首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pemberton TJ  Kay JE 《FEBS letters》2003,555(2):335-340
Sanglifehrin A (SFA) is a recently discovered immunosuppressant drug that shares its intracellular target with the major immunosuppressant drug cyclosporin A (CsA). Both bind to and inhibit the cyclophilins, a diverse family of proteins found throughout nature that share a conserved catalytic domain. Although they share this common protein target, the mechanism of action of the cyclophilin-SFA complex has been reported as distinct from that of the well-studied cyclophilin-CsA complex. The X-ray structure of a macrolide analogue of SFA's cyclic region complexed with cyclophilin A has recently been resolved, but this left the placement of the linear region of SFA unresolved. Using five cyclophilins from the fission yeast Schizosaccharomyces pombe, and a mutant of one of these proteins, SpCyp3-F128W, we have shown that the sensitivity of cyclophilins to SFA can be correlated to the same specific tryptophan residue that has previously been identified to correlate to CsA sensitivity, and that the tail of SFA may be responsible for mediating this sensitivity.  相似文献   

2.
Peptidyl prolyl cis/trans isomerase cyclophilin A (CypA) serves as a cellular receptor for the important immunosuppressant drug, cyclosporin A. In addition, CypA and its enzyme family have been found to play critical roles in a variety of biological processes, including protein trafficking, HIV and HCV infection/replication, and Ca(2+)-mediated intracellular signaling. For these reasons, cyclophilins have emerged as potential drug targets for several diseases. Therefore, it is extremely important to screen for novel small molecule cyclophilin inhibitors. Unfortunately, the biochemical assays reported so far are not adaptable to a high-throughput screening format. Here, we report a fluorescence polarization-based assay for human CypA that can be adapted to high-throughput screening for drug discovery. The technique is based on competition and uses a fluorescein-labeled cyclosporin A analog and purified human CypA to quantitatively measure the binding capacity of unlabeled inhibitors. Detection by fluorescence polarization allows real-time measurement of binding ratios without separation steps. The results obtained demonstrated significant correlation among assay procedures, suggesting that the application of fluorescence polarization in combination with CypA is highly advantageous for the accurate assessment of inhibitor binding.  相似文献   

3.
The cyclophilins (Cyps) are family members of proteins that exhibit peptidylprolyl cis-trans isomerase (PPIase, EC 5.2.1.8) activity and bind the immunosuppressive agent cyclosprin A (CsA) in varying degrees. During the process of random sequencing of a cDNA library made from Giardia intestinalis WB strain, the cyclophilin gene (gicyp 1) was isolated. An open reading frame of gicyp 1 gene was 576 nucleotides, which corresponded to a translation product of 176 amino acids (Gicyp 1). The identity with other Cyps was about 58-71%. The 13 residues that constituted the CsA binding site of human cyclophilin were also detected in the amino acid sequence of Gicyp 1, including tryptophan residue essential for the drug binding. The single copy of the gicyp 1 gene was detected in the G. intestinalis chromosome by southern hybridization analysis. Recombinant Gicyp 1 protein clearly accelerated the rate of cis-->trans isomerization of the peptide substrate and the catalysis was completely inhibited by the addition of 0.5 microM CsA.  相似文献   

4.
Cyclophilin proteins are the members of immunophillin group of proteins, known for their property of binding to the immune-suppressant drug cyclosporin A, hence named as cyclophilins. These proteins are characterized by the presence of peptidyl prolyl isomerase (PPIase) domain which catalyzes the cis-trans isomerisation process of proline residues. In the present study, an in-silico based approach was followed to identify and characterize the cyclophilin family from rice, Arabidopsis and yeast. We were able to identify 28 rice, 35 Arabidopsis and 8 yeast cyclophilin genes from their respective genomes on the basis of their annotation as well as the presence of highly conserved PPIase domain. The evolutionary relationship of the cyclophilin genes from the three genomes was analyzed using the phylogenetic tree. We have also classified the rice cyclophilin genes on the basis of localization of the protein in cell. The structural similarity of the cyclophilins was also analyzed on the basis of their homology model. The expression analysis performed using Genevestigator revealed a very strong stress responsive behavior of the gene family which was more prominent in later stages of stress. The study indicates the importance of the gene family in stress response as well as several developmental stages thus opening up many avenues for future study on the cyclophilin proteins.  相似文献   

5.
Functional analysis of Leishmania major cyclophilin   总被引:1,自引:0,他引:1  
A potent immunosuppressive drug cyclosporin A (CsA) is known to inhibit human cell infection by the pathogenic protozoan parasite Leishmania major both in vitro and in vivo. The proposed mechanism of action involves CsA binding to Leishmania major-expressed cyclophilin and subsequent down-regulation of signaling events necessary for establishing productive infection. Recently, we identified a ubiquitously expressed membrane protein, CD147, as a signaling receptor for extracellular cyclophilins in mammalian cells. Here we demonstrate that, while being enzymatically active, the Leishmania cyclophilin, unlike its human homologue, does not interact with CD147 on the cell surface of target cells. CD147 facilitates neither Leishmania binding nor infection. Primary structure and biochemical analyses revealed that the parasite's cyclophilin is defective in heparan binding, an event required for signaling interaction between CD147 and human cyclophilin. When the heparan-binding motif was reconstituted in Leishmania cyclophilin, it regained the CD147-dependent signaling activity. These results underscore a critical role of cyclophilin-heparan interactions in CD147-mediated signaling events and argue against the role of Leishmania cyclophilin in parasite binding to target cells.  相似文献   

6.
The free-living nematode Caenorhabditis elegans expresses 18 cyclophilin isoforms, eight of which are conserved single domain forms, comprising two closely related secreted or type B forms (CYP-5 and CYP-6). Recombinant CYP-5 has been purified, crystallised and the X-ray structure solved to a resolution of 1.75A. The detailed molecular architecture most strongly resembles the structure of human cyclophilin B with conserved changes in loop structure and N and C-terminal extensions. Interestingly, the active site pocket is occupied by a molecule of dithiothreitol though this has little effect on the geometry of the active site which is similar to other cyclophilin structures. The peptidyl-prolyl isomerase activity of CYP-5 has been characterised against the substrate N-succinyl-Ala-Ala-Pro-Phe-p-nitroanilide, and gives a k(cat)/K(m) value of 3.6x10(6)M(-1)s(-1) that compares with a value of 6.3x10(6)M(-1)s(-1) for human cyclophilin B. The immunosuppressive drug cyclosporin A binds and inhibits CYP-5 with an IC(50) value of 50nM, which is comparable to the value of 84nM found for human cyclophilin B. CYP-6 has 67% sequence identity with CYP-5 and a molecular model was built based on the CYP-5 crystal structure. The model shows that CYP-5 and CYP-6 are likely to have very similar structures, but with a markedly increased number of negative charges distributed around the surface of CYP-6. The spatial expression patterns of the cyclophilin B isoforms were examined using transgenic animals carrying a LacZ reporter fusion to these genes, and both cyp-5 and cyp-6 are found to be expressed in an overlapping fashion in the nematode gut. The temporal expression pattern of cyp-5 was further determined and revealed a constitutive expression pattern, with highest abundance levels being found in the embryo.  相似文献   

7.
Two isoforms of yeast cyclophilins, yCyPA and yCyPB, have been subcloned, expressed in Escherichia coli, and purified to homogeneity. The full-length (163-amino acid) yeast CyPA was easily expressed and purified; however, only a genetically truncated, 186-residue form of yCyPB lacking a putative 20-amino acid signal sequence could be purified. Each yeast cyclophilin isoform is a peptidyl-prolyl isomerase, inhibitable by the immunosuppressive drug CsA (IC50's of 40 +/- 8 nM and 101 +/- 14 nM at 18 nM concentrations of yCyPA and yCyPB, respectively). Polyclonal antibodies raised against recombinant yCyPA detected native yCyPA in yeast cell extracts by both immunoprecipitation and Western blot analysis. However, polyclonal antibodies raised against recombinant yCyPB detected no native yCyPB in yeast cell extracts by Western blot analysis; small amounts of yCyPB were found in the culture broth, suggesting secretion extracellularly of this isoform. Northern analysis indicated that both yCyPA mRNA and yCYPB mRNA (at a much lower level) were detectable in cell-free extracts. Characterization of the yeast cyclophilin proteins demonstrated that their catalytic properties and sensitivity to CsA parallel those of the human cyclophilins.  相似文献   

8.
9.
Cyclosporine is an immunosuppressive drug that is widely used to prevent organ transplant rejection. Known intracellular ligands for cyclosporine include the cyclophilins, a large family of phylogenetically conserved proteins that potentially regulate protein folding in cells. Immunosuppression by cyclosporine is thought to result from the formation of a drug-cyclophilin complex that binds to and inhibits calcineurin, a serine/threonine phosphatase that is activated by TCR engagement. Amino acids within the cyclophilins that are critical for binding to cyclosporine have been identified. Most of these residues are highly conserved within the 15 mammalian cyclophilins, suggesting that many are potential targets for the drug. We examined the effects of cyclosporine on immune cells and mice lacking Ppia, the gene encoding the prototypical cyclophilin protein cyclophilin A. TCR-induced proliferation and signal transduction by Ppia(-/-) CD4(+) T cells were resistant to cyclosporine, an effect that was attributable to diminished calcineurin inhibition. Immunosuppressive doses of cyclosporine failed to block the responses of Ppia(-/-) mice to allogeneic challenge. Rag2(-/-) mice reconstituted with Ppia(-/-) splenocytes were also cyclosporine resistant, indicating that this property is intrinsic to Ppia(-/-) immune cells. Thus, among multiple potential ligands, CypA is the primary mediator of immunosuppression by cyclosporine.  相似文献   

10.
The CD147 receptor plays an integral role in numerous diseases by stimulating the expression of several protein families and serving as the receptor for extracellular cyclophilins; however, neither CD147 nor its interactions with its cyclophilin ligands have been well characterized in solution. CD147 is a unique protein in that it can function both at the cell membrane and after being released from cells where it continues to retain activity. Thus, the CD147 receptor functions through at least two mechanisms that include both cyclophilin-independent and cyclophilin-dependent modes of action. In regard to CD147 cyclophilin-independent activity, CD147 homophilic interactions are thought to underlie its activity. In regard to CD147 cyclophilin-dependent activity, cyclophilin/CD147 interactions may represent a novel means of signaling since cyclophilins are also peptidyl-prolyl isomerases. However, direct evidence of catalysis has not been shown within the cyclophilin/CD147 complex. In this report, we have characterized the solution behavior of the two most prevalent CD147 extracellular isoforms through biochemical methods that include gel-filtration and native gel analysis as well as directly through multiple NMR methods. All methods indicate that the extracellular immunoglobulin-like domains are monomeric in solution and, thus, suggest that CD147 homophilic interactions in vivo are mediated through other partners. Additionally, using multiple NMR techniques, we have identified and characterized the cyclophilin target site on CD147 and have shown for the first time that CD147 is also a substrate of its primary cyclophilin enzyme ligand, cyclophilin A.  相似文献   

11.
ZnuA is the soluble component of the high-affinity ZnuABC zinc transporter belonging to the cluster 9 group of ATP-binding cassette-type periplasmic Zn- and Mn-binding proteins. In Gram-negative bacteria, the ZnuABC system is essential for zinc uptake and homeostasis and is an important determinant of bacterial resistance to the host defense mechanisms. The cluster 9 members share a two (α/β)4 domain architecture with a long α-helix connecting the two domains. In the Zn-specific proteins, the so-called α3c and the α4 helices are separated by an insert of variable length, rich in histidine and negatively charged residues. This distinctive His-rich loop is proposed to play a role in the management of zinc also due to its location at the entrance of the metal binding site located at the domain interface. The known Synechocystis 6803 and Escherichia coli ZnuA structures show the same metal coordination involving three conserved histidines and a glutamic acid or a water molecule as fourth ligand. The structures of Salmonella enterica ZnuA, with a partially or fully occupied zinc binding site, and of a deletion mutant missing a large part of the His-rich loop revealed unexpected differences in the metal-coordinating ligands, as histidine 140 from the mobile (at the C-terminal) part of the loop substitutes the conserved histidine 60. This unforeseen coordination is rendered possible by the “open conformation” of the two domains. The possible structural determinants of these peculiarities and their functional relevance are discussed.  相似文献   

12.
13.
Cyclophilins are a family of proteins that exhibit peptidyl-prolyl cis-trans isomerase activity and bind the immunosuppressive agent cyclosporin A (CsA). Brugia malayi is a filarial nematode parasite of humans, for which a cyclophilin-like domain was identified at the N-terminal of a protein containing 843 amino acid residues. There are two differences in sequence in the highly conserved CsA binding site: A histidine and a lysine replace a tryptophan and an alanine, respectively. The crystal structure of this domain has been determined by the molecular replacement method and refined to an R-factor of 16.9% at 2.15 A resolution. The overall structure is similar to other cyclophilins; however, major differences occur in two loops. Comparison of the CsA binding site of this domain with members of the cyclophilin family shows significant structural differences, which can account for the reduced sensitivity of the Brugia malayi protein to inhibition by CsA.  相似文献   

14.
Characterization of the cyclophilin of Trichophyton mentagrophytes   总被引:1,自引:0,他引:1  
A genetic approach to cyclophilins in a dermatophyte, Trichophyton mentagrophytes, was carried out. The nucleotide and deduced amino acid sequences of the cyclophilin of T. mentagrophytes shared about 70% sequence similarity with those of Schizosaccharomyces pombe, Saccharomyces cerevisiae and Candida albicans. However, the first 21 amino acid and the C-terminal amino acid regions of 188 to 226 of the T. mentagrophytes cyclophilin were distinct from those of the other fungal cyclophilins. The recombinant glutathione S-transferase (GST)-T. mentagrophytes cyclophilin fusion protein produced by Escherichia coli was purified. The protease digest of the fusion protein had a molecular weight of about 13 kDa and peptidyl-prolyl cis-trans isomerase (PPI) activity. This digest protein from T. mentagrophytes was confirmed to be cyclophilin by proving PPI activity.  相似文献   

15.
Cyclophilins are folding helper enzymes belonging to the class of peptidyl-prolyl cis-trans isomerases (PPIases; EC 5.2.1.8) that catalyze the cis-trans isomerization of peptidyl-prolyl bonds in proteins. They are ubiquitous proteins present in almost all living organisms analyzed to date, with extremely rare exceptions. Few cyclophilins have been described in Actinobacteria, except for three reported in the genus Streptomyces and another one in Mycobacterium tuberculosis. In this study, we performed a complete phylogenetic analysis of all Actinobacteria cyclophilins available in sequence databases and new Streptomyces cyclophilin genes sequenced in our laboratory. Phylogenetic analyses of cyclophilins recovered six highly supported groups of paralogy. Streptomyces appears as the bacteria having the highest cyclophilin diversity, harboring proteins from four groups. The first group was named "A" and is made up of highly conserved cytosolic proteins of approximately 18 kDa present in all Actinobacteria. The second group, "B," includes cytosolic proteins widely distributed throughout the genus Streptomyces and closely related to eukaryotic cyclophilins. The third group, "M" cyclophilins, consists of high molecular mass cyclophilins ( approximately 30 kDa) that contain putative membrane binding domains and would constitute the only membrane cyclophilins described to date in bacteria. The fourth group, named "C" cyclophilins, is made up of proteins of approximately 18 kDa that are orthologous to Gram-negative proteobacteria cyclophilins. Ancestral character reconstruction under parsimony was used to identify shared-derived (and likely functionally important) amino acid residues of each paralogue. Southern and Western blot experiments were performed to determine the taxonomic distribution of the different cyclophilins in Actinobacteria.  相似文献   

16.
17.
R Weisman  J Creanor    P Fantes 《The EMBO journal》1996,15(3):447-456
Cyclophilins are peptidyl-prolyl cis-trans isomerases (PPIases) which have been implicated in intracellular protein folding, transport and assembly. Cyclophilins are also known as the intracellular receptors for the immunosuppressive drug cyclosporin A (CsA). The most common type of cyclophilins are the 18 kDa cytosolic proteins containing only the highly conserved core domain for PPIase and CsA binding activities. The wis2+ gene of the fission yeast Schizosaccharomyces pombe was isolated as a multicopy suppressor of wee1-50 cdc25-22 win1-1, a triple mutant strain which exhibits a cell cycle defect phenotype. Sequence analysis of wis2+ reveals that it encodes a 40 kDa cyclophilin-like protein, homologous to the mammalian cyclophilin 40. The 18 kDa cyclophilin domain (CyP-18) of wis2 is followed by a C-terminal region of 188 amino acids. The C-terminal region of wis2 is essential for suppression of the triple mutant defect. Furthermore this region of the protein is able to confer suppression activity on the 18 kDa S.pombe cyclophilin, cyp1, since a hybrid protein consisting of an 18 kDa S.pombe cyclophilin (cyp1) fused to the C-terminus of wis2 shows suppression activity. We also demonstrate that the level of wis2+ mRNA increases 10- to 20-fold upon heat shock of S.pombe cells suggesting a role for wis2+ in the heat-shock response.  相似文献   

18.
Protein folding within the endoplasmic reticulum is assisted by molecular chaperones and folding catalysts that include members of the protein-disulfide isomerase and peptidyl-prolyl isomerase families. In this report, we examined the contributions of the cyclophilin subset of peptidyl-prolyl isomerases to protein folding and identified cyclophilin C as an endoplasmic reticulum (ER) cyclophilin in addition to cyclophilin B. Using albumin and transferrin as models of cis-proline-containing proteins in human hepatoma cells, we found that combined knockdown of cyclophilins B and C delayed transferrin secretion but surprisingly resulted in more efficient oxidative folding and secretion of albumin. Examination of the oxidation status of ER protein-disulfide isomerase family members revealed a shift to a more oxidized state. This was accompanied by a >5-fold elevation in the ratio of oxidized to total glutathione. This “hyperoxidation” phenotype could be duplicated by incubating cells with the cyclophilin inhibitor cyclosporine A, a treatment that triggered efficient ER depletion of cyclophilins B and C by inducing their secretion to the medium. To identify the pathway responsible for ER hyperoxidation, we individually depleted several enzymes that are known or suspected to deliver oxidizing equivalents to the ER: Ero1αβ, VKOR, PRDX4, or QSOX1. Remarkably, none of these enzymes contributed to the elevated oxidized to total glutathione ratio induced by cyclosporine A treatment. These findings establish cyclophilin C as an ER cyclophilin, demonstrate the novel involvement of cyclophilins B and C in ER redox homeostasis, and suggest the existence of an additional ER oxidative pathway that is modulated by ER cyclophilins.  相似文献   

19.
The spliceosomal cyclophilin H is a specific component of the human U4/U6 small nuclear ribonucleoprotein particle, interacting with homologous sequences in the proteins U4/U6-60K and hPrp18 during pre-mRNA splicing. We determined the crystal structure of the complex comprising cyclophilin H and the cognate domain of U4/U6-60K. The 31 amino acid fragment of U4/U6-60K is bound to a region remote from the cyclophilin active site. Residues Ile118-Phe121 of U4/U6-60K expand the central beta-sheet of cyclophilin H and the side-chain of Phe121 inserts into a hydrophobic cavity. Concomitantly, in the crystal the cyclophilin H active site is occupied by the N terminus of a neighboring cyclophilin H molecule in a substrate-like manner, indicating the capacity of joint binding to a substrate and to U4/U6-60K. Free and complexed cyclophilin H have virtually identical conformations suggesting that the U4/U6-60K binding site is pre-shaped and the peptidyl-prolyl-cis/trans isomerase activity is unaffected by complex formation. The complex defines a novel protein-protein interaction mode for a cyclophilin, allowing cyclophilin H to mediate interactions between different proteins inside the spliceosome or to initiate from its binding platforms isomerization or chaperoning activities.  相似文献   

20.
We have shown here the identification and characterization of two cyclophilin, cyclophilin A (CyPA) and B (CyPB), from the ixodid tick, Haemaphysalis longicornis. Both CyPA and CyPB contain the conserved peptidyl-prolyl isomerase (PPIase) domain, with CyPA consisting of 188 amino acids and CyPB of 216 amino acids. CyPA and CyPB share 50–67% amino acid sequence identity with the cyclophilins of other organisms, and are found in multiple organs throughout the developmental stages of ixodid ticks. In addition, recombinant CyPA and CyPB exhibited PPIase activity that could be inhibited by the cyclic peptides cyclosporin A (CsA). Silencing of CyPA through RNA interference has led to a significant reduction in the body weight of engorged ticks and their failure to lay eggs, in contrast to CyPB whose silencing did not result in any detectable phenotypic changes. Our results indicate that CyPA represents the major cyclophilin protein in H. longicornis involved in blood ingestion, viability, and oocyte development. This is the first report of cyclophilin proteins from ixodid and argasid ticks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号