首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidized LDL (oxLDL) depletes caveolae of cholesterol, resulting in the displacement of endothelial nitric-oxide synthase (eNOS) from caveolae and impaired eNOS activation. In the present study, we determined if the class B scavenger receptors, CD36 and SR-BI, are involved in regulating nitric-oxide synthase localization and function. We demonstrate that CD36 and SR-BI are expressed in endothelial cells, co-fractionate with caveolae, and co-immunoprecipitate with caveolin-1. Co-incubation of cells with 10 microgram/ml high density lipoprotein (HDL) prevented oxLDL-induced translocation of eNOS from caveolae and restored acetylcholine-induced nitric-oxide synthase stimulation. Acetylcholine caused eNOS activation in cells incubated with 10 microgram/ml oxLDL (10-15 thiobarbituric acid-reactive substances) and blocking antibodies to CD36, whereas cells treated with only oxLDL were unresponsive. Furthermore, CD36-blocking antibodies prevented oxLDL-induced redistribution of eNOS. SR-BI-blocking antibodies were used to demonstrate that the effects of HDL are mediate by SR-BI. HDL binding to SR-BI maintained the concentration of caveola-associated cholesterol by promoting the uptake of cholesterol esters, thereby preventing oxLDL-induced depletion of caveola cholesterol. We conclude that CD36 mediates the effects of oxLDL on caveola composition and eNOS activation. Furthermore, HDL prevents oxLDL from decreasing the capacity for eNOS activation by preserving the cholesterol concentration in caveolae and, thereby maintaining the subcellular location of eNOS.  相似文献   

2.
Oxidized low density lipoprotein (OxLDL) is one of the most important risk factors of cardiovascular disease. Here, we study the impact of OxLDL on endothelial progenitor cells (EPCs) and determine whether OxLDL affects EPCs by an inhibitory effect on endothelial nitric oxide synthase (eNOS). It was found that OxLDL decreased EPC survival and impaired its adhesive, migratory, and tube-formation capacities in a dose-dependent manner. However, all of the detrimental effects of OxLDL were attenuated by pretreatment of EPCs with lectin-like oxidized low density lipoprotein receptor (LOX-1) monoclonal antibody or l-arginine. Western blot analysis revealed that OxLDL dose-dependently decreased Akt phosphorylation and eNOS protein expression and increased LOX-1 protein expression. Furthermore, OxLDL caused a decrease in eNOS mRNA expression and an increase in LOX-1 mRNA expression. These data indicate that OxLDL inhibits EPC survival and impairs its function, and this action is attributable to an inhibitory effect on eNOS.  相似文献   

3.
The endothelial nitric-oxide synthase (eNOS), a key signaling protein, undergoes a series of covalent modifications, including co-translational N-myristoylation at Gly(2), as well as post-translational thiopalmitoylation at Cys(15) and Cys(26). Myristoylation of eNOS is required for the subsequent palmitoylation of the enzyme, and both acylations are required for the efficient subcellular targeting of eNOS to plasmalemmal caveolae. We constructed chimeric cDNAs encoding proteins comprised of various acylation-deficient eNOS mutants fused at their N termini to the hydrophobic transmembrane domain of the glycoprotein CD8 and characterized these constructs in transient transfection experiments in COS-7 cells. One construct (termed CD8-myr(-)eNOS) encodes a fusion protein comprised of the eNOS myristoylation-deficient mutant coupled to the CD8 transmembrane domain. In biosynthetic labeling experiments using [(3)H]palmitic acid, we found that the CD8-myr(-)eNOS chimera undergoes palmitoylation. Subcellular fractionation showed that the CD8-myr(-)eNOS chimera is targeted to caveolae. We also constructed and characterized a cDNA encoding the CD8 transmembrane domain fused to the palmitoylation-deficient mutant eNOS (in which Cys(15) and Cys(26) are changed to serine). This chimera (termed CD8-myr(-).palm(-)eNOS) did not undergo palmitoylation, indicating that the palmitoylation seen with the CD8. myr(-)eNOS fusion protein occurs on the same residues as in the wild-type enzyme. Importantly, the CD8-myr(-).palm(-)eNOS fusion protein remained efficiently targeted to caveolae, in contrast to the palm(-)eNOS mutant lacking the CD8 transmembrane domain, which has nominal caveolar localization. A construct encoding the CD8 transmembrane domain alone was insufficient for selective targeting to caveolae. These results indicate that membrane targeting per se, but not necessarily myristoylation, is sufficient for eNOS palmitoylation and localization to plasmalemmal caveolae, and suggest further that sequences within eNOS itself, in addition to its palmitoylation sites, facilitate the selective localization of the enzyme within caveolae.  相似文献   

4.
Urokinase plasminogen activator (uPA) and PA inhibitor type 1 (PAI-1) are elevated in acute lung injury, which is characterized by a loss of endothelial barrier function and the development of pulmonary edema. Two-chain uPA and uPA-PAI-1 complexes (1-20 nM) increased the permeability of monolayers of human pulmonary microvascular endothelial cells (PMVECs) in vitro and lung permeability in vivo. The effects of uPA-PAI-1 were abrogated by the nitric-oxide synthase (NOS) inhibitor L-NAME (N(D)-nitro-L-arginine methyl ester). Two-chain uPA (1-20 nM) and uPA-PAI-1 induced phosphorylation of endothelial NOS-Ser(1177) in PMVECs, which was followed by generation of NO and the nitrosylation and dissociation of β-catenin from VE-cadherin. uPA-induced phosphorylation of eNOS was decreased by anti-low density lipoprotein receptor-related protein-1 (LRP) antibody and an LRP antagonist, receptor-associated protein (RAP), and when binding to the uPA receptor was blocked by the isolated growth factor-like domain of uPA. uPA-induced phosphorylation of eNOS was also inhibited by the protein kinase A (PKA) inhibitor, myristoylated PKI, but was not dependent on PI3K-Akt signaling. LRP blockade and inhibition of PKA prevented uPA- and uPA-PAI-1-induced permeability of PMVEC monolayers in vitro and uPA-induced lung permeability in vivo. These studies identify a novel pathway involved in regulating PMVEC permeability and suggest the utility of uPA-based approaches that attenuate untoward permeability following acute lung injury while preserving its salutary effects on fibrinolysis and airway remodeling.  相似文献   

5.

Background

Oxidized low density lipoprotein (oxLDL) has been shown to induce apoptosis and senescence of endothelial progenitor cells (EPC). In the present study, we hypothesized that even sub-apoptotic concentrations of oxLDL impair the angiogenic potential of EPC and investigated if this effect is mediated by affecting adhesion and incorporation.

Methods

A co-culture system of human microvascular endothelial cells and EPC was used to study the effect of sub-apoptotic concentrations of native (nLDL) and oxLDL on cell-cell interaction. The expression and the functional role of angiogenic adhesion molecules and integrins was monitored by FACS and neutralizing assay, respectively.

Results

We observed an inhibition of tube formation and impairment of EPC integration into the vascular network of mature endothelial cells by oxLDL. In contrast, nLDL did not affect angiogenic properties of EPC. Incubation of EPC with sub-apoptotic oxLDL concentrations significantly decreased E-selectin and integrin αvβ5 expression (37.6% positive events vs. 71.5% and 24.3% vs. 49.9% compared to control culture media without oxLDL). Interestingly, expression of αvβ3, VE-cadherin and CD31 remained unchanged. Blocking of E-selectin and integrin αvβ5 by neutralizing antibody effectively inhibited adhesion of EPC to differentiated endothelial cells (56.5% and 41.9% of control; p < 0.001).

Conclusion

In conclusion, oxidative alteration of LDL impairs angiogenic properties of EPC at sub-apoptotic levels by downregulation of E-selectin and integrin αvβ5, both substantial mediators of EPC-endothelial cell interaction.  相似文献   

6.
Endothelial nitric-oxide synthase (eNOS), which generates the endogenous vasodilator, nitric oxide (NO), is highly regulated by post-translational modifications and protein interactions. We recently used purified proteins to characterize the mechanisms by which heat shock protein 90 (HSP90) increases eNOS activity at low and high Ca2+ levels (Takahashi, S. and Mendelsohn, M. E. (2003) J. Biol. Chem. 278, 9339-9344). Here we extend these studies to explore interactions between HSP90, Akt, and eNOS. In studies with purified proteins, HSP90 increased the initial rate and maximal extent of Akt-mediated eNOS phosphorylation and activation at low Ca2+ levels. Akt was not observed in the eNOS complex in the absence of HSP90, but both active and inactive Akt associated with eNOS in the presence of HSP90. Direct binding of Akt to HSP90 was observed even in the absence of eNOS. HSP90 also facilitated CaM binding to eNOS irrespective of Akt presence. Geldanamycin (GA) disrupted HSP90-eNOS binding, reduced HSP90-stimulated CaM binding, and blocked both recruitment of Akt to the eNOS complex and phosphorylation of eNOS at Ser-1179. Akt phosphorylated only CaM-bound eNOS, in an HSP90-independent manner. HSP90 and active Akt together increased eNOS activity synergistically, which was reversed by GA. In bovine aortic endothelial cells (BAECs), the effects of vascular endothelial growth factor (VEGF) and insulin on eNOS-HSP90-Akt complex formation and eNOS activation were compared. BAPTA-AM inhibited VEGF- but not insulin-induced eNOS-HSP90-Akt complex formation and eNOS phosphorylation. Insulin caused rapid, transient increase in eNOS activity correlated temporally with the formation of eNOS-HSP90-Akt complex. GA prevented insulin-induced association of HSP90, Akt and CaM with eNOS and inhibited eNOS activation in BAECs. Both platelet-derived growth factor (PDGF) and insulin induced activation of Akt in BAECs, but only insulin caused HSP90-Akt-eNOS association and eNOS phosphorylation. These results demonstrate that HSP90 and Akt synergistically activate eNOS and suggest that this synergy contributes to Ca2+-independent eNOS activation in response to insulin.  相似文献   

7.
Endothelial dysfunction leads to lethal vascular complications in diabetes and related metabolic disorders. Here, we demonstrate that de novo lipogenesis, an insulin-dependent process driven by the multifunctional enzyme fatty-acid synthase (FAS), maintains endothelial function by targeting endothelial nitric-oxide synthase (eNOS) to the plasma membrane. In mice with endothelial inactivation of FAS (FASTie mice), eNOS membrane content and activity were decreased. eNOS and FAS were physically associated; eNOS palmitoylation was decreased in FAS-deficient cells, and incorporation of labeled carbon into eNOS-associated palmitate was FAS-dependent. FASTie mice manifested a proinflammatory state reflected as increases in vascular permeability, endothelial inflammatory markers, leukocyte migration, and susceptibility to LPS-induced death that was reversed with an NO donor. FAS-deficient endothelial cells showed deficient migratory capacity, and angiogenesis was decreased in FASTie mice subjected to hindlimb ischemia. Insulin induced FAS in endothelial cells freshly isolated from humans, and eNOS palmitoylation was decreased in mice with insulin-deficient or insulin-resistant diabetes. Thus, disrupting eNOS bioavailability through impaired lipogenesis identifies a novel mechanism coordinating nutritional status and tissue repair that may contribute to diabetic vascular disease.  相似文献   

8.
Endothelial NOS (eNOS)-derived NO is a key factor in regulating microvascular permeability. We demonstrated previously that eNOS translocation from the plasma membrane to the cytosol is required for hyperpermeability. Herein, we tested the hypothesis that eNOS activation in the cytosol is necessary for agonist-induced hyperpermeability. To study the fundamental properties of endothelial cell monolayer permeability, we generated ECV-304 cells that stably express cDNA constructs targeting eNOS to the cytosol or plasma membrane. eNOS-transfected ECV-304 cells recapitulate the eNOS translocation and permeability properties of postcapillary venular endothelial cells (Sánchez, F. A., Rana, R., Kim, D. D., Iwahashi, T., Zheng, R., Lal, B. K., Gordon, D. M., Meininger, C. J., and Durán, W. N. (2009) Proc. Natl. Acad. Sci. U.S.A. 106, 6849-6853). We used platelet-activating factor (PAF) as a proinflammatory agonist. PAF activated eNOS by increasing phosphorylation of Ser-1177 and inducing dephosphorylation of Thr-495, increasing NO production, and elevating permeability to FITC-dextran 70 in monolayers of cells expressing wild-type and cytosolic eNOS. PAF failed to increase permeability to FITC-dextran 70 in monolayers of cells transfected with eNOS targeted to the plasma membrane. Interestingly, this occurred despite eNOS Ser-1177 phosphorylation and production of comparable amounts of NO. Our results demonstrate that the presence of eNOS in the cytosol is necessary for PAF-induced hyperpermeability. Our data provide new insights into the dynamics of eNOS and eNOS-derived NO in the process of inflammation.  相似文献   

9.
Hypochlorous acid/hypochlorite, generated by the myeloperoxidase/H(2)O(2)/halide system of activated phagocytes, has been shown to oxidize/modify low density lipoprotein (LDL) in vitro and may be involved in the formation of atherogenic lipoproteins in vivo. Accordingly, hypochlorite-modified (lipo)proteins have been detected in human atherosclerotic lesions where they colocalize with macrophages and endothelial cells. The present study investigates the influence of hypochlorite-modified LDL on endothelial synthesis of nitric oxide (NO) measured as formation of citrulline (coproduct of NO) and cGMP (product of the NO-activated soluble guanylate cyclase) upon cell stimulation with thrombin or ionomycin. Pretreatment of human umbilical vein endothelial cells with hypochlorite-modified LDL led to a time- and concentration-dependent inhibition of agonist-induced citrulline and cGMP synthesis compared with preincubation of cells with native LDL. This inhibition was neither due to a decreased expression of endothelial NO synthase (eNOS) nor to a deficiency of its cofactor tetrahydrobiopterin. Likewise, the uptake of l-arginine, the substrate of eNOS, into the cells was not affected. Hypochlorite-modified LDL caused remarkable changes of intracellular eNOS distribution including translocation from the plasma membrane and disintegration of the Golgi location without altering myristoylation or palmitoylation of the enzyme. In contrast, cyclodextrin known to deplete plasma membrane of cholesterol and to disrupt caveolae induced only a disappearance of eNOS from the plasma membrane that was not associated with decreased agonist-induced citrulline and cGMP formation. The present findings suggest that mislocalization of NOS accounts for the reduced NO formation in human umbilical vein endothelial cells treated with hypochlorite-modified LDL and point to an important role of Golgi-located NOS in these processes. We conclude that inhibition of NO synthesis by hypochlorite-modified LDL may be an important mechanism in the development of endothelial dysfunction and early pathogenesis of atherosclerosis.  相似文献   

10.
Fluid shear stress generated by blood flowing over the endothelium is a major determinant of arterial tone, vascular remodeling, and atherogenesis. Nitric oxide (NO) produced by endothelial NO synthase (eNOS) plays an essential role in regulation of vascular function and structure by blood flow. Although cyclosporin A (CsA), an inhibitory ligand of cyclophilin A, is a widely used immunosuppressive drug, it causes arterial hypertension in part by impairing eNOS-dependent vasodilation. Here we show that CsA inhibits fluid shear stress-mediated eNOS activation in endothelial cells via decreasing cholesterol content in caveolae. Exposure of cultured bovine aortic endothelial cells to 1 mum CsA for 1 h significantly inhibited NO production and eNOS phosphorylation at Ser-1179 induced by flow (shear stress=dynes/cm2). The effect of CsA was not related to inhibition of two known eNOS kinases, protein kinase B (Akt) and protein kinase A, because CsA did not affect Akt or protein kinase A activation. In rabbit aorta perfused ex vivo, CsA also significantly inhibited flow-induced eNOS phosphorylation at Ser-1179 but had no effect on Akt measured by phosphorylation at Ser-473. However, CsA treatment decreased cholesterol content in caveolae and displaced eNOS from caveolae, which may be caused by CsA disrupting the association of caveolin-1 and cyclophilin A. The magnitude of the cholesterol depleting effect was similar to that of beta-cyclodextrin, a cholesterol-binding molecule, and beta-cyclodextrin had a similar inhibitory effect on flow-mediated eNOS activation. Treating bovine aortic endothelial cells for 24 h with 30 mug/ml cholesterol blocked the CsA effect and restored eNOS phosphorylation in response to flow. These data suggest that decreasing cholesterol content in caveolae by CsA is a potentially important pathogenic mechanism for CsA-induced endothelial dysfunction and hypertension.  相似文献   

11.
In the pulmonary artery isolated from 1-week hypoxia-induced pulmonary hypertensive rats, endothelial NO production stimulated by carbachol was decreased significantly in in situ visualization using diaminofluorescein-2 diacetate and also in cGMP content. This change was followed by the decrease in carbachol-induced endothelium-dependent relaxation. Protein expression of endothelial NO synthase (eNOS) and its regulatory proteins, caveolin-1 and heat shock protein 90, did not change in the hypoxic pulmonary artery, indicating that chronic hypoxia impairs eNOS activity at posttranslational level. In the hypoxic pulmonary artery, the increase in intracellular Ca(2+) level stimulated by carbachol but not by ionomycin was reduced. We next focused on changes in Ca(2+) sensitivity of the eNOS activation system. A morphological study revealed atrophy of endothelial cells and a peripheral condensation of eNOS in hypoxic endothelial cells preserving co-localization between eNOS and Golgi or plasma membranes. However, eNOS was tightly coupled with caveolin-1, and was dissociated from heat shock protein 90 or calmodulin in the hypoxic pulmonary artery in either the presence or absence of carbachol. Furthermore, eNOS Ser(1177) phosphorylation in both conditions significantly decreased without affecting Akt phosphorylation in the hypoxic artery. In conclusion, chronic hypoxia impairs endothelial Ca(2+) metabolism and normal coupling between eNOS and caveolin-1 resulted in eNOS inactivity.  相似文献   

12.
High density lipoprotein (HDL) activates endothelial nitric-oxide synthase (eNOS), leading to increased production of the antiatherogenic molecule NO. A variety of stimuli regulate eNOS activity through signaling pathways involving Akt kinase and/or mitogen-activated protein (MAP) kinase. In the present study, we investigated the role of kinase cascades in HDL-induced eNOS stimulation in cultured endothelial cells and COS M6 cells transfected with eNOS and the HDL receptor, scavenger receptor B-I. HDL (10-50 microg/ml, 20 min) caused eNOS phosphorylation at Ser-1179, and dominant negative Akt inhibited both HDL-mediated phosphorylation and activation of the enzyme. Phosphoinositide 3-kinase (PI3 kinase) inhibition or dominant negative PI3 kinase also blocked the phosphorylation and activation of eNOS by HDL. Studies with genistein and PP2 showed that the nonreceptor tyrosine kinase, Src, is an upstream stimulator of the PI3 kinase-Akt pathway in this paradigm. In addition, HDL activated MAP kinase through PI3 kinase, and mitogen-activated protein kinase/extracellular signal-regulated kinase kinase inhibition fully attenuated eNOS stimulation by HDL without affecting Akt or eNOS Ser-1179 phosphorylation. Conversely, dominant negative Akt did not alter HDL-induced MAP kinase activation. These results indicate that HDL stimulates eNOS through common upstream, Src-mediated signaling, which leads to parallel activation of Akt and MAP kinases and their resultant independent modulation of the enzyme.  相似文献   

13.
Plasmalemmal vesicles (PVs) or caveolae are plasma membrane invaginations and associated vesicles of regular size and shape found in most mammalian cell types. They are particularly numerous in the continuous endothelium of certain microvascular beds (e.g., heart, lung, and muscles) in which they have been identified as transcytotic vesicular carriers. Their chemistry and function have been extensively studied in the last years by various means, including several attempts to isolate them by cell fractionation from different cell types. The methods so far used rely on nonspecific physical parameters of the caveolae and their membrane (e.g., size-specific gravity and solubility in detergents) which do not rule out contamination from other membrane sources, especially the plasmalemma proper. We report here a different method for the isolation of PVs from plasmalemmal fragments obtained by a silica-coating procedure from the rat lung vasculature. The method includes sonication and flotation of a mixed vesicle fraction, as the first step, followed by specific immunoisolation of PVs on anticaveolin-coated magnetic microspheres, as the second step. The mixed vesicle fraction, is thereby resolved into a bound subfraction (B), which consists primarily of PVs or caveolae, and a nonbound subfraction (NB) enriched in vesicles derived from the plasmalemma proper. The results so far obtained indicate that some specific endothelial membrane proteins (e.g., thrombomodulin, functional thrombin receptor) are distributed about evenly between the B and NB subfractions, whereas others are restricted to the NB subfraction (e.g., angiotensin converting enzyme, podocalyxin). Glycoproteins distribute unevenly between the two subfractions and antigens involved in signal transduction [e.g., annexin II, protein kinase C alpha, the G alpha subunits of heterotrimeric G proteins (alpha s, alpha q, alpha i2, alpha i3), small GTP-binding proteins, endothelial nitric oxide synthase, and nonreceptor protein kinase c-src] are concentrated in the NB (plasmalemma proper-enriched) subfraction rather than in the caveolae of the B subfraction. Additional work should show whether discrepancies between our findings and those already recorded in the literature represent inadequate fractionation techniques or are accounted for by chemical differentiation of caveolae from one cell type to another.  相似文献   

14.
Kou R  Igarashi J  Michel T 《Biochemistry》2002,41(15):4982-4988
Both lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) are platelet-derived phospholipids that elicit diverse biological responses. In endothelial cells, S1P stimulates the EDG-1 receptor-mediated activation of the endothelial isoform of nitric oxide synthase (eNOS), but the role of LPA in eNOS regulation is less well understood. We now report that LPA treatment of bovine aortic endothelial cells (BAEC) activates eNOS enzyme activity in a pathway that involves phosphorylation of eNOS on serine 1179 by protein kinase Akt. In contrast to the cellular responses elicited by S1P in COS-7 cells, LPA can stimulate the activation of eNOS and Akt independently of EDG-1 receptor transfection. LPA-stimulated enzyme activation was significantly attenuated in an eNOS mutant lacking the site that is phosphorylated by kinase Akt (eNOS S1179A). In BAEC, activation of eNOS by LPA is completely blocked by pertussis toxin, by the intracellular calcium chelator BAPTA (1,2-bis(aminophenoxy) ethane-N,N,N',N'-tetraacetic acid), and by the phosphoinositide 3-kinase (PI3-K) inhibitor wortmannin, but is unaffected by U0126, an inhibitor of mitogen-activated protein (MAP) kinase pathways. Analysis of the LPA dose response for eNOS activation reveals an EC(50) of approximately 40 nM, a concentration well below the potency of LPA at the EDG-1 receptor. Taken together, these results indicate that LPA potently activates eNOS in BAEC in a pathway distinct from the EDG-1 receptor, but mediated by a similar receptor-mediated pathway dependent on pertussis toxin-sensitive G proteins and involving activation of the PI3-K/Akt pathway. These studies have identified a role for the phospholipid LPA in eNOS activation, and point out the complementary role of distinct platelet-derived lipids in endothelial signaling pathways.  相似文献   

15.
Oxidized low density lipoprotein and innate immune receptors   总被引:15,自引:0,他引:15  
PURPOSE OF REVIEW: Atherosclerosis is now recognized as a chronic inflammatory disease. This review discusses recent literature reporting that innate immune receptors bind oxidatively modified LDL and its many oxidized moieties and consequently modulate the atherogenic process. These innate pattern recognition receptors are known to play a central role in pro-inflammatory responses to bacteria by binding pathogen-associated molecular patterns. It is hypothesized that oxidized LDL exposes similar molecular patterns recognized by receptors of innate immunity. RECENT FINDINGS: Minimally modified LDL and its oxidized phospholipids have been found to bind to CD14 or activate Toll-like receptors on macrophages. In turn, various biological activities have been induced, including the stimulation of cytoskeletal rearrangements that alter phagocytic activity and the stimulation of cytokine secretion, such as IL-8. These findings link modified LDL with innate pattern recognition receptors, such as those involved in the lipopolysaccharide signaling pathway. Human epidemiological studies support the involvement of CD14 and TLR4 in cardiovascular diseases. Oxidized LDL has also been demonstrated to bind to C-reactive protein, an opsonic molecule activating classic complement pathway and Fcgamma receptor endocytosis. These data suggest that C-reactive protein may not only be a strong predictor of clinical disease, but may also play a role in atherogenesis. Recent data on other innate immune receptors are discussed in the context of their potential interactions with oxidized LDL and atherogenesis. SUMMARY: Recent findings suggest that oxidized forms of LDL interact with innate immune receptors. Further studies are needed to identify the role of these interactions in inflammation and atherosclerosis.  相似文献   

16.
K Hirata  H Akita  M Yokoyama 《FEBS letters》1991,287(1-2):181-184
Vascular endothelial cells, in response to various neurohumoral and physical stimuli, produce an endothelium-derived relaxing factor, a substance which regulates vascular tone. We have demonstrated that oxidized low density lipoprotein (LDL) inhibits endothelium-dependent relaxation. We studied the effect of oxidized LDL on inositol phosphates formation stimulated with bradykinin (BK) in cultured bovine aortic endothelial cells. BK elicited a rapid generation of inositol phosphates from inositol phospholipids. Accumulation of inositol 1,4,5-trisphosphate (IP3) stimulated with BK (0.1 microM) was markedly inhibited by oxidized LDL. However, native LDL had little effect on BK-induced accumulation of IP3. From these results, oxidized LDL inhibits receptor-mediated phosphoinositides hydrolysis and modulates the endothelial function.  相似文献   

17.
《The Journal of cell biology》1993,120(4):1011-1019
Endothelial cell (EC) migration is a critical and initiating event in the formation of new blood vessels and in the repair of injured vessels. Compelling evidence suggests that oxidized low density lipoprotein (LDL) is present in atherosclerotic lesions, but its role in lesion formation has not been defined. We have examined the role of oxidized LDL in regulating the wound-healing response of vascular EC in vitro. Confluent cultures of bovine aortic EC were "wounded" with a razor, and migration was measured after 18 to 24 h as the number of cells moving into the wounded area and the mean distance of cells from the wound edge. Oxidized LDL markedly reduced migration in a concentration- and oxidation-dependent manner. Native LDL or oxidized LDL with a thiobarbituric acid (TBA) reactivity < 5 nmol malondialdehyde equivalents/mg cholesterol was not inhibitory; however, oxidized LDL with a TBA reactivity of 8-12 inhibited migration by 75- 100%. Inhibition was half-maximal at 250-300 micrograms cholesterol/ml and nearly complete at 350-400 micrograms/ml. The antimigratory activity was not due to cell death since it was completely reversed 16 h after removal of the lipoprotein. The inhibitor molecule was shown to be a lipid; organic solvent extracts of oxidized LDL inhibited migration to nearly the same extent as the intact particle. When LDL was variably oxidized by dialysis against FeSO4 or CuSO4, or by UV irradiation, the inhibitory activity correlated with TBA reactivity and total lipid peroxides, but not with electrophoretic mobility or fluorescence (360 ex/430 em). This indicates that a lipid hydroperoxide may be the active species. These results suggest the possibility that oxidized LDL may limit the healing response of the endothelium after injury.  相似文献   

18.
A decrease in the bioavailability of endothelium-derived nitric oxide (NO) is linked to hypercholesterolemia. However, the mechanism by which low density lipoprotein (LDL) mediates endothelial NO synthase (eNOS) dysfunction remains controversial. We investigate the effect of LDL on eNOS regulation in human endothelial cells (ECs). In cultured ECs, a high level of LDL increased the abundance of eNOS and caveolin-1 (Cav-1) in the membrane caveolae and the association of eNOS with Cav-1. Furthermore, it decreased the basal level of NO and blocked NO production stimulated by the calcium ionophore A23187. LDL exposure also increased the formation of stress fibers and the membrane translocation of eNOS. These effects can be blocked by cytochalasin D, an actin cytoskeleton disruptor. In revealing the mechanism underlying the translocation of eNOS, we found that a high level of LDL increased the level of membrane-associated and GTP-formed RhoA and activated the RhoA downstream kinase ROCK-1 activity. Y-27632, a specific inhibitor of ROCK-1, blocked LDL-induced stress fiber formation, eNOS translocation and NO production. In conclusion, a high level of LDL increases the movement of eNOS to membrane caveolae via the increased stress fibers. The RhoA-mediated pathway may play a crucial role in this process in vascular ECs.  相似文献   

19.
Although several reports have indicated that eNOS is a highly sensitive calpain substrate, the occurrence of a concomitant Ca(2+)-dependent activation of the synthase and of the protease has never been analyzed in specific direct experiments. In this study, we have explored in vivo how eNOS can undergo Ca(2+)-dependent translocation and activation, protected against degradation by activated calpain. Here we demonstrate that following a brief exposure to Ca(2+)-loading, the cytosolic eNOS-HSP90 complex recruits calpain in a form in which the chaperone and the synthase are almost completely resistant to digestion by the protease. Furthermore, in the presence of the HSP90 inhibitor geldanamycin, a significant decrease in NO production and an extensive degradation of eNOS protein occurs, indicating that dissociation from membranes and association with the chaperone is correlated to the protection of the synthase. Experiments with isolated membrane preparations confirm the primary role of HSP90 in dissociation of eNOS from caveolae. Prolonged exposure of cells to Ca(2+)-loading resulted in an extensive degradation of both eNOS and HSP90, accompanied by a large suppression of NO production. We propose that the protective effect exerted by HSP90 on eNOS degradation mediated by calpain represents a novel and critical mechanism that assures the reversibility of the intracellular trafficking and activation of the synthase.  相似文献   

20.
The objective of this study was to determine whether absence of endothelial nitric oxide synthase (eNOS) affects the expression of cell surface adhesion molecules in endothelial cells. Murine lung endothelial cells (MLECs) were prepared by immunomagnetic bead selection from wild-type and eNOS knockout mice. Wild-type cells expressed eNOS, but eNOS knockout cells did not. Expression of neuronal NOS and inducible NOS was not detectable in cells of either genotype. Upon stimulation, confluent wild-type MLECs produced significant amounts of NO compared with N-monomethyl-L-arginine-treated wild-type cells. eNOS knockout and wild-type cells showed no difference in the expression of E-selectin, P-selectin, intracellular adhesion molecule-1, and vascular cell adhesion molecule-1 as measured by flow cytometry on the surface of platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31)-positive cells. Both eNOS knockout and wild-type cells displayed the characteristics of resting endothelium. Adhesion studies in a parallel plate laminar flow chamber showed no difference in leukocyte-endothelial cell interactions between the two genotypes. Cytokine treatment induced endothelial cell adhesion molecule expression and increased leukocyte-endothelial cell interactions in both genotypes. We conclude that in resting murine endothelial cells, absence of endothelial production of NO by itself does not initiate endothelial cell activation or promote leukocyte-endothelial cell interactions. We propose that eNOS derived NO does not chronically suppress endothelial cell activation in an autocrine fashion but serves to counterbalance signals that mediate activation. vascular biology; atherosclerosis; mouse models  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号