首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Complementation of integrase function in HIV-1 virions.   总被引:6,自引:0,他引:6       下载免费PDF全文
Proviral integration is essential for HIV-1 replication and represents an important potential target for antiviral drug design. Although much is known about the integration process from studies of purified integrase (IN) protein and synthetic target DNA, provirus formation in virally infected cells remains incompletely understood since reconstituted in vitro assays do not fully reproduce in vivo integration events. We have developed a novel experimental system in which IN-mutant HIV-1 molecular clones are complemented in trans by Vpr-IN fusion proteins, thereby enabling the study of IN function in replicating viruses. Using this approach we found that (i) Vpr-linked IN is efficiently packaged into virions independent of the Gag-Pol polyprotein, (ii) fusion proteins containing a natural RT/IN processing site are cleaved by the viral protease and (iii) only the cleaved IN protein complements IN-defective HIV-1 efficiently. Vpr-mediated packaging restored IN function to a wide variety of IN-deficient HIV-1 strains including zinc finger, catalytic core and C-terminal domain mutants as well as viruses from which IN was completely deleted. Furthermore, trans complemented IN protein mediated a bona fide integration reaction, as demonstrated by the precise processing of proviral ends (5'-TG...CA-3') and the generation of an HIV-1-specific (5 bp) duplication of adjoining host sequences. Intragenic complementation between IN mutants defective in different protein domains was also observed, thereby providing the first evidence for IN multimerization in vivo.  相似文献   

4.
X Wu  H Liu  H Xiao  J A Conway    J C Kappes 《Journal of virology》1996,70(6):3378-3384
The human immunodeficiency virus type I (HIV-1) Vpr and HIV-2 Vpx proteins package into virions through interactions with their cognate Gag polyprotein precursor. The targeting properties of Vpr and Vpx have been exploited to incorporate foreign proteins into virions by expression as heterologous fusion molecules (X. Wu, H.-M. Liu, H. Xiao, J. Kim, P. Seshaiah, G. Natsoulis, J. D. Boeke, B. H. Hahn, and J. C. Kappes, J. Virol. 69:3389-3398, 1995). To explore the possibility of utilizing Vpx and Vpr to target dominant negative mutants of the HIV Pol proteins into virions, we fused HIV-2 Vpx with an enzymatically defective protease (PR) mutant. Using a vector system to facilitate transient coexpression with HIV provirus, Vpx-PR-mutant (VpxPR(M)) fusion protein was expressed and packaged efficiently into HIV-2 and simian immunodeficiency virus virions. Immunoblot analysis of purified virions demonstrated that the packaging of VpxPR(M) interfered with the processing of the Gag and Gag/Pol precursor proteins, similar to that of a well-characterized active-site PR inhibitor. The incomplete processing of Gag and Gag/Pol was consistent with a 25-fold reduction in virion infectivity. The coexpression of a packaging defective VpxPR(M) fusion protein with HIV-2 provirus produced virions with fully processed Gag protein, similar to wild-type virions. Importantly, virions trans complemented with a Vpx-chloramphenicol acetyltransferase fusion protein were normal with respect to the processing of Gag protein and the ability to infect and replicate in vitro. These results indicate that VpxPR(M) specifically inhibited the function of the viral protease and provide for the first time proof of principle that the incorporation of foreign proteins into virions via fusion with Vpx can inhibit HIV replication. The use of accessory proteins as vehicles to deliver deleterious proteins to virions, including dominant negative mutants of Pol proteins, may provide new opportunities for application of gene therapy-based antiretroviral strategies. The ability to package PR by expression in trans, independent of the Gag/Pol precursor, also represents a novel approach that may be exploited to study the function of the Pol proteins.  相似文献   

5.
The Vpr protein, encoded by the human immunodeficiency virus type 1 (HIV-1) genome, is one of the nonstructural proteins packaged in large amounts into viral particles. We have previously reported that Vpr associates with the DNA repair enzyme uracil DNA glycosylase (UDG). In this study, we extended these observations by investigating whether UDG is incorporated into virions and whether this incorporation requires the presence of Vpr. Our results, with highly purified viruses, show that UDG is efficiently incorporated either into wild-type virions or into Vpr-deficient HIV-1 virions, indicating that Vpr is not involved in UDG packaging. Using an in vitro protein-protein binding assay, we reveal a direct interaction between the precursor form of UDG and the viral integrase (IN). Finally, we demonstrate that IN-defective viruses fail to incorporate UDG, indicating that IN is required for packaging of UDG into virions.  相似文献   

6.
The human immunodeficiency virus type 1 (HIV-1) particles consists of two molecules of genomic RNA as well as molecules originating from gag, pol, and env products, all synthesized as precursor proteins. The 96-amino-acid Vpr protein, the only virion-associated HIV-1 regulatory protein, is not part of the virus polyprotein precursors, and its incorporation into virus particles must occur by way of an interaction with a component normally found in virions. To investigate the mechanism of incorporation of Vpr into the HIV-1 virion, Vpr- proviral DNA constructs harboring mutations or deletions in specific virion-associated gene products were cotransfected with Vpr expressor plasmids in COS cells. Virus released from the transfected cells was tested for the presence of Vpr by immunoprecipitation with Vpr-specific antibodies. The results of these experiments show that Vpr is trans-incorporated into virions but at a lower efficiency than when Vpr is expressed from a proviral construct. The minimal viral genetic information necessary for Vpr incorporation was a deleted provirus encoding only the pr55gag polyprotein precursor. Incorporation of Vpr requires the expression but not the processing of gag products and is independent of pol and env expression. Direct interaction of Vpr with the Pr55gag precursor protein was demonstrated by coprecipitation experiments with gag product-specific antibodies. Overall, these results indicate that HIV-1 Vpr is incorporated into the nascent virion through an interaction with the Gag precursor polyprotein and demonstrate a novel mechanism by which viral protein can be incorporated into virus particles.  相似文献   

7.
8.
W Paxton  R I Connor    N R Landau 《Journal of virology》1993,67(12):7229-7237
The product of the vpr open reading frame of human immunodeficiency virus type 1 (HIV-1) is a 15-kDa, arginine-rich protein that is present in virions in molar quantities equivalent to that of Gag. We report here the results of our investigations into the mechanism by which Vpr is incorporated into virions during assembly in infected cells. For these studies we used an expression vector encoding a Vpr molecule fused at its amino terminus to a nine-amino-acid peptide from influenza virus hemagglutinin. The tagged Vpr expression vector and a vpr mutant HIV-1 provirus were used to cotransfect COS cells, and the resulting virions were tested for the presence of the tagged protein on immunoblots probed with monoclonal antibody against the hemagglutinin peptide. The COS-produced virions were found to contain readily detectable amounts of tagged Vpr and smaller amounts of a putative tagged Vpr dimer. Infectivity of the particles was not altered by incorporation of tagged Vpr. Our results using this system in combination with mutant HIV-1 proviruses suggested that incorporation of Vpr into virions requires the carboxy-terminal Gag protein of HIV-1 (p6) but not gp160, Pol, or genomic viral RNA. In addition, analysis of mutated, tagged Vpr molecules suggested that amino acids near the carboxy terminus (amino acids 84 to 94) are required for incorporation of Vpr into HIV-1 virions. The single cysteine residue near the carboxy terminus was required for production of a stable protein. Arginine residues tested were not important for incorporation or stability of tagged Vpr. These results suggested a novel strategy for blocking HIV-1 replication.  相似文献   

9.
The human immunodeficiency virus type 1 (HIV-1) integrase (IN) is essential for integration of viral DNA into host cell chromatin. We have reported previously (Priet, S., Navarro, J. M., Gros, N., Querat, G., and Sire, J. (2003) J. Biol. Chem. 278, 4566-4571) that IN also plays a role in the packaging of the host uracil DNA glycosylase UNG2 into viral particles and that the region of IN encompassing residues 170-180 was responsible for the interaction with UNG2 and for its packaging into virions. In this work, we aimed to investigate the replication of HIV-1 viruses rendered deficient in virion-associated UNG2 by single or double point mutations in the region 170-180 of IN. We show that the L172A/K173A IN mutant virus was deficient for UNG2 packaging and was defective for replication because of a blockage at the stage of proviral DNA integration in host cell DNA. In vitro assays using long term repeat mimics, however, demonstrate that the L172A/K173A IN mutant was catalytically active. Moreover, trans-complementation experiments show that the viral propagation of L172A/K173A viruses could be rescued by the overexpression of Vpr.L172A/K173A IN fusion protein in a dose-dependent manner and that this rescue is independent of UNG2 packaging. Altogether, our data indicate that L172A/K173A mutations of IN induce a subtle defect in the function of IN, which nevertheless dramatically impairs viral replication. Unexpectedly, this blockage of replication could be overcome by forcing the packaging of higher amounts of this same mutated integrase. This is the first study reporting that blockage of the integration process of HIV-1 provirus carrying a mutation of IN could be alleviated by increasing amounts of IN even carrying the same mutations.  相似文献   

10.
A single-chain antibody (scAb) against human immunodeficiency virus type 1 (HIV-1) integrase was expressed as a fusion protein of scAb and HIV-1 viral protein R (Vpr), together with the HIV-1 genome, in human 293T cells. The expression did not affect virion production much but markedly reduced the infectivity of progeny virions. The fusion protein was found to be incorporated into the virions. The incorporation appears to account for the reduced infectivity.  相似文献   

11.
Vpr and Vpx are the auxiliary proteins of human immunodeficiency viruses (HIVs) selectively incorporated into mature viral particles. We showed that the bacterial chloramphenicol acetyltransferase (CAT) fused to the N-terminus of HIV-1 Vpr, HIV-2 Vpr, or HIV-2 Vpx was incorporated into mature virions in a type-selective manner. By using chimeric proteins between HIV-1 Vpr and HIV-2 Vpx, we found that the N-terminal side of these proteins was mainly important for type-selective virion incorporation. The C-terminal arginine-rich region of HIV-1 Vpr was also found to transport CAT fusion proteins into virions but without any type selectivity. Furthermore, the corresponding regions of HIV-2 Vpr and HIV-2 Vpx had no such activity. This region of HIV-1 Vpr may interact nonspecifically with viral genomic RNA. Collectively, Vpr and Vpx may provide a means to introduce foreign proteins and other molecules into HIV virions for therapeutic purposes.  相似文献   

12.
13.
Inactivation of progeny virions with chimeric virion-associated proteins represents a novel therapeutic approach against human immunodeficiency virus (HIV) replication. The HIV type 1 (HIV-1) Vpr gene product, which is packaged into virions, is an attractive candidate for such a strategy. In this study, we developed Vpr-based fusion proteins that could be specifically targeted into mature HIV-1 virions to affect their structural organization and/or functional integrity. Two Vpr fusion proteins were constructed by fusing to the first 88 amino acids of HIV-1 Vpr the chloramphenicol acetyltransferase enzyme (VprCAT) or the last 18 C-terminal amino acids of the HIV-1 Vpu protein (VprIE). These Vpr fusion proteins were initially designed to quantify their efficiency of incorporation into HIV-1 virions when produced in cis from the provirus. Subsequently, CD4+ Jurkat T-cell lines constitutively expressing the VprCAT or the VprIE fusion protein were generated with retroviral vectors. Expression of the VprCAT or the VprIE fusion protein in CD4+ Jurkat T cells did not interfere with cellular viability or growth but conferred substantial resistance to HIV replication. The resistance to HIV replication was more pronounced in Jurkat-VprIE cells than in Jurkat-VprCAT cells. Moreover, the antiviral effect mediated by VprIE was dependent on an intact p6gag domain, indicating that the impairment of HIV-1 replication required the specific incorporation of Vpr fusion protein into virions. Gene expression, assembly, or release was not affected upon expression of these Vpr fusion proteins. Indeed, the VprIE and VprCAT fusion proteins were shown to affect the infectivity of progeny virus, since HIV virions containing the VprCAT or the VprIE fusion proteins were, respectively, 2 to 3 times and 10 to 30 times less infectious than the wild-type virus. Overall, this study demonstrated the successful transfer of resistance to HIV replication in tissue cultures by use of Vpr-based antiviral genes.  相似文献   

14.
The C terminus of the HIV-1 Gag protein contains a proline-rich domain termed p6(Gag). This domain has been shown to play a role in efficient virus release and incorporation of Vpr into virions. In a previous study (X. F. Yu, L. Dawson, C. J. Tian, C. Flexner, and M. Dettenhofer, J. Virol. 72:3412-3417, 1998), we observed that the removal of the p6 domain of Gag as well as drastic mutations in the PTAP motif resulted in reduced virion-associated Pol proteins from transfected COS cells. In the present study, amino acid substitutions at residues 5 and 7 of p6(Gag) resulted in a cell type-dependent replication of the mutant virus in CD4(+) T cells; the virus was replication competent in Jurkat cells but restricted in H9 cells and primary blood-derived monocytes. Established Jurkat and H9 cell lines expressing p6(Gag) mutant and parental virus were used to further understand this defect. Mutant virions produced from H9 cells, which displayed no defect in extracellular virion production, showed an approximately 16-fold reduction in Pol protein levels, whereas the levels of Pol proteins were only marginally reduced in mutant virions produced from Jurkat cells. The reduction in the virion-associated Pol proteins could not be accounted for by differences in the levels of intracellular p160(Gag-Pol) or in the interaction between p55(Gag) and p160(Gag-Pol) precursors. Electron microscopic analysis of the p6(Gag) mutant virions showed a predominately immature morphology in the absence of significant defects in Gag proteolytic cleavage. Taken together, these data suggest that the proline-rich motif of p6(Gag) is involved in the late stages of virus maturation, which include the packaging of cleaved Pol proteins in viral particles, a process which may involve cell-type-specific factors.  相似文献   

15.
16.
The 96-residue human immunodeficiency virus (HIV) accessory protein Vpr serves manifold functions in the retroviral life cycle including augmentation of viral replication in non-dividing host cells, induction of G2 cell cycle arrest, and modulation of HIV-induced apoptosis. Using a combination of dynamic light scattering, circular dichroism, and NMR spectroscopy the N terminus of Vpr is shown to be a unique domain of the molecule that behaves differently from the C-terminal domain in terms of self-association and secondary structure folding. Interestingly, the four highly conserved proline residues in the N terminus are predicted to have a high propensity for cis/trans isomerism. Thus the high resolution structure and folding of a synthetic N-terminal peptide (Vpr1-40) and smaller fragments thereof have been investigated. 1H NMR data indicate Vpr1-40 possesses helical structure between residues 17-32, and for the first time, this helix, which is bound by proline residues, was observed even in aqueous solution devoid of any detergent supplements. In addition, NMR data revealed that all of the proline residues undergo a cis/ trans isomerism to such an extent that approximately 40% of all Vpr molecules possess at least one proline in a cis conformation. This phenomenon of cis/trans isomerism, which is unprecedented for HIV-1 Vpr, not only provides an explanation for the molecular heterogeneity observed in the full-length molecule but also indicates that in vivo the folding and function of Vpr should depend on a cis/trans-proline isomerase activity, particularly as two of the proline residues in positions 14 and 35 show considerable amounts of cis isomers. This prediction correlates well with our recent observation (Zander, K., Sherman, M. P., Tessmer, U., Bruns, K., Wray, V., Prechtel, A. T., Schubert, E., Henklein, P., Luban, J., Neidleman, J., Greene, W. C., and Schubert, U. (2003) J. Biol. Chem. 278, 43170-43181) of a functional interaction between the major cellular isomerase cyclophilin A and Vpr, both of which are incorporated into HIV-1 virions.  相似文献   

17.
Viral protein R (Vpr) of human immunodeficiency virus type 1 (HIV-1) is a small accessory protein involved in the nuclear import of viral DNA and the growth arrest of host cells. Several studies have demonstrated that a significant amount of Vpr is incorporated into the virus particle via interaction with the p6 domain of Gag, and it is generally assumed that Vpr is packaged in equimolar ratio to Gag. We have quantitated the relative amount of Vpr in purified virions following [(35)S]cysteine labeling of infected MT-4 cells, as well as by quantitative immunoblotting and found that Vpr is present in a molar ratio of approximately 1:7 compared to capsid. Analysis of isolated core particles showed that Vpr is associated with the mature viral core, despite quantitative loss of p6 from core preparations. Metabolic labeling of infected cells with ortho[(32)P]phosphate revealed that a small fraction of Vpr is phosphorylated in virions and infected cells.  相似文献   

18.
The viral protein Nef contributes to the optimal infectivity of human and simian immunodeficiency viruses. The requirement for Nef during viral biogenesis particles suggests that Nef might play a role in this process. Alternatively, because Nef is incorporated into viruses, it might play a role when progeny virions reach target cells. We challenged these hypotheses by manipulating the amounts of Nef incorporated in viruses while keeping its expression level constant in producer cells. This was achieved by forcing the incorporation of Nef into viral particles by fusing a Vpr sequence to the C-terminal end of Nef. A cleavage site for the viral protease was introduced between Nef and Vpr to allow the release of Nef fragments from the fusion protein during virus maturation. We show that the resulting Nef-CS-Vpr fusion partially retains the ability of Nef to downregulate cell surface CD4 and that high amounts of Nef-CS-Vpr are incorporated into viral particles compared with what is seen for wild-type Nef. The fusion protein is processed during virion maturation and releases Nef fragments similar to those found in viruses produced in the presence of wild-type Nef. Unlike viruses produced in the presence of wild-type Nef, viruses produced in the presence of Nef-CS-Vpr do not have an increase in infectivity and are as poorly infectious as viruses produced in the absence of Nef. These findings demonstrate that the presence of Nef in viral particles is not sufficient to increase human immunodeficiency virus type 1 infectivity and suggest that Nef plays a role during the biogenesis of viral particles.  相似文献   

19.
The core domain of human immunodeficiency virus type 1 (HIV-1) integrase (IN) contains a D,D(35)E motif, named for the phylogenetically conserved glutamic acid and aspartic acid residues and the invariant 35 amino acid spacing between the second and third acidic residues. Each acidic residue of the D,D(35)E motif is independently essential for the 3′-processing and strand transfer activities of purified HIV-1 IN protein. Using a replication-defective viral genome with a hygromycin selectable marker, we recently reported that a mutation at any of the three residues of the D,D(35)E motif produces a 103- to 104-fold reduction in infectious titer compared with virus encoding wild-type IN (A. D. Leavitt et al., J. Virol. 70:721–728. 1996). The infectious titer, as measured by the number of hygromycin-resistant colonies formed following infection of cells in culture, was less than a few hundred colonies per μg of p24. To understand the mechanism by which the mutant virions conferred hygromycin resistance, we characterized the integrated viral DNA in cells infected with virus encoding mutations at each of the three residues of the D,D(35)E motif. We found the integrated viral DNA to be colinear with the incoming viral genome. DNA sequencing of the junctions between integrated viral DNA and host DNA showed that (i) the characteristic 5-bp direct repeat of host DNA flanking the HIV-1 provirus was not maintained, (ii) integration often produced a deletion of host DNA, (iii) integration sometimes occurred without the viral DNA first undergoing 3′-processing, (iv) integration sites showed a strong bias for a G residue immediately adjacent to the conserved viral CA dinucleotide, and (v) mutations at each of the residues of the D,D(35)E motif produced essentially identical phenotypes. We conclude that mutations at any of the three acidic residues of the conserved D,D(35)E motif so severely impair IN activity that most, if not all, integration events by virus encoding such mutations are not IN mediated. IN-independent provirus formation may have implications for anti-IN therapeutic agents that target the IN active site.  相似文献   

20.
Integase interactor 1 (INI1), also known as hSNF5, is a protein that interacts with HIV-1 integrase. We report here that a cytoplasmically localized fragment of INI1 (S6; aa183-294) containing the minimal integrase-interaction domain potently inhibits HIV-1 particle production and replication. Mutations in S6 or integrase that disrupt integrase-INI1 interaction abrogated the inhibitory effect. An integrase-deficient HIV-1 transcomplemented with integrase fused to Vpr was not affected by S6. INI1 was specifically incorporated into virions and was required for efficient HIV-1 particle production. These results indicate that INI1 is required for late events in the viral life cycle, and that ectopic expression of S6 inhibits HIV-1 replication in a transdominant manner via its specific interaction with integrase within the context of Gag-Pol, providing a novel strategy to control HIV-1 replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号