC misexpression both at the end of the prolonged cold and after subsequent development. This identified VERNALIZATION 5 (VRN5), a PHD finger protein and homolog of VIN3. Our results suggest that during the prolonged cold, VRN5 and VIN3 form a heterodimer necessary for establishing the vernalization-induced chromatin modifications, histone deacetylation, and H3 lysine 27 trimethylation required for the epigenetic silencing of FLC. Double mutant and FLC misexpression analyses reveal additional VRN5 functions, both FLC-dependent and -independent, and indicate a spatial complexity to FLC epigenetic silencing with VRN5 acting as a common component in multiple pathways.  相似文献   

6.
In plants, epigenetic variation contributes to phenotypic differences in developmental traits. At the mechanistic level, this variation is conferred by DNA methylation and histone modifications. We describe several examples in which changes in gene expression caused by variation in DNA methylation lead to alterations in plant development. In these examples, the presence of repeated sequences or transposons within the promoters of the affected genes are associated with DNA methylation and gene inactivation. Small interfering RNAs expressed from these sequences recruit DNA methylation to the gene. Some of these methylated alleles are unstable giving rise to revertant sectors during mitosis and to progeny in which the methylated state is lost. However, others are stable for many generations and persist through speciation. These examples indicate that although DNA methylation influences gene expression, this is frequently dependent on classical changes to DNA sequence such as transposon insertions. By contrast, forms of histone methylation cause repression of gene expression that is stably inherited through mitosis but that can also be erased over time or during meiosis. A striking example involves the induction of flowering by exposure to low winter temperatures in Arabidopsis thaliana and its relatives. Histone methylation participates in repression of expression of an inhibitor of flowering during cold. In annual, semelparous species such as A. thaliana, this histone methylation is stably inherited through mitosis after return from cold to warm temperatures allowing the plant to flower continuously during spring and summer until it senesces. However, in perennial, iteroparous relatives the histone modification rapidly disappears when temperatures rise, allowing expression of the floral inhibitor to increase and limiting flowering to a short interval. In this case, epigenetic histone modifications control a key adaptive trait, and their pattern changes rapidly during evolution associated with life‐history strategy. We discuss these examples of epigenetic developmental traits with emphasis on the underlying mechanisms, their stability, and adaptive value.  相似文献   

7.
Many of the molecular details regarding the promotion of flowering in response to prolonged exposure to cold temperatures (vernalization) and daylength have recently been elucidated in Arabidopsis. The daylength and vernalization pathway converge in the regulation of floral promoters referred to as floral integrators. In the meristem, vernalization promotes flowering through the epigenetic repression of the floral repressor FLOWERING LOCUS C. This allows for the induction of floral integrators by CONSTANS under inductive long days. In the vasculature of leaves, CONSTANS protein is produced only in long days where it acts to promote the expression of FLOWERING LOCUS T (FT). FT protein is then translocated to the meristem where it acts to promote floral induction. Thus a detailed molecular framework for the regulation of flowering time has now been established in Arabidopsis.  相似文献   

8.
A R Gendall  Y Y Levy  A Wilson  C Dean 《Cell》2001,107(4):525-535
The acceleration of flowering by a long period of low temperature, vernalization, is an adaptation that ensures plants overwinter before flowering. Vernalization induces a developmental state that is mitotically stable, suggesting that it may have an epigenetic basis. The VERNALIZATION2 (VRN2) gene mediates vernalization and encodes a nuclear-localized zinc finger protein with similarity to Polycomb group (PcG) proteins of plants and animals. In wild-type Arabidopsis, vernalization results in the stable reduction of the levels of the floral repressor FLC. In vrn2 mutants, FLC expression is downregulated normally in response to vernalization, but instead of remaining low, FLC mRNA levels increase when plants are returned to normal temperatures. VRN2 function therefore stably maintains FLC repression after a cold treatment, serving as a mechanism for the cellular memory of vernalization.  相似文献   

9.
史卫东 《广西植物》2022,42(8):1357-1366
菜心杂交除了引起DNA序列变化,还可能引起不依赖于DNA序列的表观遗传变化,为揭示菜心表观遗传多样性形成机理,该文利用F-MSAP检测49份菜心的DNA甲基化水平和模式变化。结果表明:(1)F-MSAP检测效率较高,菜心DNA甲基化多态性较高,杂交可以提高DNA甲基化多态性。(2)菜心表观遗传多样性较低,均质化严重,大部分遗传变异来源于种内,自交增加自交系的表观遗传差异,杂交增加杂种的表观遗传差异。(3)49份菜心的DNA甲基化水平较高,以全甲基化模式为主,自交降低DNA甲基化水平,杂交通过DNA甲基化模式变化增加自交系杂种的DNA甲基化水平。(4)49份菜心分成五类,聚类分析和主成分分析结果基本一致,杂种倾向于按照母本亲缘关系分类。该研究利用F-MSAP检测菜心表观遗传多样性,提高了菜心的鉴定效率和准确性,为进一步开展杂交育种提供了理论基础和技术支持。  相似文献   

10.
Vernalization is an environmentally induced epigenetic switch in which winter cold triggers epigenetic silencing of floral repressors and thus provides competence to flower in spring. Vernalization triggers the recruitment of chromatin-modifying complexes to a clade of flowering repressors that are epigenetically silenced via chromatin modifications. In Arabidopsis thaliana, VERNALIZATION INSENSITIVE3 (VIN3) and its related plant homeodomain finger proteins act together with Polycomb Repressive Complex 2 to increase repressive histone marks at floral repressor loci, including FLOWERING LOCUS C (FLC) and its related genes, by vernalization. Here, we show that VIN3 family of proteins nonredundantly functions to repress different subsets of the FLC gene family during the course of vernalization. Each VIN3 family protein binds to modified histone peptides in vitro and directly associates with specific sets of FLC gene family chromatins in vivo to mediate epigenetic silencing. In addition, members of the FLC gene family are also differentially regulated during the course of vernalization to mediate proper vernalization response. Our results show that these two gene families cooperated during the course of evolution to ensure proper vernalization response through epigenetic changes.  相似文献   

11.
Vernalization, the promotion of flowering in response to low temperatures, is one of the best characterized examples of epigenetic regulation in plants. The promotion of flowering is proportional to the duration of the cold period, but the mechanism by which plants measure time at low temperatures has been a long‐standing mystery. We show that the quantitative induction of the first gene in the Arabidopsis vernalization pathway, VERNALIZATION INSENSITIVE 3 (VIN3), is regulated by the components of Polycomb Response Complex 2, which trimethylates histone H3 lysine 27 (H3K27me3). In differentiated animal cells, H3K27me3 is mostly associated with long‐term gene repression, whereas, in pluripotent embyonic stem cells, many cell lineage‐specific genes are inactive but exist in bivalent chromatin that carries both active (H3K4me3) and repressive (H3K27me3) marks on the same molecule. During differentiation, bivalent domains are generally resolved to an active or silent state. We found that H3K27me3 maintains VIN3 in a repressed state prior to cold exposure; this mark is not removed during VIN3 induction. Instead, active VIN3 is associated with bivalently marked chromatin. The continued presence of H3K27me3 ensures that induction of VIN3 is proportional to the duration of the cold, and that plants require prolonged cold to promote the transition to flowering. The observation that Polycomb proteins control VIN3 activity defines a new role for Polycomb proteins in regulating the rate of gene induction.  相似文献   

12.
13.
14.
VERNALIZATION INSENSITIVE 3 (VIN3) is required for vernalization-mediated repression of FLOWERING LOCUS C (FLC) in Arabidopsis. The induction of VIN3 by long-term exposure to cold is one of earliest events in vernalization response. However, molecular mechanisms underlying for the VIN3 induction are poorly understood. Recently, we reported that the constitutive repression of VIN3 in the absence of the cold exposure is due to multiple repressive chromatin modifying components, including a transposable element (TE)-derived sequence, LIKE-HETEROCHROMATIN PROTEIN 1 (LHP1) and POLYCOMB REPRESSION COMPLEX 2 (PRC2). In addition, the maximum level of VIN3 induction requires EARLY FLOWERING 7 (ELF7) and EARLY FLOWERING IN SHORDAYS (EFS), which are components of activating chromatin modifying complexes. Furthermore, dynamic changes in histone modifications at VIN3 chromatin are observed during the course of vernalization. Thus, mechanisms underlying the induction of VIN3 include changes at the level of chromatin.Key words: vernalization, flowering, chromatinVernalization can be defined as “the acquisition or acceleration of the ability to flower by a chilling treatment.”1 To maximize floral reproductive capability, plants in temperate climates have evolved a vernalization requirement to prevent flowering before the winter season and to ensure flowering in the spring. Vernalization response provides plants with competence to flower, rather than to induce flowering itself, through changes that remain stable even after cold exposure. This process is an epigenetic switch, whereby molecular changes remain stable throughout subsequent mitotic divisions despite the absence of initiating stimulus, cold exposure.24 Vernalization response can be thought of as being comprised of two phases. The first is a cold perception system that measures the cumulative time of exposure to cold. The second phase is essentially the output of cold perception system: when a sufficient duration of cold has been perceived, a series of changes of gene expression ensue, ultimately leading to the epigenetic repression of FLC.  相似文献   

15.
Many over-wintering plants, through vernalization, overcome a block to flowering and thus acquire competence to flower in the following spring after experiencing prolonged cold exposure or winter cold. The vernalization pathways in different angiosperm lineages appear to have convergently evolved to adapt to temperate climates. Molecular and epigenetic mechanisms for vernalization regulation have been well studied in the crucifer model plant Arabidopsis thaliana.Here, we review recent progresses on the vernalization pathway in Arabidopsis. In addition, we summarize current molecular and genetic understandings of vernalization regulation in temperate grasses including wheat and Brachypodium, two monocots from Pooideae, followed by a brief discussion on divergence of the vernalization pathways between Brassicaceae and Pooideae.  相似文献   

16.
Appropriate timing of flowering is critical for propagation and reproductive success in plants. Therefore, flowering time is coordinately regulated by endogenous developmental programs and external signals, such as changes in photoperiod and temperature. Flowering is delayed by a transient shift to cold temperatures that frequently occurs during early spring in the temperate zones. It is known that the delayed flowering by short-term cold stress is mediated primarily by the floral repressor FLOWERING LOCUS C (FLC). However, how the FLC-mediated cold signals are integrated into flowering genetic pathways is not fully understood. We have recently reported that the INDUCER OF CBF EXPRESSION 1 (ICE1), which is a master regulator of cold responses, FLC, and the floral integrator SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) constitute an elaborated feedforward-feedback loop that integrates photoperiod and cold temperature signals to regulate seasonal flowering in Arabidopsis. Cold temperatures promote the binding of ICE1 to FLC promoter to induce its expression, resulting in delayed flowering. However, under floral inductive conditions, SOC1 induces flowering by blocking the ICE1 activity. We propose that the ICE1-FLC-SOC1 signaling network fine-tunes the timing of photoperiodic flowering during changing seasons.  相似文献   

17.
开花是植物由营养生长阶段向生殖生长阶段转变的重要过程, 长时间低温处理即春化对开花起到非常重要的促进作用。春化控制的拟南芥(Arabidopsis thaliana)开花中, 阻抑型转录因子FLC是重要的关节点, 春化记忆依赖于对该基因的控制。何跃辉研究组之前对拟南芥的研究揭示了转录因子VAL1或VAL2可以识别负调控开花的关键基因FLC成核区的顺式DNA元件, 协同PRC2复合体在春化过程中沉默FLC基因的表达, 并在随后的常温下继续维持FLC基因沉默直至受精结束, 使植物产生春化记忆。但在下一代中如何擦除这种记忆功能, 使FLC重新被激活, 以防止植物在过冬前或过冬时开花, 相关机制目前并不清楚。近期, 该研究组揭示了在植物胚胎发育早期一个种子特有的“先驱”转录因子参与擦除春化记忆, 重新激活FLC基因的分子机制, 并解析了胚胎中的基因激活传递到后胚胎发育(营养生长期)的表观遗传机理。该研究是开花领域的重要突破, 为作物开花调控的生产应用提供了新思路。  相似文献   

18.
19.
Epigenetic memory transmission through mitosis and meiosis in plants   总被引:1,自引:0,他引:1  
Gene activities can be regulated by epigenetic modifications of nucleotides and chromatin that are stably propagated through somatic cell divisions and, in some cases, across generations. The mechanisms that control epigenetic marks have recently been uncovered using model organisms, such as the flowering plant Arabidopsis thaliana. In Arabidopsis, perturbation of epigenetic gene activity often results in heritable developmental phenotypes. Stable, but potentially reversible, changes in epigenetic status can also be sources for phenotypic variations in natural plant populations.  相似文献   

20.
In Arabidopsis, the role of the vernalization pathway is to repress expression of a potent floral repressor, FLOWERING LOCUS C (FLC), after a sufficient period of winter cold has been perceived. Following winter, the lack of FLC expression allows unimpeded operation of the photoperiod pathway and hence rapid flowering of vernalized plants in spring via the activation of floral integrator genes. Molecular studies revealed that regulation of the key floral repressor, FLC, is under the control of the interplay between Trithorax group (TrxG)-mediated activation and Polycomb group (PcG)-mediated repression. On-off switch of genes by TrxG and PcG is an evolutionarily conserved mechanism to coordinate cellular identity in eukaryotes. Regulation of FLC by external cues provides an excellent model system to study mechanisms in which cell identity is influenced by environment. In this review, we discuss coordinated contributions by protein and long noncoding RNA components to this environmentally induced epigenetic switch of a developmental program in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号