首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neurotrophin-induced Trk tyrosine kinase receptor activation and neuronal cell survival responses have been reported to be under the control of a membrane associated sialidase. Here, we identify an unprecedented membrane sialidase mechanism initiated by nerve growth factor (NGF) binding to TrkA to potentiate GPCR-signaling via membrane Gαi subunit proteins and matrix metalloproteinase-9 (MMP-9) activation to induce Neu1 sialidase activation in live primary neurons and TrkA- and TrkB-expressing cell lines. Central to this process is that Neu1/MMP-9 complex is bound to TrkA on the cell surface of naïve primary neurons and TrkA-expressing cells. Tamiflu completely blocks this sialidase activity in live TrkA-PC12 cells treated with NGF with an IC50 of 3.876 μM with subsequent inhibition of Trk activation in primary neurons and neurite outgrowth in TrkA-PC12 cells. Our findings uncover a Neu1 and MMP-9 cross-talk on the cell surface that is critically essential for neurotrophin-induced Trk tyrosine kinase receptor activation and cellular signaling.  相似文献   

2.
Protein kinase C (PKC)-induced changes in glomerular mesangial cell (MC) phenotypic behavior has been implicated in diabetes. The activity of diacylglycerol-sensitive PKC isoforms in MCs is altered by ambient changes in glucose, but the regulation of PKC activity and subsequent intracellular signaling events are not yet clearly defined. Small GTP-binding proteins of the ADP-ribosylation factor (Arfs) family, may regulate protein kinase membrane recruitment and hence its activity in signaling events of non-polarized cells. Members of the ARF family may coordinate membrane dynamics and other cellular functions through their interaction with PKC. We studied the activation of Arf, PKC betaI and phospholipase D (PLD) in MCs cultured under normal or high glucose conditions. MCs cultured in high glucose medium exhibited predominantly cytosolic localization of PKC betaI, Arf3 and Arf6. However, phorbol ester (PMA) stimulation of cells cultured in high glucose significantly enhanced membrane association of PKC betaI and Arf6, but not Arf3. Using [3H]choline chloride to prelabel MCs and measuring [3H]choline-containing metabolite release as PLD activity, PMA stimulated a significant increase of PLD activity under high glucose condition. Our data suggest that Arf6 plays a specific role in activation of PKC betaI and PLD under high glucose condition, and may be a significant intracellular event in the change of the mesangial cell phenotype associated with diabetic nephropathy.  相似文献   

3.
Dissection of NT3 functions in vivo by gene replacement strategy.   总被引:3,自引:0,他引:3  
The development of the peripheral nervous system is governed in part by a family of neurotrophic factors that signal through Trk tyrosine kinase receptors. Neurotrophin 3 (NT3) ablation in mice causes a more severe neuronal phenotype than deletion of its receptor TrkC, suggesting that NT3 acts also through other non-preferred Trk receptors. To study the role of low-affinity ligand receptor interactions in vivo, we have replaced the Nt3 gene with the gene for brain-derived neurotrophic factor (BDNF), a TrkB ligand. As in NT3 and TrkC null mice, the proprioception system of these mutants failed to assemble. However, sensory fiber projections in the embryonic spinal cord suggest chemotropic effects of BDNF in vivo. In the dorsal root ganglia, the developmental dynamic of neuron numbers demonstrates that NT3 is required for activation of TrkB during neurogenesis and that TrkA is required during target tissue innervation. In the inner ear, the ectopic BDNF rescued the severe neuronal deficits caused by NT3 absence, indicating that TrkB and TrkC activate equivalent pathways to promote survival of cochlear neurons. However, specific increased innervation densities suggest unique functions for BDNF and NT3 beyond promoting neuronal survival. This mouse model has allowed the dissection of specific spatiotemporal Trk receptor activation by NT3. Our analysis provides examples of how development can be orchestrated by complex high- and low-affinity interactions between ligand and receptor families.  相似文献   

4.
5.
Sigma-1 receptor (Sig-1R) is an integral membrane protein predominantly expressed in the endoplasmic reticulum. Sig-1R demonstrates a high affinity to various synthetic compounds including well-known psychotherapeutic drugs in the central nervous system (CNS). For that, it is considered as an alternative target for psychotherapeutic drugs. On the cellular level, when Sig-1R is activated, it is known to play a role in neuroprotection and neurite elongation. These effects are suggested to be mediated by its ligand-operated molecular chaperone activity, and/or upregulation of various Ca2+ signaling. In addition, recent studies show that Sig-1R activation induces neurite outgrowth via neurotrophin signaling. Here, we tested the hypothesis that Sig-1R activation promotes neurite elongation through activation of tropomyosin receptor kinase (Trk), a family of neurotrophin receptors. We found that 2-(4-morpholinethyl)1-phenylcyclohexanecarboxylate (PRE-084), a selective Sig-1R agonist, significantly promoted neurite outgrowth, and K252a, a Trk inhibitor, attenuated Sig-1R-mediated neurite elongation in cerebellar granule neurons (CGNs). Moreover, we revealed that Sig-1R interacts with TrkB, and PRE-084 treatment enhances phosphorylation of Y515, but not Y706. Thus, our results indicate that Sig-1R activation promotes neurite outgrowth in CGNs through Y515 phosphorylation of TrkB.  相似文献   

6.
Abstract: In contrast to the intensively studied nerve growth factor (NGF)-related family of cytokines, relatively little is known about the mechanisms of neurotrophic activity elicited by the cytokine interleukin-6 (IL-6). We have examined the mechanisms of IL-6-induced neuronal differentiation of the pheochromocytoma cell line PC12. IL-6 independently induced the expression of peripherin , identifying this gene as the first neuronal-specific target of IL-6. However, IL-6 alone failed to elicit neurite outgrowth in PC12 cells and instead required low levels of Trk/NGF receptor tyrosine kinase activity to induce neuronal differentiation. The cooperating Trk signal could be provided by either overexpression of Trk or exposure to low concentrations of NGF. IL-6 also functioned cooperatively with basic fibroblast growth factor to promote PC12 differentiation. IL-6 and Trk/NGF synergized in enhancing tyrosine phosphorylation of the Erk-1 mitogen-activated protein kinase and in activating expression of certain NGF target genes. NGF also induced expression of the gp80 subunit of the IL-6 receptor, providing another potential mechanism of cooperativity between NGF and IL-6 signaling. We propose that IL-6 functions as an enhancer of NGF signaling rather than as an autonomous neuronal differentiation signal. Moreover, our results demonstrate that a Trk receptor-specific cellular response can be achieved in the absence of NGF through amplification of its basal signaling activity by the IL-6 receptor system.  相似文献   

7.
The GTPase Arf6 regulates multiple cellular processes, including endocytosis, secretion, phagocytosis, cell adhesion, and cell migration [1, 2]. The Arf6-specific GAP ACAP1 is a negative regulator of Arf6-mediated signaling [3-7]. However, regulation of ACAP1- and Arf6-mediated signaling by other cellular proteins is not well understood. GULP/CED-6 is a phosphotyrosine binding (PTB)-domain-containing adaptor protein linked to engulfment of apoptotic cells [8-13] and to cholesterol homeostasis [14]. Here, we identify a novel role for GULP as a positive regulator of Arf6. Knockdown of GULP decreased cellular Arf6-GTP, whereas GULP overexpression increased cellular Arf6-GTP. At the mechanistic level, GULP influenced Arf6 at four levels. First, GULP bound directly to GDP-bound Arf6 via its PTB domain. Second, GULP associated with the Arf6-GAP ACAP1 at endogenous levels. Third, GULP reversed the Arf6-GTP decrease induced by ACAP1, and countered the ACAP1-mediated inhibition of cell migration. Fourth, GULP, ACAP1, and GDP-bound Arf6 were part of a tripartite complex, suggesting sequestration of ACAP1 as one mechanism of GULP action. Taken together, these data identify GULP as a modifier of cellular Arf6-GTP through regulation of ACAP1. Because PTB-domain-containing adaptor proteins influence endocytosis and trafficking of membrane proteins and cell migration [15, 16], our data support a model wherein PTB-domain-containing adaptor proteins regulate Arf family proteins.  相似文献   

8.
The semaphorins are a family of secreted or membrane-bound proteins that are known to guide axons in the developing nervous system. Genetic evidence revealed that a class III semaphorin, semaphorin 3E (Sema3E), and its receptor Plexin-D1 also control the vascular patterning during development. At the molecular level, we have recently shown that Sema3E acts on Plexin-D1 expressed in endothelial cells, thus initiating a novel antiangiogenic signaling pathway that results in the retraction of filopodia in endothelial tip cells. Sema3E induces the rapid disassembly of integrin-mediated adhesive structures, thereby inhibiting endothelial cell adhesion to the extracellular matrix. This process requires the activation of small GTPase Arf6 (ADP-ribosylation factor 6), which regulates intracellular trafficking of β1 integrin. However, the molecular mechanisms by which Sema3E-Plexin-D1 activates Arf6 remained to be identified. Here we show that GEP100 (guanine nucleotide exchange protein 100)/Brag2, a guanine nucleotide exchange factor for Arf6, mediates Sema3E-induced Arf6 activation in endothelial cells. We provide evidence that upon activation by Sema3E, Plexin-D1 recruits phosphatidylinositol-4-phosphate 5-kinase, and its enzymatic lipid product, phosphatidylinositol 4,5-bisphosphate, binds to the pleckstrin homology domain of GEP100. Phosphatidylinositol 4,5-bisphosphate binding to GEP100 enhances its guanine nucleotide exchange factor activity toward Arf6, thus resulting in the disassembly of integrin-mediated focal adhesions and endothelial cell collapse. Our present study reveals a novel phospholipid-regulated antiangiogenic signaling pathway whereby Sema3E activates Arf6 through Plexin-D1 and consequently controls integrin-mediated endothelial cell attachment to the extracellular matrix and migration.  相似文献   

9.
Proper regulation of morphological changes in neuronal cells is essential for their differentiation. Complex signaling mechanisms mediate a variety of morphological changes such as formation of neurites. It is well established that a number of small GTPases control neurite behavior before the connection with the target tissue. However, their regulatory mechanisms remain to be fully understood. Here, we show that the Arf6 guanine-nucleotide exchange factor (GEF), cytohesin-2 (CYTH2), interacts with the cytoskeletal protein actinin-1 (ACTN1) and regulates neurite extension in N1E-115 cells used as the model. Knockdown of ACTN1, as well as that of CYTH2, in cells inhibits cellular Arf6 activity and neurite extension. The C-terminal polybasic region of CYTH2 participates in interacting directly with the EFh2 domain of ACTN1. Expression of CYTH2 mutant deficient of the EFh2 domain in cells also inhibits Arf6 activation and neurite extension. Furthermore, FRET analysis detects that the respective interactive region peptides, tagged with cell-permeable short peptides, greatly decrease Arf6 activation at growth cones in a time-dependent manner. Collectively, the signaling through CYTH2 and ACTN1 properly regulates neurite extension in N1E-115 cells, demonstrating the unexpected interaction of CYTH2 and ACTN1 in the regulation of cellular Arf6 activity involved in neurite extension.  相似文献   

10.
Proteins of the cytohesin/Arno/Grp1 family of Arf activators are positive regulators of the insulin-signaling pathway and control various remodeling events at the plasma membrane. Arno has a catalytic Sec7 domain, which promotes GDP to GTP exchange on Arf, followed by a pleckstrin homology (PH) domain. Previous studies have revealed two functions of the PH domain: inhibition of the Sec7 domain and membrane targeting. Interestingly, the Arno PH domain interacts not only with a phosphoinositide (phosphatidylinositol 4,5-bisphosphate or phosphatidylinositol 3,4,5-trisphosphate) but also with an activating Arf family member, such as Arf6 or Arl4. Using the full-length membrane-bound forms of Arf1 and Arf6 instead of soluble forms, we show here that the membrane environment dramatically affects the mechanism of Arno activation. First, Arf6-GTP stimulates Arno at nanomolar concentrations on liposomes compared with micromolar concentrations in solution. Second, mutations in the PH domain that abolish interaction with Arf6-GTP render Arno completely inactive when exchange reactions are reconstituted on liposomes but have no effect on Arno activity in solution. Third, Arno is activated by its own product Arf1-GTP in addition to a distinct activating Arf isoform. Consequently, Arno activity is strongly modulated by competition with Arf effectors. These results show that Arno behaves as a bistable switch, having an absolute requirement for activation by an Arf protein but, once triggered, becoming highly active through the positive feedback effect of Arf1-GTP. This property of Arno might provide an explanation for its function in signaling pathways that, once triggered, must move forward decisively.  相似文献   

11.
GRASP interacts with Grp1 (g eneral r eceptor for p hosphoinositides 1; cytohesin 3), which catalyses nucleotide exchange on and activation of Arf6 (ADP‐ribosylation factor‐6). Arf6 is a low‐molecular‐mass GTPase that regulates key aspects of endocytic recycling pathways. Overexpressed GRASP accumulated in the juxtanuclear ERC (endocytic recycling compartment). GRASP co‐localized with a constitutively inactive mutant of Arf6 in the ERC such that it was reversed by expression of wild‐type Grp1. Co‐expression of GRASP and Grp1 promoted membrane ruffling, a cellular hallmark of Arf6 activation. GRASP accumulation in ERC was found to block recycling of the MHC‐I (major histocompatibility complex‐I), which is trafficked by the Arf6‐dependent pathway. In contrast, overexpression of GRASP had no effect on the recycling of transferrin receptors, which are trafficked by a clathrin‐dependent pathway. The findings suggest that GRASP regulates the non‐clathrin/Arf6‐dependent, plasma membrane recycling and signalling pathways.  相似文献   

12.
Neurotrophin signaling plays important roles in regulating the survival, differentiation, and maintenance of neurons in the nervous system. Binding of neurotrophins to their cognate receptors Trks induces transactivation and phosphorylation of the receptor at several tyrosine residues. These phosphorylated tyrosine residues then serve as crucial docking sites for adaptor proteins containing a Src homology 2 or phosphotyrosine binding domain, which upon association with the receptor initiates multiple signaling events to mediate the action of neurotrophins. Here we report the identification of a Src homology 2 domain-containing molecule, SLAM-associated protein (SAP), as an interacting protein of TrkB in a yeast two-hybrid screen. SAP was initially identified as an adaptor molecule in SLAM family receptor signaling for regulating interferon-gamma secretion. In the current study, we found that SAP interacted with TrkA, TrkB, and TrkC receptors in vitro and in vivo. Binding of SAP required Trk receptor activation and phosphorylation at the tyrosine 674 residue, which is located in the activation loop of the kinase domain. Overexpression of SAP with Trk attenuated tyrosine phosphorylation of the receptors and reduced the binding of SH2B and Shc to TrkB. Moreover, overexpression of SAP in PC12 cells suppressed the nerve growth factor-dependent activation of extracellular signal-regulated kinases 1/2 and phospholipase Cgamma, in addition to inhibiting neurite outgrowth. In summary, our findings demonstrated that SAP may serve as a negative regulator of Trk receptor activation and downstream signaling.  相似文献   

13.
The small G-protein ADP-ribosylation factor 6 (Arf6) belongs to the Ras GTPases superfamily and is mostly known for its actin remodeling functions and involvement in the processes of plasma membrane reorganization and vesicular transport. The majority of data indicates that Arf6 contributes to cancer progression through activation of cell motility and invasion. Alternatively, we found that the expression of a wild-type or a constitutively active Arf6 does not influence tumor cell motility and invasion but instead significantly stimulates cell proliferation and activates phospholipase D (PLD). Conversely the expression of a mutant Arf6 (Arf6N48I), that is, unable to interact with PLD has no effect on proliferation but promotes motility, invasion, and matrix degradation by uPA extracellular proteinase. Studying the mechanisms of Arf6-dependent stimulation of cell proliferation, we found some signaling pathways contributing to Arf6 promitogenic activity. Namely, we showed that Arf6 in a PLD-mTORC1-dependent manner activates S6K1 kinase, a well-known regulator of mitogen-stimulated translation initiation. Furthermore, we demonstrated an Arf6-dependent phosphorylation of mTORC1 downstream targets, 4E-BP1 and ribosomal S6 protein, confirming an existence of Arf6-PLD-mTORC1-S6K1/4E-BP1 signaling pathway and also demonstrated its impact on proliferation stimulation. Next, we found that Arf6 activation potentiates Erk1/2 and p38MAP kinases phosphorylation. Surprisingly, p38 opposite to Erk1/2 significantly contributes to Arf6-dependent proliferation increase promoting S6 ribosomal protein phosphorylation at Ser235/236 residues. Therefore, we demonstrated Arf6 proliferation stimulating activity and revealed PLD-mTORC1 and p38MAP kinase as Arf6 partners mediating promitogenic activity. These results highlight a new aspect of Arf6 functioning in cancer cell biology.  相似文献   

14.
Neurotrophin signaling via Trks and p75   总被引:24,自引:0,他引:24  
This review focuses on recent advances in our understanding of receptor-mediated signaling by the neurotrophins NGF, BDNF, NT3, and NT4/5. Two distinct receptor types have been distinguished, Trks and p75. The Trks are receptor tyrosine kinases that utilize a complex set of substrates and adapter proteins to activate defined secondary signaling cascades required for neurotrophin-promoted neuronal differentiation, plasticity, and survival. A specialized aspect of Trk/neurotrophin action in neurons is the requirement for retrograde signaling from the distal periphery to the cell body. p75 is a universal receptor for neurotrophins that is a member of the TNF receptor/Fas/CD40 superfamily. p75 appears to modify Trk signaling when the two receptor types are coexpressed. When expressed in the absence of Trks, p75 mediates responses to neurotrophins including promotion of apoptotic death. The mechanisms of p75 receptor signaling remain to be fully understood.  相似文献   

15.
Small G proteins of the Arf and Rab families are fundamental to the organisation and activity of intracellular membranes. One of the most well characterised of these G proteins is mammalian Arf6, a protein that participates in many cellular processes including endocytosis, actin remodelling and cell adhesion. Exchange of GDP for GTP on Arf6 is performed by a variety of guanine nucleotide exchange factors (GEFs), principally of the cytohesin (PSCD) and EFA6 (PSD) families. In this paper we describe the characterisation of a GEF for the yeast orthologue of Arf6, Arf3, which we have named Yel1 (yeast EFA6-like-1) using yeast genetics, fluorescence microscopy and in vitro nucleotide exchange assays. Yel1 appears structurally related to the EFA6 family of GEFs, having an N-terminal Sec7 domain and C-terminal PH and coiled-coil domains. We find that Yel1 is constitutively targeted to regions of polarised growth in yeast, where it co-localises with Arf3. Moreover the Sec7 domain of Yel1 is required for its membrane targeting and for that of Arf3. Finally we show that the isolated Yel1 Sec7 domain strongly stimulates nucleotide exchange activity specifically on Arf3 in vitro.  相似文献   

16.
Two fibroblast growth factor (FGF) receptor substrates (FRS2 and FRS3) are involved in downstream signaling from activated FGF receptors and neurotrophin-activated Trk receptors. Despite the importance of signaling from these factors in embryogenesis, FRS2 and FRS3 expression patterns during development are unknown. In this study we characterize the expression of FRS2 and FRS3 from E7 to parturition and in adult murine tissues. Both are first detected in whole E8.5 CD1 mouse embryos. FRS2 is detected as early as E7 in the developing syncytiotrophoblast, later in the neural tube (NT) and in many adult and fetal tissues. FRS3 is more restricted in location than FRS2 (fetal NT, heart, stomach, liver and some adult tissues), and is expressed predominantly in the ventricular layer of the developing NT and brains of murine embryos.  相似文献   

17.
The various members of the Trk tyrosine kinase family and p75 neurotrophin receptor (p75(NTR)) have been identified as signaling receptors for the structurally related members of the neurotrophins (NT) family. We have previously reported that NT treatment of murine and human brain-metastatic melanoma cells affects their invasive capacities and increases the production of extracellular-matrix degradative enzymes. These cells express aberrant levels of functional p75(NTR) and TrkC, the putative high-affinity receptor for the neurotrophin NT-3. Here we demonstrate that, by using sensitive immune-complex kinase assays in human brain-metastatic (70W) melanoma cells, TrkC receptors associate with a kinase activity exhibiting a dose-dependent susceptibility to inhibition by the purine-analogs 6-thioguanine and 2-aminopurine. The activity of this purine-analog-sensitive kinase (PASK) was induced by NT-3 in a time-dependent fashion, phosphorylating exogenous myelin basic protein (MBP) but not denatured enolase. It is similar to the one reported to relate with p75(NTR) and TrkA receptors and stimulated by the prototypic NT, nerve growth factor. Thus, PASKs may represent unique signaling components common to NT receptors that could engage joint downstream signaling effectors in brain-metastatic melanoma.  相似文献   

18.
19.
Neurotrophin receptor trafficking plays an important role in directing cellular communication in developing as well as mature neurons. However, little is known about the requirements for intracellular localization of the neurotrophin receptors in neurons. To isolate the subcellular membrane compartments containing the Trk neurotrophin receptor, we performed biochemical subcellular fractionation experiments using primary cortical neurons and rat PC12 pheochromocytoma cells. By differential centrifugation and density gradient centrifugation, we have isolated Trk-bearing compartments, suggesting distinct membranous localization of Trk receptors. A number of Trk-interacting proteins, such as GIPC and dynein light chain Tctex-1 were found in these fractions. Additionally, membranes enriched in phosphorylated activated forms of Trk receptors were found upon ligand treatment in primary neurons and PC12 cells. Interestingly, density gradient centrifugation experiments showed that Trk receptors from PC12 cells are present in heavy membrane fractions, while Trk from primary neurons are fractionated in lighter membrane fractions. These results suggest that the intracellular membrane localization of Trk can differ according to cell type. Taken together, these biochemical approaches allowed separation of distinct Trk-bearing membrane pools, which may be involved in different functions of neurotrophin receptor signaling and trafficking.  相似文献   

20.
Neurotensin (NT) promotes the proliferation of human colonic cancer cells by undefined mechanisms. We already demonstrated that, in the human colon adenocarcinoma cell line HT29, the effects of NT were mediated by a complex formed between the NT receptor-1 (NTSR1) and-3 (NTSR3). Here we examined cellular mechanisms that led to NT-induced MAP kinase phosphorylation and growth factors receptors transactivation in colonic cancer cells and proliferation in HT29 cells. With the aim to identify upstream signaling involved in NT-elicited MAP kinase activation, we found that the stimulatory effects of the peptide were totally independent from the activation of the epidermal growth factor receptor (EGFR) both in the HT29 and the HCT116 cells. NT was unable to promote phosphorylation of EGFR and to compete with EGF for its binding to the receptor. Pharmacological approaches allowed us to differentiate EGF and NT signaling in HT29 cells since only NT activation of Erk1/2 was shown to be sensitive to PKC inhibitors and since only NT increased the intracellular level of calcium. We also observed that NT was not able to transactivate Insulin-like growth factor receptor.Our findings indicate that, in the HT29 and HCT116 cell lines, NT stimulates MAP kinase phosphorylation and cell growth by a pathway which does not involve EGF system but rather NT receptors which transduce their own intracellular effectors. These results indicate that depending on the cell line used, blocking EGFR is not the general rule to inhibit NT-induced cancer cell proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号