首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate our earlier hypothesis that carbohydrates play a regulatory role in the intracellular transport of secretory glycoproteins, we used 1-deoxynojirimycin (DNJ), and inhibitor of glucosidase I and II of the rough endoplasmic reticulum (RER), to modify the structure of N-linked glycan moieties of secretory glycoproteins of human hepatoma (Hep G2) cells in culture. Using a pulse-chase protocol, we found that treatment of Hep G2 cultures with 1.25 mM DNJ markedly reduced the rate of secretion of 1-protease inhibitor, ceruloplasmin, and 2-macroglobulin, but had no effect on the export of fibronectin, -fetoprotein and transferrin, nor on albumin which lacks carbohydrate. For example, 50% of newly synthesized 1-protease inhibitor, the glycoprotein most dramatically affected, was secreted by 27 min in control cultures versus 110 min in DNJ-treated cultures. Percoll gradient cell fractionation analyses revealed that DNJ inhibited transport of the affected secretory glycoproteins in the RER segment of the ER/Golgi pathway. For example, 50% of newly synthesized 1-protease inhibitor was lost from the RER fraction by 10 min in untreated cells, but 70 min was required for the transport of a similar amount of protein in DNJ-treated cells. DNJ treatment also inhibited the rate at which the N-linked glycan moieties of the affected glycoproteins became resistant to endo H in the Golgi. Since the glycan moiety of secreted forms of the affected glycoproteins were fully processed to the complex structure, suggesting escape from DNJ inhibition, we concluded that removal of terminal glucose residues from the glycan chain of secretory glycoproteins is required for their transport from the RER to the Golgi. We suggest that the oligosaccharide moieties on 1-protease inhibitor, ceruloplasmin and 2-macroglobulin form part of the binding site for a receptor which regulates transport of these glycoproteins.  相似文献   

2.
We have previously shown that export of nine proteins by human hepatoma cells falls into three discrete kinetic classes with intracellular retention half-times of approximately 35 min, 77 min and 115 min. To determine if carbohydrate on secretory glycoproteins determines the secretory class we have measured the kinetics of export of the nine proteins after tunicamycin-treatment of cultures. We found no apparent correlation between the kinetic class of a secretory protein and sensitivity of secretion to tunicamycin-treatment. For example, three glycoproteins are exported with rapid kinetics and secretion of only one, alpha 1-protease inhibitor, is inhibited by tunicamycin treatment. In addition, three glycoproteins are secreted with intermediate kinetics and tunicamycin-treatment inhibits the secretion of two of these proteins, alpha 2-macroglobulin and ceruloplasmin but not the third, plasminogen.  相似文献   

3.
Various studies have shown that oligosaccharides play an important role in the intracellular transport and secretion of glycoproteins. We show here a difference in the rate of secretion of two mature glycoforms of a single protein, alpha 1-acid glycoprotein. This indicates the existence of kinetically different pathways for these two forms for transport from the medial Golgi to the extracellular medium.  相似文献   

4.
We have previously shown that newly synthesized liver secretory proteins are exported at three distinct characteristic rates, with intracellular retention half-times of 110-120 min (e.g. transferrin), 75-80 min (e.g. ceruloplasmin), and 30-40 min (e.g. alpha 1-protease inhibitor) (J. B. Parent, H. Bauer, and K. Olden (1985) Biochim. Biophys. Acta, in press). In the present study we have determined the average time required for specific glycoproteins to move through the various compartments of the intracellular transport pathway, consisting of endoplasmic reticulum and Golgi complex. Localization in particular compartments was monitored by the use of the following complementary approaches: (i) Percoll density gradient fractionation of the subcellular organelles, (ii) sensitivity of the glycan moiety of N-linked glycosylation to endo-beta-N-acetylglucosaminidase H, and (iii) by the lectin-binding characteristics. The cell fractionation studies revealed that alpha 1-protease inhibitor, ceruloplasmin, and transferrin were transported from the rough endoplasmic reticulum with a retention half-time of 10, 30, or 45 min, respectively. Measurements of the rate at which newly synthesized glycoprotein became endo H-resistant (an event localized near the medial region of Golgi) demonstrated that it took 60-70, 30, and 18 min for 50% of transferrin, ceruloplasmin, and alpha 1-protease inhibitor, respectively, to reach the medial Golgi. Consistent with this finding, maximal binding of transferrin to wheat germ agglutinin (also a medial Golgi event) and Ricinus communis agglutinin I (a trans Golgi event) required 75 and 90 min, respectively, and maximal binding of ceruloplasmin to both lectins occurred in approximately 30 min. Maximal binding of alpha 1-protease inhibitor to wheat germ agglutinin and Ricinus communis agglutinin I required 15 and 30 min, respectively. The results presented here clearly indicate that (i) the time required for protein secretion cannot be entirely accounted for by lag in transport from the rough endoplasmic reticulum to the Golgi since the glycoproteins examined are retained in the former organelle for no more than two-fifths of the total intracellular retention half-time, and (ii) the variability in rates of protein secretion is not due solely to differences in rates of transport from the rough endoplasmic reticulum to the Golgi as variability in retention within the Golgi is also demonstrated. The results are discussed in terms of their compatibility with receptor-mediated transport of glycoproteins in both the endoplasmic reticulum and Golgi.  相似文献   

5.
VIP36, an intracellular lectin that recognizes high mannose-type glycans (Hara-Kuge, S., Ohkura, T., Seko, A., and Yamashita, K. (1999) Glycobiology 9, 833-839), was shown to localize not only to the early secretory pathway but also to the plasma membrane of Madin-Darby canine kidney (MDCK) cells. In the plasma membrane, VIP36 exhibited an apical-predominant distribution, the apical/basolateral ratio being approximately 2. Like VIP36, plasma membrane glycoproteins recognized by VIP36 were found in the apical and basolateral membranes in the ratio of approximately 2 to 1. In addition, secretory glycoproteins recognized by VIP36 were secreted approximately 2-fold more efficiently from the apical membrane than from the basolateral membrane. Thus, the apical/basolateral ratio of the transport of VIP36-recognized glycoproteins was correlated with that of VIP36 in MDCK cells. Upon overproduction of VIP36 in MDCK cells, the apical/basolateral ratios of both VIP36 and VIP36-recognized glycoproteins were changed from approximately 2 to approximately 4, and the secretion of VIP36-recognized glycoproteins was greatly stimulated. In contrast to the overproduction of VIP36, that of a mutant version of VIP36, which has no lectin activity, was of no effect on the distribution of glycoproteins to apical and basolateral membranes and inhibited the secretion of VIP36-recognized glycoproteins. Furthermore, the overproduction of VIP36 greatly stimulated the secretion of a major apical secretory glycoprotein of MDCK cells, clusterin, which was found to carry at least one high mannose-type glycan and to be recognized by VIP36. In contrast to the secretion of clusterin, that of a non-glycosylated apical-secretion protein, galectin-3, was not stimulated through the overproduction of VIP36. These results indicated that VIP36 was involved in the transport and sorting of glycoproteins carrying high mannose-type glycan(s).  相似文献   

6.
《The Journal of cell biology》1984,98(5):1720-1729
1- Deoxynojirimycin is a specific inhibitor of glucosidases I and II, the first enzymes that process N-linked oligosaccharides after their transfer to polypeptides in the rough endoplasmic reticulum. In a pulse- chase experiment, 1- deoxynojirimycin greatly reduced the rate of secretion of alpha 1-antitrypsin and alpha 1-antichymotrypsin by human hepatoma HepG2 cells, but had marginal effects on secretion of the glycoproteins C3 and transferrin, or of albumin. As judged by equilibrium gradient centrifugation, 1- deoxynojirimycin caused alpha 1- antitrypsin and alpha 1-antichymotrypsin to accumulate in the rough endoplasmic reticulum. The oligosaccharides on cell-associated alpha 1- antitrypsin and alpha 1-antichymotrypsin synthesized in the presence of 1- deoxynojirimycin , remained sensitive to Endoglycosidase H and most likely had the structure Glu1- 3Man9GlcNAc2 . Tunicamycin, an antibiotic that inhibits addition of N-linked oligosaccharide units to glycoproteins, had a similar differential effect on secretion of these proteins. Swainsonine , an inhibitor of the Golgi enzyme alpha- mannosidase II, had no effect on the rates of protein secretion, although the proteins were in this case secreted with an abnormal N- linked, partially complex, oligosaccharide. We conclude that the movement of alpha 1-antitrypsin and alpha 1-antichymotrypsin from the rough endoplasmic reticulum to the Golgi requires that the N-linked oligosaccharides be processed to at least the Man9GlcNAc2 form; possibly this oligosaccharide forms part of the recognition site of a transport receptor for certain secretory proteins.  相似文献   

7.
8.
We are interested in determining whether carbohydrates are important regulatory determinants in the intracellular transport and secretion of glycoproteins. In the present study, we have used swainsonine, an indolizidine alkaloid, to modify the structure of N-glycosidically linked complex oligosaccharides. By inhibiting Golgi mannosidase II, swainsonine prevents the trimming of GlcNAc(Man)5(GlcNAc)2 to GlcNAc-(Man)3(GlcNAc)2, resulting in the formation of hybrid-type oligosaccharides. We find, from pulse-chase experiments using [35S]methionine and immunoprecipitation of individual proteins from culture media, that swainsonine treatment (1 microgram/ml) accelerated the secretion of glycoproteins (transferrin, ceruloplasmin, alpha 2-macroglobulin, and alpha 1-antitrypsin) by decreasing the lag period by 10-15 min relative to untreated cultures. The enhanced secretion was specific for glycoproteins since the secretion of albumin, a nonglycoprotein, was unaffected. When alpha 1-antitrypsin was immunoprecipitated from the cell lysates, sodium dodecyl sulfate-polyacrylamide gel electrophoresis fluorographic analysis demonstrated that the conversion of the high-mannose precursor to the hybrid form in swainsonine-treated cells occurred more rapidly (by about 10 min) than the conversion to the complex form in control cells. Since both the hybrid and complex forms of alpha 1-antitrypsin are terminally sialylated by sialyltransferase in the trans-Golgi, these results suggest that swainsonine-modified glycoproteins traverse the Golgi more rapidly than their normal counterparts. Therefore, accelerated transport within this organelle may account for the decreased lag period of glycoprotein secretion in the swainsonine-treated cultures.  相似文献   

9.
In pulse-chase experiments we compared the kinetics of early carbohydrate processing and subsequent secretion of thyroid-stimulating hormone (TSH) and free alpha subunit under control conditions and after treatment with 1-deoxynojirimycin, an inhibitor of glucosidases I and II. Under control conditions TSH achieved resistance to endo-beta-N-acetylglucosaminidase H (endo H) more rapidly than free alpha (t1/2 0.3 h versus 0.9 h); however, free alpha was secreted more rapidly than TSH (t1/2 2.2 h versus 3.4 h). With 1-deoxynojirimycin, oligosaccharides co-migrating with G3Man9GlcNAc and G2Man9GlcNAc were demonstrated on TSH for the first time, suggesting that previous pulse-chase studies did not disclose these intermediates due to rapid removal of glucose residues from the common G3Man9GlcNAc2 precursor. 1-Deoxynojirimycin delayed the rate of attainment of endo H resistance for both TSH and free alpha, but there was no effect on subunit combination. With 5 mM 1-deoxynojirimycin the amount of secreted free alpha was reduced to 65% of control; secreted TSH was reduced markedly to 17% of control without intracellular accumulation, suggesting increased intracellular degradation. There was no significant toxicity from these doses of 1-deoxynojirimycin on the production or secretion of the two major nonglycosylated pituitary proteins, growth hormone and prolactin, or on at least 10 other secretory proteins. Basal differences in the relative rates of TSH and free alpha processing and secretion as well as differential sensitivity to 1-deoxynojirimycin suggest separate secretory pathways for these two closely related proteins.  相似文献   

10.
The role of conformation-based quality control in the early secretory pathway is to eliminate misfolded polypeptides and unassembled multimeric protein complexes from the endoplasmic reticulum, ensuring the deployment of only functional molecules to distal sites. The intracellular fate of terminally misfolded human alpha1-antitrypsin was examined in hepatoma cells to identify the functional role of asparagine-linked oligosaccharide modification in the selection of glycoproteins for degradation by the cytosolic proteasome. Proteasomal degradation required physical interaction with the molecular chaperone calnexin. Altered sedimentation of intracellular complexes following treatment with the specific proteasome inhibitor lactacystin, and in combination with mannosidase inhibition, revealed that the removal of mannose from attached oligosaccharides abrogates the release of misfolded alpha1-antitrypsin from calnexin prior to proteasomal degradation. Intracellular turnover was arrested with kifunensine, implicating the participation of endoplasmic reticulum mannosidase I in the disposal process. Accelerated degradation occurred in a mannosidase-independent manner and was arrested by lactacystin, in response to the posttranslational inhibition of glucosidase II, demonstrating that the attenuated removal of glucose from attached oligosaccharides functions as the underlying rate-limiting step in the proteasome-mediated pathway. A model is proposed in which the removal of mannose from multiple attached oligosaccharides directs calnexin in the selection of misfolded alpha1-antitrypsin for degradation by the proteasome.  相似文献   

11.
We have studied the biosynthesis and intracellular processing of three major secretory proteins, albumin, alpha 1-protease inhibitor and alpha 2u-globulin, in cultured rat hepatocytes. The effect of secretion-blocking agents, monensin, a monovalent ionophore, and the microtubule-affecting agents colchicine and taxol was determined. In the control cells, alpha 1-protease inhibitor, a glycoprotein, was first synthesized as an endoglycosidase-H-sensitive form with Mr 51 000, and then processed to two endoglycosidase-H-resistant forms having Mr 51 000 and 56 000, the latter of which was secreted into the medium. Initially synthesized proalbumin was converted with chase to serum-type albumin, while no pro-type precursor was identified for alpha 2u-globulin. In the cells treated with colchicine or taxol, in which secretion was greatly inhibited, the fully processed alpha 1-protease inhibitor and albumin accumulated and were finally secreted into the medium. In the monensin-treated cells, however, most of the newly synthesized alpha 1-protease inhibitor and albumin were not processed to the final mature forms, resulting in accumulation of two 51 000-Mr forms and proalbumin, respectively. Moreover in treated cells, proalbumin and the endoglycosidase-H-resistant alpha 1-protease inhibitor were finally secreted into the medium. Such an effect was not caused by NH4Cl which also inhibited the secretion and is known to exert the similar effect as monensin on the receptor-mediated endocytosis pathway. Based on these results, the use of monensin may prove valuable for more detailed analysis of intracellular processing of various proteins.  相似文献   

12.
The role of N-glycans in the secretion of glycoproteins by suspension-cultured sycamore cells was studied. The transport of glycoproteins to the extracellular compartment was investigated in the presence of a glycan-processing inhibitor, castanospermine. Castanospermine has been selected because it inhibits homogeneously glycan maturation in sycamore cells and leads to the accumulation of a single immature N-glycan. The structure of this glycan has been identified as Glc3Man7GlcNAc2 by labeling experiments, affinity chromatography on concanavalin A-Sepharose and proton NMR. In contrast with previous results showing that N-glycosylation is a pre-requisite for secretion of N-linked glycoproteins, this secretion is not affected by the presence of castanospermine. As a consequence, the presence of this unprocessed glycan is sufficient for an efficient secretion of glycoproteins in the extracellular compartment of suspension-cultured sycamore cells.  相似文献   

13.
Secretory proteins are exported from the endoplasmic reticulum (ER) by bulk flow and/or receptor-mediated transport. Our understanding of this process is limited because of the low number of identified transport receptors and cognate cargo proteins. In mammalian cells, the lectin ER Golgi intermediate compartment 53-kD protein (ERGIC-53) represents the best characterized cargo receptor. It assists ER export of a subset of glycoproteins including coagulation factors V and VIII and cathepsin C and Z. Here, we report a novel screening strategy to identify protein interactions in the lumen of the secretory pathway using a yellow fluorescent protein-based protein fragment complementation assay. By screening a human liver complementary DNA library, we identify alpha1-antitrypsin (alpha1-AT) as previously unrecognized cargo of ERGIC-53 and show that cargo capture is carbohydrate- and conformation-dependent. ERGIC-53 knockdown and knockout cells display a specific secretion defect of alpha1-AT that is corrected by reintroducing ERGIC-53. The results reveal ERGIC-53 to be an intracellular transport receptor of alpha1-AT and provide direct evidence for active receptor-mediated ER export of a soluble secretory protein in higher eukaryotes.  相似文献   

14.
Three secretory rates in human hepatoma cells   总被引:1,自引:0,他引:1  
It is presently unknown what factors regulate the rate of intracellular transport of secretory proteins. The human hepatoma cell line Hep G2 is highly differentiated and secretes many of the proteins characteristic of normal hepatocytes. The secretion kinetics of nine proteins by Hep G2 cells in culture was investigated using pulse-chase techniques and immunoisolation of proteins with monospecific antibodies. Our results show that the export of nine proteins falls into three discrete kinetic classes: (i) a rapidly secreted class with an intracellular retention half-time of 30-40 min (albumin, fibronectin, alpha-fetoprotein and alpha 1-proteinase inhibitor), (ii) an intermediate secreted class with a half-time of 75-80 min (ceruloplasmin, alpha 2-macroglobulin and plasminogen), (iii) and a slowly secreted class with an intracellular retention half-time of 110-120 min (fibrinogen and transferrin). Our findings that there are three distinct kinetic classes of secretory proteins strongly suggests that intracellular transport is selective and that proteins of the same secretory class share structural features which influence their rate of export.  相似文献   

15.
We have identified a vesicle fraction that contains alpha 1-antitrypsin and other human HepG2 hepatoma secretory proteins en route from the rough endoplasmic reticulum (RER) to the cis face of the Golgi complex. [35S]Methionine pulse-labeled cells were chased for various periods of time, and then a postnuclear supernatant fraction was resolved on a shallow sucrose-D2O gradient. This intermediate fraction has a density lighter than RER or Golgi vesicles. Most alpha 1-antitrypsin in this fraction (P1) bears N-linked oligosaccharides of composition similar to that of alpha 1-antitrypsin within the RER; mainly Man8GlcNac2 with lesser amounts of Man7GlcNac2 and Man9GlcNac2; this suggests that the protein has not yet reacted with alpha-mannosidase-I on the cis face of the Golgi complex. This light vesicle species is the first post-ER fraction to be filled by labeled alpha 1-antitrypsin after a short chase, and newly made secretory proteins enter this compartment in proportion to their rate of exit from the RER and their rate of secretion from the cells: alpha 1-antitrypsin and albumin faster than preC3 and alpha 1-antichymotrypsin, faster, in turn, then transferrin. Deoxynojirimycin, a drug that blocks removal of glucose residues from alpha 1-antitrypsin in the RER and blocks its intracellular maturation, also blocks its appearance in this intermediate compartment. Upon further chase of the cells, we detect sequential maturation of alpha 1- antitrypsin to two other intracellular forms: first, P2, a form that has the same gel mobility as P1 but that bears an endoglycosidase H- resistant oligosaccharide and is found in a compartment--probably the medial Golgi complex--of density higher than that of the intermediate that contains P1; and second, the mature sialylated form of alpha 1- antitrypsin.  相似文献   

16.
Interleukin 1 (IL-1) is a major soluble mediator of inflammation. Two human IL-1 genes, alpha and beta, have been isolated, which encode polypeptides with only 20-30% amino acid sequence homology. Unlike most secreted proteins, the two cytokines do not have a signal sequence, an unexpected finding in view of their biological role. Here we show that IL-1 beta is actively secreted by activated human monocytes via a pathway of secretion different from the classical endoplasmic reticulum--Golgi route. Drugs which block the intracellular transport of IL-6, of tumour necrosis factor alpha and of other secretory proteins do not inhibit secretion of IL-1 beta. Secretion of IL-1 beta is blocked by methylamine, low temperature or serum free medium, and is increased by raising the culture temperature to 42 degrees C or by the presence of calcium ionophores, brefeldin A, monensin, dinitrophenol or carbonyl cyanide chlorophenylhydrazone. IL-1 beta is contained in part within intracellular vesicles which protect it from protease digestion. In U937 cells large amounts of IL-1 beta are made but none is secreted. In these cells IL-1 beta is not found in the vesicular fraction, and all the protein is accessible to protease digestion. This suggests that intracellular vesicles that contain IL-1 beta are part of the protein secretory pathway. We conclude that IL-1 beta is released by activated monocytes via a novel mechanism of secretion which may involve translocation of intracellular membranes and is increased by stress conditions.  相似文献   

17.
Endo-alpha-D-mannosidase, a Golgi-situated processing enzyme, provides a glucosidase-independent pathway for the formation of complex N-linked oligosaccharides of glycoproteins (Moore, S. E. H., and Spiro, R. G. (1990) J. Biol. Chem. 265, 13104-13112). The present report demonstrates that at least five distinct glycoproteins secreted by HepG2 cells (alpha 1-antitrypsin, transferrin, alpha 1-acid glycoprotein, alpha 1-antichymotrypsin, and alpha-fetoprotein) as well as cell surface components can effectively utilize this alternate processing route. During a castanospermine (CST)-imposed glucosidase blockade, these glycoproteins apparently were produced with their usual complement of complex carbohydrate units, and upon addition of the mannosidase I inhibitor, 1-deoxymannojirimycin (DMJ), to prevent further processing of deglucosylated N-linked oligosaccharides, Man6-8GlcNAc, but not Man9GlcNAc, were identified; the Man8GlcNAc component occurred as the characteristic isomer generated by endomannosidase cleavage. Although the endomannosidase-mediated deglucosylation pathway appeared to be nonselective, a differential inhibitory effect on the secretion of the various glycoproteins was noted in the presence of CST which was directly related to the number of their N-linked oligosaccharides, ranging from minimal in alpha-fetoprotein to substantial (approximately 65%) in alpha 1-acid glycoprotein. Addition of DMJ to CST-incubated cells did not further decrease secretion of the glycoproteins, although processing was now arrested at the polymannose stage, and a portion of the oligosaccharides were still in the glucosylated form. These latter findings indicate that complex carbohydrate units are not required for secretion of these glycoproteins and that any effect which glucose residues exert on their intracellular transit would be related to movement from the endoplasmic reticulum to the Golgi compartment.  相似文献   

18.
It is now well known that the addition and trimming of oligosaccharide side chains during post-translational modification play an important role in determining the fate of secretory, membrane, and lysosomal glycoproteins. Recent studies have suggested that trimming of oligosaccharide side chains also plays a role in the degradation of misfolded glycoproteins as a part of the quality control mechanism of the endoplasmic reticulum (ER). In this study, we examined the effect of several inhibitors of carbohydrate processing on the fate of the misfolded secretory protein alpha1 antitrypsin Z. Retention of this misfolded glycoprotein in the ER of liver cells in the classical form of alpha1 antitrypsin (alpha1-AT) deficiency is associated with severe liver injury and hepatocellular carcinoma and lack of its secretion is associated with destructive lung disease/emphysema. The results show marked alterations in the fate of alpha1 antitrypsin Z (alpha1-ATZ). Indeed, one glucosidase inhibitor, castanospermine (CST), and two mannosidase inhibitors, kifunensine (KIF) and deoxymannojirimycin (DMJ), mediate marked increases in secretion of alpha1-ATZ by distinct mechanisms. The effects of these inhibitors on secretion have interesting implications for our understanding of the quality control apparatus of the ER. These inhibitors may also constitute models for development of additional drugs for chemoprophylaxis of liver injury and emphysema in patients with alpha1-AT deficiency.  相似文献   

19.
Butyric acid produces multiple effects on mammalian cells in culture, including alterations in morphology, depression of growth rate, increased histone acetylation, and modified production of various proteins and enzymes. The latter effect is exemplified by the induction in HeLa cells of the glycoprotein hormone alpha subunit by millimolar concentrations of the fatty acid. This report demonstrates that increased subunit accumulation in response to sodium butyrate is strikingly dependent on the presence of glucose (or mannose) in the growth medium. In contrast, basal levels of subunit synthesis are only marginally affected when the culture medium is supplemented with one of a variety of hexoses. An increase in the accumulation of HeLa alpha does not occur in medium containing pyruvate as the energy source, and sustained induction requires the simultaneous and continued presence of both glucose and butyrate. The effects of butyrate on HeLa cell morphology and subunit induction can be separated, since the latter is glucose-dependent while the former is not. Failure of butyrate to induce alpha in medium containing pyruvate does not result from restricted subunit secretion, since the levels of intracellular alpha are not increased disproportionately relative to those in the medium. The hexoses which support induction of HeLa alpha (glucose greater than or equal to mannose greater than galactose greater than fructose) are identical to those which have been shown previously to stimulate the glucosylation of lipid-linked oligosaccharides and enhance the synthesis of certain glycoproteins. Labeling of various glycosylation intermediates with [3H]mannose indicates that in glucose medium there is a decrease in the level of radioactivity associated with both dolicholpyrophosphoryl oligosaccharide and cellular glycoproteins and a concomitant increase in the fraction of label recovered in secreted glycoproteins. Butyrate also causes a decrease in [3H]mannose-labeled cellular glycoproteins and an increase in tritiated extracellular glycoproteins, particularly in glucose medium. Likewise, glucose stimulates the incorporation of [3H]glucosamine into immunoprecipitable alpha subunit relative to the bulk of HeLa-secreted glycoproteins, and this is further enhanced by butyrate. However, as demonstrated by lectin chromatography of conditioned media, a nonglycosylated subunit does not accumulate in pyruvate medium, either in the absence or presence of butyrate.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Recombinant adeno-associated viruses (AAVs) are promising vectors in the field of gene therapy. Different AAV serotypes display distinct tissue tropism, believed to be related to the distribution of their receptors on target cells. Of the 11 well-characterized AAV serotypes, heparan sulfate proteoglycan and sialic acid have been suggested to be the attachment receptors for AAV type 2 and types 4 and 5, respectively. In this report, we identify the receptor for the two closely related serotypes, AAV1 and AAV6. First, we demonstrate using coinfection experiments and luciferase reporter analysis that AAV1 and AAV6 compete for similar receptors. Unlike heparin sulfate, enzymatic or genetic removal of sialic acid markedly reduced AAV1 and AAV6 binding and transduction. Further analysis using lectin staining and lectin competition assays identified that AAV1 and AAV6 use either alpha2,3-linked or alpha2,6-linked sialic acid when transducing numerous cell types (HepG2, Pro-5, and Cos-7). Treatment of cells with proteinase K but not glycolipid inhibitor reduced AAV1 and AAV6 infection, supporting the hypothesis that the sialic acid that facilitates infection is associated with glycoproteins rather than glycolipids. In addition, we determined by inhibitor (N-benzyl GalNAc)- and cell line-specific (Lec-1) studies that AAV1 and AAV6 require N-linked and not O-linked sialic acid. Furthermore, a resialylation experiment on a deficient Lec-2 cell line confirmed a 2,3 and 2,6 N-linked sialic acid requirement, while studies of mucin with O-linked sialic acid showed no inhibition effect for AAV1 and AAV6 transduction on Cos-7 cells. Finally, using a glycan array binding assay we determined that AAV1 efficiently binds to NeuAcalpha2-3GalNAcbeta1-4GlcNAc, as well as two glycoproteins with alpha2,3 and alpha2,6 N-linked sialic acids. Taken together, competition, genetic, inhibitor, enzymatic reconstitution, and glycan array experiments support alpha2,3 and alpha2,6 sialic acids that are present on N-linked glycoproteins as primary receptors for efficient AAV1 and AAV6 viral infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号