首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
When crude rat liver preparations were incubated at 30degrees C, a gradual loss of phosphorylase kinase (ATP:phosphorylase b phosphotransferase, EC 2.7.1.38) activity was observed. This inactivation was Mg2+ dependent and was partially inhibited by sodium fluoride. Addition of Mg2+ ATP to the liver preparations, at any time throughout the incubation, caused a reactivation of the phosphorylase kinase and this was accelerated by micromolar concentrations of cyclic AMP. The reactivation process could be completely abolished by the addition of a heat stable protein kinase inhibitor, implicating cyclic AMP dependent protein kinase in the activation reaction. Both the low and the high activity forms of the enzyme required micromolar quantities of Ca2+ for full activity (KA = 0.6 micronM). The two forms exhibit quite different pH dependencies and at the physiological pH of liver (pH 7.4) their activities differed by a factor of 5-10. Conversion of the lower activity form into the higher seems to affect only the V - Km for muscle phosphorylase b (EC 2.4.1.1) was about 1 mg/ml for both enzyme forms.  相似文献   

2.
The phosphorylated form of liver glycogen phosphorylase (alpha-1,4-glucan : orthophosphate alpha-glucosyl-transferase, EC 2.4.1.1) (phosphorylase a) is active and easily measured while the dephosphorylated form (phosphorylase b), in contrast to the muscle enzyme, has been reported to be essentially inactive even in the presence of AMP. We have purified both forms of phosphorylase from rat liver and studied the characteristics of each. Phosphorylase b activity can be measured with our assay conditions. The phosphorylase b we obtained was stimulated by high concentrations of sulfate, and was a substrate for muscle phosphorylase kinase whereas phosphorylase a was inhibited by sulfate, and was a substrate for liver phosphorylase phosphatase. Substrate binding to phosphorylase b was poor (KM glycogen = 2.5 mM, glucose-1-P = 250 mM) compared to phosphorylase a (KM glycogen = 1.8 mM, KM glucose-1-P = 0.7 mM). Liver phosphorylase b was active in the absence of AMP. However, AMP lowered the KM for glucose-1-P to 80 mM for purified phosphorylase b and to 60 mM for the enzyme in crude extract (Ka = 0.5 mM). Using appropriate substrate, buffer and AMP concentrations, assay conditions have been developed which allow determination of phosphorylase a and 90% of the phosphorylase b activity in liver extracts. Interconversion of the two forms can be demonstrated in vivo (under acute stimulation) and in vitro with little change in total activity. A decrease in total phosphorylase activity has been observed after prolonged starvation and in diabetes.  相似文献   

3.
Phosphorylase b kinase was extensively purified from rat liver. It was located in a form which could be activated 20--30-fold by a preincubation with adenosine 3':5'-monophosphate (cyclic AMP) and ATP-Mg. This activation was time-dependent, and was paralleled by a simultaneous incorporation of 32P from [gamma-32P]ATP into two polypeptides which comigrated in sodium dodecyl sulfate gel electrophoresis with the alpha and beta subunits of rabbit skeletal muscle phosphorylase b kinase. The liver enzyme was eluted from Sepharose 4B and Bio-Gel A-50m columns at the same place as muscle phosphorylase b kinase, which is indicative of a molecular weight of 1.3 x 10(6). After activation, the most purified liver preparation had a specific activity about 10-fold less than the homogeneous muscle enzyme at pH 8.2. The inactive enzyme form had a pronounced pH optimum around pH 6.0, whereas the activated form was mostly active above neutral pH. The activation of the enzyme reduced the Km for its substrate phosphorylase b severalfold. Liver phosphorylase b kinase was shown to be partially dependent on Ca2+ ions for its activity: addition of 0.5 mM [ethylenebis-(oxoethylenenitrilo)]tetraacetic acid (EGTA) to the phosphorylase b kinase assay increased the Km for phosphorylase b about twofold for both the inactive and the activated form of liver phosphorylase b kinase, but affected the V of the inactive species only.  相似文献   

4.
Sodium cholate at millimolar concentration is able to induce activity in rabbit muscle phosphorylase b in the absence of AMP. The maximum activation of the enzyme in presence of 7 mM sodium cholate was 24% of that achieved by 1 mM AMP. Other bile salts tested showed a negligible activating effect. The Ka for AMP was lowered fivefold by 5 mM of the steroid detergent, while the cooperative binding of the nucleotide was abolished. Phosphorylase b', a modified form of phosphorylase in which the phosphorylation site has been removed by limited tryptic attack, presented an activation profile similar to that of phosphorylase b. In contrast, phosphorylase a was inhibited by the bile salt, while the activity of liver phosphorylase b was not significantly affected. Modification of the AMP site of the enzyme with 2,3-butanedione could not inhibit sodium-cholate-induced activity. tert-Butanol, an organic solvent activator of phosphorylase b, was found to enhance the activity induced by sodium cholate. The interaction of sodium cholate and phosphorylase b was also followed by difference spectroscopy using a fluorescein isothiocyanate--phosphorylase b conjugate. Furthermore, measurements of electron spin resonance demonstrated that the mobility of a spin-label bound at buried--NH2 groups of phosphorylase b decreases cooperatively with increasing bile salt concentration.  相似文献   

5.
Liver and muscle glycogen phosphorylases, which are products of distinct genes, are both activated by covalent phosphorylation, but in the unphosphorylated (b) state, only the muscle isozyme is efficiently activated by the allosteric activator AMP. The different responsiveness of the phosphorylase isozymes to allosteric ligands is important for the maintenance of tissue and whole body glucose homeostasis. In an attempt to understand the structural determinants of differential sensitivity of the muscle and liver isozymes to AMP, we have developed a bacterial expression system for the liver enzyme, allowing native and engineered proteins to be expressed and characterized. Engineering of the single amino acid substitutions Thr48Pro, Met197Thr and the double mutant Thr48Pro, Met197Thr in liver phosphorylase, and Pro48Thr in muscle phosphorylase, did not qualitatively change the response of the two isozymes to AMP. These sites had previously been implicated in the configuration of the AMP binding site. However, when nine amino acids among the first 48 in liver phosphorylase were replaced with the corresponding muscle phosphorylase residues (L1M2-48L49-846), the engineered liver enzyme was activated by AMP to a higher maximal activity than native liver phosphorylase. Interestingly, the homotropic cooperativity of AMP binding was unchanged in the engineered phosphorylase b protein, and heterotropic cooperativity between the glucose-1-phosphate and AMP sites was only slightly enhanced. The native liver, native muscle and L1M2-48L49-846 phosphorylases were converted to the a form by treatment with purified phosphorylase kinase; the maximal activity of the chimeric a enzyme was greater than the native liver a enzyme and approached that of muscle phosphorylase a. From these results we suggest that tissue-specific phosphorylase isozymes have evolved a complex mechanism in which the N-terminal 48 amino acids modulate intrinsic activity (Vmax), probably by affecting subunit interactions, and other, as yet undefined regions specify the allosteric interactions with ligands and substrates.  相似文献   

6.
1.The two forms of glycogen phosphorylase were purified from human liver, and some kinetic properties were examined in the direction of glycogen synthesis. The b form has a limited catalytic capacity, resembling that of the rabbit liver enzyme. It is characterized by a low affinity for glucose 1-phosphate, which is unaffected by AMP, and a low V, which becomes equal to that of the a form in the presence of the nucleotide. Lyotropic anions stimulate phosphorylase b and inhibit phosphorylase a by modifying the affinity for glucose 1-phosphate. Both enzyme forms are easily saturated with glycogen. 2. These kinetic properties have allowed us to design a simple assay method for total (a + b) phosphorylase in human liver. It requires only 0.5 mg of tissue, and its average efficiency is 90% when the enzyme is predominantly in the b form. 3. The assay of total phosphorylase allows the unequivocal diagnosis of hepatic glycogen-storage disease caused by phosphorylase deficiency. One patient with a complete deficiency is reported. 4. The assay of human liver phosphorylase a is based on the preferential inhibition of the b form by caffeine. The a form displays the same activity when measured by either of the two assays.  相似文献   

7.
1. The properties of phosphorylase a, phosphorylase b, phosphorylase kinase and phosphorylase phosphatase present in a human haemolysate were investigated. The two forms of phosphorylase have the same affinity for glucose 1-phosphate but greatly differ in Vmax. Phosphorylase b is only partially stimulated by AMP, since, in the presence of the nucleotide, it is about tenfold less active than phosphorylase a. In a fresh human haemolysate phosphorylase is mostly in the b form; it is converted into phosphorylase a by incubation at 20degreesC, and this reaction is stimulated by glycogen and cyclic AMP. Once activated, the enzyme can be inactivated after filtration of the haemolysate on Sephadex G-25. This inactivation is stimulated by caffeine and glucose and inhibited by AMP and fluoride. The phosphorylase kinase present in the haemolysate can also be measured by the rate of activation of added muscle phosphorylase b, on addition of ATP and Mg2+. 2. The activity of phosphorylase kinase was measured in haemolysates obtained from a series of patients who had been classified as suffering from type VI glycogenosis. In nine patients, all boys, an almost complete deficiency of phosphorylase kinase was observed in the haemolysate and, when it could be assayed, in the liver. A residual activity, about 20% of normal, was found in the leucocyte fraction, whereas the enzyme activity was normal in the muscle. These patients suffer from the sex-linked phosphorylase kinase deficiency previously described by others. Two pairs of siblings, each time brother and sister, displayed a partial deficiency of phosphorylase kinase in the haemolysate and leucocytes and an almost complete deficiency in the liver. This is considered as being the autosomal form of phosphorylase kinase deficiency. Other patients were characterized by a low activity of total (a+b) phosphorylase and a normal or high activity of phosphorylase kinase in their haemolysate.  相似文献   

8.
1. The activity and the kinetic properties of purified hepatic phosphorylases a and b from rabbit and rat have been investigated in the glycogenolytic direction with a radiochemical assay. 2. In contrast with the a form, phosphorylase b has an absolute requirement for both AMP and a lyotropic salt. When the latter effectors are included, the b/a-form activity ratio remains low (0.03-0.15) at the hepatic concentration of Pi, because the b form has an exceedingly low affinity for this substrate. 3. Only phosphorylase b is significantly inhibited by glucose, glucose 6-phosphate and MgATP2-. Assays in the presence of substrastes, stimulators and inhibitors in the physiological concentration range indicate that glycogenolysis in the liver depends strictly on the conversion of phosphorylase b into a. Even at 1 mM-AMP the b/a-form activity ratio does not exceed 0.01. 4. Current spectrophotometric procedures for the glycogenolytic assay of phosphorylase in crude liver preparations are highly specific for the a form; the measurement of total phosphorylase (a + b) would require impractical modifications, and is better performed in the direction of glycogen synthesis.  相似文献   

9.
Three forms of phosphorylase (I, II and III), two of which (I and II) were active in the presence of AMP and one (III) was active without AMP, were isolated from human skeletal muscles. The pI values for phosphorylases b(I) and b(II) were found to be identical (5.8-5.9). During chromatofocusing a low molecular weight protein (M(r) = 20-21 kDa, pI 4.8) was separated from phosphorylase b(II). This process was accompanied by an increase of the enzyme specific activity followed by its decline. During reconstitution of the complex the activity of phosphorylase b(II) returned to the initial level. Upon phosphorylation the amount of 32P incorporated into phosphorylase b(II) was 2 times as low as compared with rabbit phosphorylase b and human phosphorylase b(I). It may be supposed that in the human phosphorylase b(II) molecule one of the two subunits undergoes phosphorylation in vivo. This form of the enzyme is characterized by a greater affinity for glycogen and a lower sensitivity to allosteric effectors (AMP, glucose-6-phosphate, caffeine) compared with phosphorylase b(I). Thus, among the three phosphorylase forms obtained in this study, form b(II) is the most unusual one, since it is partly phosphorylated by phosphorylase kinase to form a complex with a low molecular weight protein which stabilizes its activity. A partially purified preparation of phosphorylase kinase was isolated from human skeletal muscles. The enzyme activity necessitates Ca2+ (c0.5 = 0.63 microM). At pH 6.8 the enzyme is activated by calmodulin (c0.5 = 15 microM). The enzyme activity ratio at pH 6.8/8.2 is equal to 0.18.  相似文献   

10.
The activity of glycogen phosphorylase is controlled by two nucleotide sites. We have found that organic solvents affect the regulatory properties of phosphorylase by altering the binding at these two sites. At the activator site, the Ka for AMP is lowered 10-fold in the presence of 10% 1,2-dimethoxyethane while, at the inhibitor site, the Ki for caffeine is increased 6-fold. The stimulation of activity by organic solvents is highly dependent on the enzyme's activity state. Phosphorylase b, which has a requirement for a nucleotide activator, loses this requirement in the presence of organic solvents, while the active form of the enzyme, phosphorylase a, is only slightly stimulated by organic solvents. The activation profile obtained with rabbit liver phosphorylase suggests that differences in the properties of this enzyme from rabbit muscle phosphorylase might be explained by a change in the relative affinity for AMP at the two nucleotide sites. The results also suggest that 1,2-dimethoxyethane may be useful to determine accurately the activities of different forms of liver phosphorylase.  相似文献   

11.
M Morange  H Buc 《Biochimie》1979,61(5-6):633-643
Glycogen phosphorylase b is converted to glycogen phosphorylase a, the covalently activated form of the enzyme, by phosphorylase kinase. Glc-6-P, which is an allosteric inhibitor of phosphorylase b, and glycogen, which is a substrate of this enzyme, are already known to have respectively an inhibiting and activating effect upon the rate of conversion from phosphorylase b to phosphorylase a by phosphorylase kinase. In the former case, this effect is due to the binding of glucose-6-phosphate to glycogen phosphorylase b. In order to investigate whether or not the rate of conversion of glycogen phosphorylase b to phosphorylase a depends on the conformational state of the b substrate, we have tested the action of the most specific effectors of glycogen phosphorylase b activity upon the rate of conversion from phosphorylase b to phosphorylase a at 0 degrees C and 22 degrees C : AMP and other strong activators, IMP and weak activators, Glc-6-P, glycogen. Glc-1-P and phosphate. AMP and strong activators have a very important inhibitory effect at low temperature, but not at room temperature, whereas the weak activators have always a very weak, if even existing, inhibitory effect at both temperatures. We confirmed the very strong inhibiting effect of Glc-6-P at both temperatures, and the strong activating effect of glycogen. We have shown that phosphate has a very strong inhibitory effect, whereas Glc-1-P has an activating effect only at room temperature and at non-physiological concentrations. The concomitant effects of substrates and nucleotides have also been studied. The observed effects of all these ligands may be either direct ones on phosphorylase kinase, or indirect ones, the ligand modifying the conformation of phosphorylase b and its interaction with phosphorylase kinase. Since we have no control experiments with a peptidic fragment of phosphorylase b, the interpretation of our results remains putative. However, the differential effects observed with different nucleotides are in agreement with the simple conformational scheme proposed earlier. Therefore, it is suggested that phosphorylase kinase recognizes differently the different conformations of glycogen phosphorylase b. In agreement with such an explanation, it is shown that the inhibiting effect of AMP is mediated by a slow isomerisation which has been previously ascribed to a quaternary conformational change of glycogen phosphorylase b. The results presented here (in particular, the important effect of glycogen and phosphate) are also discussed in correlation with the physiological role of the different ligands as regulatory signals in the in vivo situation where phosphorylase is inserted into the glycogen particle.  相似文献   

12.
A procedure was developed for determination of glycogen synthase and phosphorylase activities in liver after various in vivo physiological treatments. Liver samples were obtained from anaesthetised rats by freeze-clamping in situ. Other procedures were shown to stimulate the activity of phosphorylase and depress the activity of glycogen in the liver. The direction of glycogen metabolism appears to be regulated by the relative proportions of the two enzymes, as shown by a strong positive correlation between total activities and active forms of phosphorylase and synthase. The enzyme activities responded as expected to stimuli such as insulin and glucose, which depressed phosphorylase and increased synthase activity, and glucagon, which increased phosphorylase and decreased synthase activity. In fasted animals approximately 50% of each enzyme was in the active form, which suggests the existence of a potential futile cycle for glycogen metabolism. The role for such a cycle in the regulation of glycogen synthesis and degradation is discussed.  相似文献   

13.
A sensitive fluorimetric enzyme assay was developed for study of activation of glycogen phosphorylase (EC 2.4.1.1) in intact platelets and in platelet extracts. Activity was calculated as AMP independent (activity in the absence of AMP), total (activity in the presence of 1 mM AMP), and AMP dependent (difference between AMP independent and total). The following observations were made with intact rat platelets. (1) Stimulation of platelets with thrombin caused a 7-fold increase in total activity, with increases in both AMP-dependent and AMP-independent activities. Maximum activation was obtained within 10 s after addition of thrombin. (2) The divalent cation ionophore A23187 caused a similar, though less pronounced, activation of phosphorylase. (3) Acceleration of glycogenolysis by inhibition of respiration with cyanide caused similar changes in phosphorylase activity but with the maximum effect observed only after 45 s. (4) Dibutyryl cyclic AMP had two effects; it partially activated phosphorylase and blocked further activation by thrombin, but not A23187. Similar effects were observed with human platelets, but low resting levels of phosphorylase activity could not be maintained so that changes were not as large as with rat platelets. Experiments with extracts of rat platelets gave the following results. (1) Phosphorylase activity in many extracts of non-stimulated platelets could be increased by incubation with Mg2+-ATP and Ca2+; ethyleneglycol-bis-(beta-aminoethylether)-N,N'-tetraacetic acid (EGTA) partially inhibited. (2) In some extracts there was essentially no activation by incubation with Mg2+-ATP and Ca2+, but addition of cyclic AMP GAVE PARTIAL ACTIVATIon while addition of rabbit muscle phosphorylase kinase gave full activation. (3) Incubation of extracts of thrombin-stimulated platelets caused conversion of AMP-dependent to AMP-indeptndent activity. It is concluded that platelet phosphorylase exists in an inactive and two active forms. Conversion of the inactive to the active forms and of the AMP-dependent to the AMP-independent form is catalyzed by a kinase(s) that requires Ca2+ for full activity and is activated through a cyclic AMP-mediated process. The major change following physiological stimulation is an increase in both active forms, with little change in their ratio.  相似文献   

14.
As an adaptation for overwinter survival, the wood frog, Rana sylvatica is able to tolerate the freezing of extracellular body fluids. Tolerance is made possible by the production of very high amounts of glucose in liver which is then sent to other organs where it acts as a cryoprotectant. Cryoprotectant synthesis is under the control of glycogen phosphorylase which in turn is activated in response to ice formation. To determine the mechanism of phosphorylase activation, a quantitative analysis of phosphorylase protein concentration and enzymatic activity in liver was carried out following separation of the phosphorylated a and nonphosphorylated b forms of the enzyme on native polyacrylamide gels. The results suggest that in gels, the b form is completely inactive, even in the presence of AMP and sodium sulfate, whereas the a form is active and stimulated 3-fold by these substances. Further, phosphorylase activation appears to arise solely from conversion of the b to a form of the enzyme without an increase in phosphorylase concentration or activation of a second isozyme. The quantitative analysis presented here should prove generally useful as a simple and rapid method for examining the physiological and genetic regulation of phosphorylase in animal cells.  相似文献   

15.
The suitability of sedimentation equilibrium for characterizing the self-association of muscle glycogen phosphorylase b has been reappraised. Whereas sedimentation equilibrium distributions for phosphorylase b in 40 mM Hepes buffer (pH 6.8) supplemented with 1 mM AMP signify a lack of chemical equilibrium attainment, those in buffer supplemented additionally with potassium sulfate conform with the requirements of a dimerizing system in chemical as well as sedimentation equilibrium. Because the rate of attainment of chemical equilibrium under the former conditions is sufficiently slow to allow resolution of the dimeric and tetrameric enzyme species by sedimentation velocity, this procedure has been used to examine the effects of thermodynamic nonideality arising from molecular crowding by trimethylamine N-oxide on the self-association behaviour of phosphorylase b. In those terms the marginally enhanced extent of phosphorylase b self-association observed in the presence of high concentrations of the cosolute is taken to imply that the effects of thermodynamic nonideality on the dimer-tetramer equilibrium are being countered by those displacing the T<==>R isomerization equilibrium for dimer towards the smaller, nonassociating T state. Because the R state is the enzymically active form, an inhibitory effect is the predicted consequence of molecular crowding by high concentrations of unrelated solutes. Thermodynamic nonideality thus provides an alternative explanation for the inhibitory effects of high concentrations of glycerol, sucrose and ethylene glycol on phosphorylase b activity, phenomena that have been attributed to extremely weak interaction of these cryoprotectants with the T state of the enzyme.  相似文献   

16.
Rabbit skeletal muscle phosphorylase b was separated into two fractions by column chromatography on AMP-Sepharose. The first fraction protein was eluted by glucose-6-phosphate while the second fraction protein was eluted in an AMP concentration gradient. The bulk of the protein eluate was represented by the first fraction protein. Chromatography of phosphorylase b from bovine skeletal muscle under identical conditions also resulted in two fractions, however, with a reverse correlation: the bulk protein of this fraction was eluted by AMP. It was shown that the two phosphorylase b forms eluted by glucose-6-phosphate and AMP differ by their kinetic and physico-chemical properties as well as by the SH-group reactivity. The phosphorylase b forms eluted by the nucleotide were practically uninhibited by glucose-6-phosphate. It can thus be assumed that the equilibrium between the "active" (R) and "inactive" (T) conformations of the protein changes depending on metabolic peculiarities of a given tissue used as a source for enzyme isolation.  相似文献   

17.
A phosphopeptide which contains 14 residues including phosphoserine and which is derived from the NH2-terminal region of skeletal muscle glycogen phosphorylase (Nolan, C., Novoa, W. B., Krebs, E. G., and Fischer, E. H. (1964) Biochemistry 3, 542-551) has been shown to induce the enzymic properties of phosphorylase a in phosphorylase b and b'. When phosphorylase b is incubated with the phosphorylated tetradecapeptide, the following changes occur: (1) the enzyme becomes partially catalytically active in the absence of AMP; (2) the allosteric interactions of the enzyme are altered, as evidenced by the fact that phosphorylase b does not bind AMP cooperatively, and is no longer inhibited by glucose-6-P; and (3) the enzyme, normally present as a dimer, associates to a tetramer. Phosphorylase b' is a modified form of phosphorylase in which the phosphorylation site has been removed by limited tryptic attack. In the presence of phosphopeptide, 86% of the total enzyme activity can be induced in the absence of AMP. The properties of phosphorylases b and b' with phosphopeptide, cited above, are all characteristics of the phosphonenzyme, phosphorylase a. In addition, evidence is presented that these effects are specific. They are not the result of the polycationic nature of the peptide since they cannot be duplicated by spermine, and the phosphate group must also be present for the peptide to effect changes on the enzyme.  相似文献   

18.
A procedure was developed for determination of glycogen synthase and phosphorylase activities in liver after various in vivo physiological treatments. Liver samples were obtained from anaesthetised rats by freeze-clamping in situ. Other procedures were shown to stimulate the activity of phosphorylase and depress the activity of glycogen in the liver. The direction of glycogen metabolism appears to be regulated by the relative proportions of the two enzymes, as shown by a strong positive correlation between total activities and active forms of phosphorylase and synthase. The enzyme activities responded as expected to stimuli such as insulin and glucose, which depressed phosphorylase and increased synthase activity, and glucagon, which increased phosphorylase and decreased synthase activity. In fasted animals approximately 50% of each enzyme was in the active form, which suggests the existence of a potential futile cycle for glycogen metabolism. The role for such a cycle in the regulation of glycogen synthesis and degradation is discussed.  相似文献   

19.
A new method for purification and crystallization of pig skeletal muscle phosphorylase b is presented. The ease of crystallization in the presence of 1 mM AMP and 1 mM spermine has permitted the study of some physical, chemical and enzymatic properties of the enzyme. The crystalline pig phosphorylase b gave a single band on SDS polyacrylamide gels of the same mobility as rabbit muscle phosphorylase subunit. Ultracentrifugation experiments showed that pig phosphorylase b exists in a dimeric form (S20,w = 8.4 S). No association occurred at 20 degrees C under conditions where rabbit phosphorylase b can be tetramerized; pig phosphorylase b was only 30% associated from dimer to tetramer at 13 degrees C. Pig phosphorylase b is highly stable to freezing and its specific activity did not change appreciably upon prolonged storage in the cold. Pig and rabbit phosphorylases b have comparable Vmax and Km values towards the substrate and the activator. However, there is an essential difference between the two enzymes in that pig phosphorylase b is not significantly inhibited by glucose 6-phosphate, which is a powerful inhibitor of the rabbit enzyme. Two different crystal forms of pig phosphorylase b were obtained which are small for X-ray diffraction studies. Diffusion of spermine into tetragonal crystals of rabbit phosphorylase b resulted in a difference Fourier synthesis at 3 A resolution that showed no strong indication of specific binding.  相似文献   

20.
1. The interaction of rabbit muscle glycogen phosphorylase b with pairs of ligands has been examined. 2. The electron spin resonance spectrum of a spin label, covalently attached to the protein, provided information about dissociation constants, formation of ternary complexes and both negative and positive interactions between different ligand pairs. 3. AMP competes with a series of nucleotides (ADP, ATP, CMP aand cytosine) but with adenosine a ternary enzyme - AMP - adenosine complex can be formed. 4. ADP binding is tight and ADP inhibits the AMP activation of phosphorylase b in a physiologically important concentration range. 5. The substrates glucose 1-phosphate and glycogen tighten AMP binding in the ternary complex as does the competitive inhibitor UDPG. Inorganic phosphate is different in this respect. Gluconolactone, a transition state analogue, competes with glucose 1-phosphate (but not with glycogen) but does not prevent completely the binding of the sugar phosphate. 6. The effect of glucose b-phosphate on phosphorylase is rather complex as it 'formally competes' with both AMP and UDPG probably mediated by a conformational changes and not by 'direct' interactions with these two ligands. Glycerol 2-phosphate, a commonly used buffer for phosphorylase, also shows complex interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号