首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Genetic variation in the equine leucocyte antigen-DRB (ELA-DRB) second exon was investigated using polymerase chain reaction (PCR) amplification, restriction fragment length polymorphism (RFLP) of PCR products (PCR-RFLP) and deoxyribonucleic acid (DNA) sequencing. Eight distinct PCR-RFLP patterns could be identified in the studied Argentine Creole (AC) horses. The number of observed patterns per individual ranged from four to six, thus confirming the presence of multiple DRB copies in AC horses. Three PCR-RFLP alleles and three new sequences were identified. The estimated rates of synonymous and non-synonymous substitutions among ELA-DRB exon 2 sequences were higher within the antigen recognition site (ABS) than on the non-ABS. Phylogenetic analysis showed that the nucleotide sequences clustered in two main groups, while some sequences were not included in either group. Finally, the identification of the number of alleles per animal, the phylogenetic and segregation analyses allowed us to explain the number of ELA-DRB loci. However, it was not possible to identify specific alleles with specific loci.  相似文献   

2.
The authenticity and freedom from cross-contaminants of a cell line are important prerequisites for any research, development or production programs involving cell lines. Mini- and microsatellites in the human genome harboring variable-numbers of tandem repeat (VNTR) DNA markers allow individualization at the DNA level and are of practical value for genetic linkage mapping, forensic legal medicine, paternity testing, monitoring of bone marrow transplants, and individualization of established cell lines. We have validated fingerprint techniques of different single- and multiple-locus VNTRs enabling the establishment of a searchable database of DNA profiles. As a result, multiplexed polymerase chain reaction amplification fragment length polymorphism (AmpFLP) of four prominent and highly polymorphic minisatellite VNTR loci was proven as the best tool for screening the uniqueness of DNA profiles in a fingerprint database. In order to avoid false positivity, identical or similar DNA profiles based on AmpFLP VNTR were tested further using a multi-locus fingerprint system. Our data demonstrate that misidentification remains a chronic problem among human continuous cell lines (detailed information at URL http://www.dsmz.de). The combination of rapidly generated DNA profiles based on single-locus VNTR loci, their authentication by screening the fingerprint database, and confirmation of duplicate banding patterns using multilocus fingerprints constitute a highly reliable and robust method, which enables high fidelity and quality of maintenance independent from the quantity of individual cell lines.  相似文献   

3.
DNA fingerprinting is an important new development for the authentication of cell lines. Multilocus methods such as those developed by Alec Jeffreys provide information on a wide range of genetic loci throughout the human genome and thus give a useful genetic “snap-shot” of a cell culture. Our work has shown that Jeffreys multilocus fingerprinting method can be applied to cell lines from a wide range of animals including reptiles, birds, fish and diverse mammals. It can also differentiate very closely related cell lines including those from the same mouse strain. Routine fingerprint analysis has enabled an unprecedented level of confidence in the consistency of cell stocks. Our results demonstrate that this straightforward method represents a powerful and readily interpreted system for cell authentication and exclusion of cross-contamination.  相似文献   

4.
In order to identify cross-culture contamination of cell lines, we applied DNA fingerprinting using variable number of tandem repeat (VNTR) loci and short tandem repeat (STR) loci amplified by polymerase chain reaction (PCR) instead of a radioisotope labeled multilocus probe. Eleven cell lines were used for the Apo B and D1S80 loci detection, and twelve cell lines were examined in the Y-chromosome analysis. The data obtained from the sister cell lines NALM-6 and B85, two MOLM-1 cultures from two cryopreserved tubes, and four subclones of BALM-9 and its sister cell line BALM-10, displayed clear and distinct bands of each PCR product for both Apo B and D1S80. Detection of a Y-chromosome DNA sequence is another very informative marker for the identification of cell lines, if the Y-chromosome is present. We examined eight cell lines for the expression of four STR loci; the data thus generated were compared with the results previously reported from other laboratories. The resulting electrophoretic banding patterns showed that our "home-made" STR detection system is a useful and efficient tool for the authentication of cell lines. PCR detection of VNTR and STR loci represents a simple, rapid and powerful DNA fingerprinting technique to authenticate human cell lines and to detect cross-culture contamination. This PCR technique may be used in lieu of the more time-consuming, labor-intensive and radioactive Southern blot multilocus method.  相似文献   

5.
Summary We have tested amplified fragment length polymorphism (AFLP) technology, in comparison with isoenzyme analysis, for the simultaneous detection of inter-and intraspecific cell line cross-contaminations (CCCs) in the cell line collection held at the Istituto Zooprofilattico della Lombardia e dell’Emilia Romagna. Isoenzyme analysis identified four cases of interspecific CCCs. In a single expreiment, AFLP was able to identify the species of origin of all cell lines for which a reference genomic deoxyribonucleic acid was available and to detect five interspecific contaminations. Four CCCs confirmed data on isoenzymes, whereas the fifth CCC was detected in a species for which isoenzyme analysis was noninformative. In addition, AFLP was able to identify the putative source of the contaminations detected. The utility of the technology in the detection of intraspecific cell line contaminations, depends on the number of cell lines that have to be distinguished in a specific species and on the availability of highly informative fingerprinting systems. In mice, a single AFLP primer pair produced 16 polymorphisms and distinguished all the 15 strains of mouse cell lines analyzed. In humans, 18 AFLPs identified 83 different profiles in the 159 cell lines analyzed. Amplified fragment length polymorphism can conveniently be applied for cell line fingerprinting in species for which hypervariable markers are not available. In species for which a highly informative multiplex of microsatellite markers is available, AFLP can still provide a useful and cheap tool for simultaneously testing inter-and intraspecific contaminations.  相似文献   

6.
Polymerase chain reaction (PCR)‐based ‘fingerprinting’ methods, such as Terminal restriction fragment length polymorphism, Length Heterogeneity‐Polymerase Chain Reaction (LH‐PCR) and Automated Ribosomal Intergenic Spacer Analysis (ARISA) make possible quantitative studies of microbial community structure and dynamics. Here we outline a strategy for the rapid and cost‐effective isolation of 16S clones corresponding to particular fragment sizes in a fingerprint, based on applying the fingerprinting method to pools of colonies from a clone library. This allows the definitive identification of taxa responsible for the most important bands in the community fingerprint from a full 16S sequence. It offers significant advantages over random selection of clones and removes a significant barrier to the use of these methods.  相似文献   

7.
Summary Strain identification in Zea mays by restriction fragment length polymorphism should be feasible due to the high degree of polymorphism found at many loci. The polymorphism in maize is apparently higher than that currently known for any other organism. Five randomly selected maize inbred lines were examined by Southern filter hybridization with probes of cloned low copy sequences. Typically, several alleles could be distinguished among the inbred lines with any one probe and an appropriately selected restriction enzyme. Despite considerable polymorphism at the DNA level, 16 RFLP markers in three inbred lines of maize were examined for six to 11 generations and found be stable. Mapping of RFLP markers in maize can be accelerated by the use of B-A translocation stocks, which enable localization of a marker to chromosome arm in one generation. The use of recombinant inbred lines in further refinement of the map is discussed.  相似文献   

8.
DNA分子标记技术很多,基本都是建立在RFLP、PCR和重复顺序的基础上的。本文重点介绍了限制性片段长度多态性(RFLP)标记、随机扩增多态性DNA(RAPD)标记、微卫星DNA(STR)标记、DNA指纹(DFP)标记、扩增片段长度多态性(AFLP)标记等几种重要的DNA分子标记技术的定义、结构、分布、组成、保守性、优点及丰富的多态性等。并重点介绍了微卫星DNA(STR)标记在分子遗传监测、遗传多样性分析和遗传血缘关系及个体识别等领域的应用。  相似文献   

9.
Wild populations of edible species are important source of genetic variability for cultivated lines that can undergo a drastic loss of diversity resulting from man’s selection. The development of tools aimed at the clear-cut and safe identification and assessment of genetic variability of the wild and cultivated strains is thus a fundamental goal of molecular genetic research. In this study, we used two polymerase chain reaction (PCR)-based fingerprinting methods—amplified fragment length polymorphism (AFLP) and restriction fragment length polymorphism (RFLP) of laccase and manganese peroxidase genes—to assess genetic differences among strains and independently evolving lineages belonging to the Pleurotus eryngii complex. Both laccase RFLP and AFLP have been proved to distinguish unambiguously the three taxa studied: Pleurotus ferulae, P. eryngii, and P. eryngii var. nebrodensis. AFLP also showed enough sensitivity to detect polymorphisms among the strains, proving to be an efficient DNA fingerprinting tool in studies of strain assignment. The divergent RFLP laccase and manganese peroxidase patterns are also discussed in relation to the role played by these genes in the interaction between these fungi and their host plants.  相似文献   

10.
M S Sidhu  B K Helen  R S Athwal 《Genomics》1992,14(3):728-732
We describe here a method for DNA fingerprinting of human chromosomes by Alu-polymerase chain reaction (PCR) amplification of DNA from monochromosomal hybrids, following digestion with restriction endonucleases. DNA digestion with restriction enzymes prior to PCR amplification reduces the total number of amplified fragments. The number and pattern of bands of PCR products observed in an electrophoretic medium are chromosome specific and provide a "fingerprint signature" for individual human chromosomes. Using this approach, we have produced fingerprints for human chromosomes 2, 5, 7, 9, and 12. The applicability of this approach to chromosome identification was assessed by comparing the fingerprints obtained for two different hybrids containing chromosome 7. DNA fragments specific for the long and the short arms of human chromosome 12 have also been identified. In addition, Alu-PCR-generated DNA fragments, specific for different chromosomes, were used to probe Southern blots of a hybrid cell panel to identify human chromosomes present in hybrid cell lines. The chromosomal specificity of these probes permits the identification of intact as well as rearranged chromosomes composed of segments arising from more than one chromosome.  相似文献   

11.
Free-living nitrogen-fixing prokaryotes (diazotrophs) are ubiquitous in soil and are phylogenetically and physiologically highly diverse. Molecular methods based on universal PCR detection of the nifH marker gene have been successfully applied to describe diazotroph populations in the environment. However, the use of highly degenerate primers and low-stringency amplification conditions render these methods prone to amplification bias, while less degenerate primer sets will not amplify all nifH genes. We have developed a fixed-primer-site approach with six PCR protocols using less degenerate to nondegenerate primer sets that all amplify the same nifH fragment as a previously published PCR protocol for universal amplification. These protocols target different groups of diazotrophs and allowed for direct comparison of the PCR products by use of restriction fragment length polymorphism fingerprinting. The new protocols were optimized on DNA from 14 reference strains and were subsequently tested with bulk DNA extracts from six soils. These analyses revealed that the new PCR primer sets amplified nifH sequences that were not detected by the universal primer set. Furthermore, they were better suited to distinguish between diazotroph populations in the different soils. Because the novel primer sets were not specific for monophyletic groups of diazotrophs, they do not serve as an identification tool; however, they proved powerful as fingerprinting tools for subsets of soil diazotroph communities.  相似文献   

12.
Free-living nitrogen-fixing prokaryotes (diazotrophs) are ubiquitous in soil and are phylogenetically and physiologically highly diverse. Molecular methods based on universal PCR detection of the nifH marker gene have been successfully applied to describe diazotroph populations in the environment. However, the use of highly degenerate primers and low-stringency amplification conditions render these methods prone to amplification bias, while less degenerate primer sets will not amplify all nifH genes. We have developed a fixed-primer-site approach with six PCR protocols using less degenerate to nondegenerate primer sets that all amplify the same nifH fragment as a previously published PCR protocol for universal amplification. These protocols target different groups of diazotrophs and allowed for direct comparison of the PCR products by use of restriction fragment length polymorphism fingerprinting. The new protocols were optimized on DNA from 14 reference strains and were subsequently tested with bulk DNA extracts from six soils. These analyses revealed that the new PCR primer sets amplified nifH sequences that were not detected by the universal primer set. Furthermore, they were better suited to distinguish between diazotroph populations in the different soils. Because the novel primer sets were not specific for monophyletic groups of diazotrophs, they do not serve as an identification tool; however, they proved powerful as fingerprinting tools for subsets of soil diazotroph communities.  相似文献   

13.
A new polymorphism of the human prothrombin (F2) gene was detected by a combination of polymerase chain reaction (PCR) amplification of specific alleles (PASA) and mutated primer-mediated PCR restriction fragment length polymorphism (PCR-RFLP). The method is simple and useful for detecting polymorphisms and mutations. The new polymorphism of C1 and C2 examined by this method is highly heterozygous and serves as a good human DNA marker.  相似文献   

14.
Amplified fragment length polymorphism (AFLP) is a novel molecular fingerprinting technique that can be applied to DNAs of any source or complexity. Total genomic DNA is digested using two restriction enzymes. Double-stranded nucleotide adapters are ligated to the DNA fragments to serve as primer binding sites for PCR amplification. Primers complementary to the adapter and restriction site sequence, with additional nucleotides at the 3′-end, are used as selective agents to amplify a subset of ligated fragments. Polymorphisms are identified by the presence or absence of DNA fragments following analysis on polyacrylamide gels. This technique has been extensively used with plant DNA for the development of high-resolution genetic maps and for the positional cloning of genes of interest. However, its application is rapidly expanding in bacteria and higher eukaryotes for determining genetic relationships and for epidemiological typing. This review describes the AFLP procedure, and recent, novel applications in the molecular fingerprinting of DNA from both eukaryotic and prokaryotic organisms. Received 19 December 1997/ Accepted in revised form 3 June 1998  相似文献   

15.
In forensic medicine, DNA fingerprinting for human identification and paternity testing is becoming a necessary procedure. The genetic locus D1S80 (MCT118) with Hinf I polymorphism of its 5' flanking sequence, HUMTH01 and D21S11 have been successfully amplified from human genomic DNA isolated from blood (50 ng from each sample) by the polymerase chain reaction (PCR) using oligonucleotide primers complementary to the flanking sequences as primers for amplification. DNA bands were detected by ethidium bromide staining after electrophoresis on agarose gels or high-resolution SDS-PAGE. Analysis of these VNTR loci was thus achieved without the need for Southern blot or radioactive material. The small size of the DNA fragments produced in the PCR amplification permitted good resolution of individual alleles. The precise specification of the number of tandem repeats present in each allelic fragment was reproducible from one analysis to another. The aim of this study includes three paternity testing cases; they are the first three human DNA-fingerprints performed in Romania.  相似文献   

16.
Simple sequence repeats (SSR) are the DNA markers of choice for genetic analysis in rice (Oryza sativa L.) due to their abundance, high polymorphism and simple assays using agarose gel electrophoresis. In an attempt to find most variable SSR loci for the agarose gel system, the relationship between SSR length and level of polymorphism was evaluated in a set of eight diverse rice genotypes using 201 random SSR loci of different repeat motifs and lengths, representing both genic and intergenic sequences from the 12 rice chromosomes. There was a positive correlation between SSR length and average number of alleles per locus but linearity of this relationship was limited to the SSR length range of 10–70 bp. The highest level of polymorphism was in the SSR length range of 51–70 bp, beyond which there was stabilization and then decline of polymorphism in SSRs longer than 70 bp. Proportion of polymorphic loci in the different SSR length groups also followed similar pattern with even sharper decline of polymorphism in the highest size range. Here we describe a genome wide set of 436 validated highly variable SSR (HvSSR) markers with repeat lengths of 51–70 bp for their consistent amplification and high polymorphism. In the parental lines of three different mapping populations, the HvSSR loci showed more than twice the level of polymorphism than random SSR markers with average repeat length of 34 bp, and therefore are suitable for QTL mapping and fingerprinting studies in rice employing agarose gels.  相似文献   

17.
One of the major risks in cell culture laboratories is the misidentification and cross-contamination of cell lines. Several methods have been used to authenticate cell lines, including isoenzyme profiling, the test suggested by European Farmacopeia, which is performed at the Tissue Culture Centre in Brescia. However, this method displays several disadvantages, such as high variability and low reproducibility, and it is time consuming and requires high cell concentrations to be performed. Therefore, an alternative method has been developed to confirm the specie of origin of 27 different animal cell cultures. A polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) assay was optimized, based on the use of a pair of primers that anneal to a portion of the cytochrome b gene in all the species. The amplification product was digested with a panel of six restriction enzymes, and the pattern derived was resolved on 3% high-resolution agarose gel. For 23 species, this protocol produced a unique restriction pattern, and the origin of these animal cells resulted to be confirmed by this analysis. Furthermore, results indicate that cytochrome b PCR-RFLP was able to amplify target sequences using very low amounts of deoxyribonucleic acid (DNA). Its sensitivity in detecting interspecies, cross-contamination was comparable to that of isoenzyme analysis (contaminating DNA should represent at least 10% of the total DNA). For 4 of the 27 species (sheep, dog, Guinea pig, and Rhesus monkey) the observed pattern, even if highly reproducible, showed additional bands; for these species, specific PCR was also performed.  相似文献   

18.
 Three different probes, obtained by PCR amplification and labelling of different segments of a PDI cDNA clone from common wheat, were used to identify and assign to wheat chromosomes the gene sequences coding for protein disulphide isomerase (PDI). One of these probes, containing the whole coding region except for a short segment coding for the C-terminal sequence, displayed defined and specific RFLP patterns. PDI gene sequences were consequently assigned to wheat chromosome arms 4BS, 4DS, 4AL and 1BS by Southern hybridisation of EcoRI- HindIII- and BamHI-digested total DNA of nulli-tetrasomic and di-telosomic lines of Chinese Spring. This probe was also employed for assessing the restriction fragment length polymorphism in several hexaploid and tetraploid cultivated wheats. These showed considerable conservation at PDI loci; in fact polymorphism was only observed for the chromosome 1B fragment. Received: 7 July 1998 / Accepted: 14 August 1998  相似文献   

19.
 In order to identify sequence-tagged sites (STSs) appropriate for recombinant inbred lines (RILs) of barley cultivars ‘Azumamugi’ × ‘Kanto Nakate Gold’, a total of 43 STS primer pairs were generated on the basis of the terminal sequences of barley restriction fragment length polymorphism (RFLP) clones. Forty one of the 43 primer pairs amplified PCR products in Azumamugi, Kanto Nakate Gold, or both. Of these, two showed a length polymorphism and two showed the presence or absence of polymorphism between the parents. PCR products of the remaining 37 primers were digested with 46 restriction endonucleases, and polymorphisms were detected for 15 primers. A 383.6-cM linkage map of RILs of Azumamugi×Kanto Nakate Gold was constructed from the 19 polymorphic STS primer pairs (20 loci) developed in this study, 45 previously developed STS primer pairs (47 loci), and two morphological loci. Linkage analysis and analysis of wheat-barley chromosome addition lines showed that with three exceptions, the chromosome locations of the STS markers were identical with those of the RFLP markers. Received: 4 August 1998 / Accepted: 8 October 1998  相似文献   

20.
Amplified fragment length polymorphism (AFLP) is a PCR-based DNA fingerprinting technique whereby restriction fragments may be visualized without prior knowledge of nucleotide sequences. In AFLP analysis, bacterial genomic DNA is digested with a restriction enzyme and ligated to adapter oligonucleotides. A subset of DNA fragments are then amplified using primers which contain adapter-defined sequences. Selective amplification is achieved by the use of primers containing adapter-defined sequences with one additional arbitrary nucleotide. We used four primers complementary to the adapter sequence, but each differing in the final 3' base that extended into the fragment DNA. The usefulness of these primers for fingerprinting Salmonella enterica was assessed in a hierarchical manner. Using a single-enzyme approach (SAFLP) we have used this method to fingerprint 30 strains of S. enterica, belonging to 14 different serotypes. SAFLP profiles derived from Hind III fragments differentiated between the serotypes. In addition, SAFLP profiles for each serotype differentiated between the phage types and individual strains. The technique is significantly faster to perform than other DNA-based methods and has given reproducible and discriminatory results. This hierarchical SAFLP technique may provide a valuable addition to existing methods for the DNA fingerprinting of S. enterica for epidemiological studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号