首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
2.
3.
4.
To identify estrogen-responsive genes in mammary glands, microarray assays were performed. Twenty genes were found to be up-regulated while 16 genes were repressed in the 9h estrogen treated glands. The induction of GAS6, one of the genes up-regulated by estrogen, was confirmed by RNase protection assay. Furthermore, GAS6 was also demonstrated to be induced by estrogen in ER positive breast cancer cells. Analysis of GAS6 promoter revealed that GAS6 promoter was regulated by estrogen. An estrogen response element (ERE) was identified in the GAS6 promoter. Electrophoretic mobility shift assay revealed that ERalpha interacted with the ERE in the GAS6 promoter. Chromatin immunoprecipitation demonstrated that ERalpha was recruited to the GAS6 promoter upon estrogen stimulation. These results suggested that GAS6 is an estrogen target gene in mammary epithelial cells.  相似文献   

5.
Although it is known that glucocorticoids induce differentiation of growth hormone (GH)-producing cells in rodents and birds, the effect of mineralocorticoids on GH mRNA expression and the origin of corticosteroids affecting somatotrope differentiation have not been elucidated. In this study, we therefore carried out experiments to determine the effect of mineralocorticoids on GH mRNA expression in the chicken anterior pituitary gland in vitro and to determine whether corticosteroids are synthesized in the chicken embryonic pituitary gland. In a pituitary culture experiment with E11 embryos, both corticosterone and aldosterone stimulated GH mRNA expression and increased the number of GH cells in both lobes of the pituitary gland in a dose-dependent manner. These effects of the corticosteroids were significantly reversed by pretreatment with mifepristone, a glucocorticoid receptor (GR) antagonist, or spironolactone, a mineralocorticoid receptor (MR) antagonist. Interestingly, an in vitro serum-free culture experiment with an E11 pituitary gland showed that the GH mRNA level spontaneously increased during cultivation for 2 days without any extra stimulation, and this increase in GH mRNA level was completely suppressed by metyrapone, a corticosterone-producing enzyme P450C11 inhibitor. Moreover, progesterone, the corticosterone precursor, also stimulated GH mRNA expression in the cultured chicken pituitary gland, and this effect was blocked by pretreatment with metyrapone. We also detected mRNA expression of enzymes of cytochrome P450 cholesterol side chain cleavage (P450scc) and 3β-hydroxysteroid dehydrogenase1 (3β-HSD1) in the developmental chicken pituitary gland from E14 and E18, respectively. These results suggest that mineralocorticoids as well as glucocorticoids can stimulate GH mRNA expression and that corticosteroids generated in the embryonic pituitary gland by intrinsic steroidogenic enzymes stimulate somatotrope differentiation.  相似文献   

6.
7.
Tissue-specific regulation of rat estrogen receptor mRNAs   总被引:9,自引:0,他引:9  
The estrogen receptor (ER) is present in a wide variety of mammalian tissues and is required for physiological estrogen responses, including estrogen-induced tissue-specific changes in gene expression. We studied the estrogen regulation of the mRNAs encoding the ER in rat uterus, liver, and pituitary. Ovariectomized (21-28 day post surgery) female CD-1 rats were injected daily with 17 beta-estradiol (E2, 10 micrograms/100 g BW) for 0, 1, or 4 h, 1, 3, or 7 days and compared with intact controls. Steady-state levels of ER mRNA were quantified using a human ER cDNA probe. Only one hybridizing species of approximately 6.2 kilobase (kb) was detected in uterine and liver RNA, similar to that observed in MCF7 human breast cancer cells. However, the ER mRNA regulation by E2 differed in direction depending on the tissue examined. In uterus, ER mRNA increased 3- to 6-fold after ovariectomy, and returned to intact levels within 24 h of E2 replacement. In contrast, liver ER mRNA declined 1.5- to 3-fold after ovariectomy and returned to intact levels after 1-3 days of E2. In pituitary tissue two hybridizing forms of ER mRNA were observed, with one species migrating at 6.2 kb, equivalent to the form in other tissues, and a second smaller species at approximately 5.5 kb. The lower molecular weight species varied somewhat in abundance from animal to animal, averaging about 20% of the intensity of the 6.2 kb band. The ER mRNA forms were regulated positively with E2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
9.
Effects of clomiphene citrate (clomiphene) on the pituitary gland of chronically estrogenized ovariectomized rats were investigated. Estradiol-17 beta (E2) pellet implanted subcutaneously in castrated rats for 7 days caused significant increases in pituitary weight and serum prolactin (PRL) level but suppressed serum luteinizing hormone (LH) level. In the estrogenized rats about 40% of estrogen receptor (ER) found in whole pituitary cells (65 +/- 7 fmol/10 mg tissue) was observed in the nucleus, while 60% of ER was present in the cytosol fraction. A single injection of 5 micrograms E2 translocated cytosol ER immediately to nuclear compartment; amounts of ER found in cytosol and nuclear fractions were 16 +/- 1 and 37 +/- 4 fmol/10 mg tissue, respectively, at 1 h. However, the distribution of ER returned to the pre-injection level within 4 h. In the non-estrogenized castrated rats, the nuclear retention of ER was significantly longer than that in the estrogenized rats. A single administration of 200 micrograms clomiphene in the estrogenized rats, on the other hand, increased nuclear ER gradually. Nuclear ER reached the peak level at 4 h (62 +/- 5 fmol/10 mg tissue) and the level remained almost unchanged for 24 h. Cytosol ER decreased and reached a nadir at 4 h (4.3 +/- 0.3 fmol), and the replenishment of cytosol ER could not be detected for 24 h. Similar patterns of cytosol and nuclear ER following the clomiphene injection were also found in the castrated rats. The clomiphene administration in the estrogenized rats resulted in a significant reduction of the pituitary weight 48 h after the administration. The present results seem to show the antiestrogenic action of clomiphene in the pituitary gland.  相似文献   

10.
11.
12.
An assay that involved generating [3H] dihydrotestosterone from [1 alpha,2 alpha-3H] testosterone by a microsomal preparation was developed to measure 5 alpha-reductase (5 alpha R) activity in brain and pituitary tissues of female rats. A major part of the activity was located within the microsomes and was linear, with protein concentrations ranging from 0.01 to 0.23 mg. The apparent Michaelis-Menten constants for pituitary and hypothalamic-preoptic areas were 2.37 and 2.69 microM respectively. Using this assay, we studied changes in 5 alpha R activity in brains and pituitaries of female rats ovariectomized 3 days prior to treatment and treated with either vehicle (oil) or estradiol benzoate (E2B, 10 micrograms/100 g of body weight). Groups of 5-17 animals were killed at 0, 12, 24, 48 and 72 h after treatment. In the pituitary gland, 5 alpha R activity 48 and 72 h after treatment was twice the value obtained at time 0 (p less than 0.05). A single injection of E2B maintained the 5 alpha R at pretreatment levels (p less than 0.05). The 5 alpha R values for intact females were significantly less than the values obtained from pituitaries of animals treated with estrogen (p less than 0.05). This probably indicates that the ovaries control 5 alpha R through mechanisms other than E2 secretion. In the preoptic area and the hypothalamus, ovariectomy did not produce marked elevations in 5 alpha R activity (p greater than 0.05). Thus, the responsiveness of the brain to estrogen treatment differed from the responsiveness of the pituitary. These results confirm the work of others on the effects of ovariectomy and estrogen treatment on 5 alpha R activity in the brain and pituitary. In addition, the data establish a time course for estrogen action that can be correlated with data on estrogen in the circulation. New data are also provided for understanding short-term effects of estrogen on the brain, effects that may be applicable to the control of gonadotropin secretion in rats.  相似文献   

13.
Glandular kallikrein has recently been identified as an estrogen-induced protein of the rat anterior pituitary. This study examined the dynamics of the estrogen induction of anterior pituitary glandular kallikrein in the ovariectomized rat. The estrogen induction of uterine dry weight was also examined for purposed of comparison. 17β-Estradiol (0.1–100 μg/day) produced dose-dependent increases in anterior pituitary glandular kallikrein, with the highest dose producing a 60-fold increase. Time-course studies demonstrated that a lag phase of 2–3 days was required before these estrogen effects on glandular kallikrein became evident, and levels were still rising between 7 and 10 days of treatment. The dynamics of the estrogen induction of glandular kallikrein resembled the estrogen induction of uterine dry weight with regard to estrogen sensitivity and the presence of a lag phase before estrogen-induced increases. However, uterine dry weight responde more rapidly to estrogen than did anterior pituitary glandular kallikrein, and reached a plateau after 5 days of estrogen treatment.  相似文献   

14.
15.
Estradiol (E(2)) drives growth hormone (GH) secretion via estrogen receptors (ER) located in the hypothalamus and pituitary gland. ERalpha is expressed in GH releasing hormone (GHRH) neurons and GH-secreting cells (somatotropes). Moreover, estrogen regulates receptors for somatostatin, GHR peptide (GHRP, ghrelin), and GH itself, while potentiating signaling by IGF-I. Given this complex network, one cannot a priori predict the selective roles of hypothalamic compared with pituitary ER pathways. To make such a distinction, we introduce an investigative model comprising 1) specific ERalpha blockade with a pure antiestrogen, fulvestrant, that does not penetrate the blood-brain barrier; 2) graded transdermal E(2) administration, which doubles GH concentrations in postmenopausal women; 3) stimulation of fasting GH secretion by pairs of GHRH, GHRP-2 (a ghrelin analog), and l-arginine (to putatively limit somatostatin outflow); and 4) implementation of a flexible waveform deconvolution model to estimate the shape of secretory bursts independently of their size. The combined strategy unveiled that 1) E(2) prolongs GH secretory bursts via fulvestrant-antagonizable mechanisms; 2) fulvestrant extends GHRH/GHRP-2-stimulated secretory bursts; 3) l-arginine/GHRP-2 stimulation lengthens GH secretory bursts whether or not E(2) is present; 4) E(2) limits the capability of l-arginine/GHRP-2 to expand GH secretory bursts, and fulvestrant does not inhibit this effect; and 5) E(2) and/or fulvestrant do not alter the time evolution of l-arginine/GHRH-induced GH secretory bursts. The collective data indicate that peripheral ERalpha-dependent mechanisms determine the shape (waveform) of in vivo GH secretory bursts and that such mechanisms operate with secretagogue selectivity.  相似文献   

16.
Glandular kallikrein has recently been identified as an estrogen-induced protein of the rat anterior pituitary. This study examined the dynamics of the estrogen induction of anterior pituitary glandular kallikrein in the ovariectomized rat. The estrogen induction of uterine dry weight was also examined for purposes of comparison. 17 beta-Estradiol (0.1-100 micrograms/day) produced dose-dependent increases in anterior pituitary glandular kallikrein, with the highest dose producing a 60-fold increase. Time-course studies demonstrated that a lag phase of 2-3 days was required before these estrogen effects on glandular kallikrein became evident, and levels were still rising between 7 and 10 days of treatment. The dynamics of the estrogen induction of glandular kallikrein resembled the estrogen induction of uterine dry weight with regard to estrogen sensitivity and the presence of a lag phase before estrogen-induced increases. However, uterine dry weight responded more rapidly to estrogen than did anterior pituitary glandular kallikrein, and reached a plateau after 5 days of estrogen treatment.  相似文献   

17.
Progesterone has been shown to decrease occupied pituitary and uterine nuclear estradiol receptor (E2R) binding in mature and immature estrogen-primed rats. Progesterone has also been shown to stimulate pituitary but not uterine 17 beta-hydroxysteroid dehydrogenase (17 beta-HSD) in the rat. The conversion of estradiol to its less active metabolite estrone by 17 beta-HSD and activation of phosphatase are among mechanisms considered to be involved in the reduction of E2R. To determine if 17 beta-HSD stimulation was a mechanism by which progesterone induced nuclear E2R decrease, the synthetic estrogen ethinylestradiol, which is not oxidized by 17 beta-HSD, was used instead of estradiol to prime adult ovariectomized rats. When ethinylestradiol-primed rats received 0.8, 2.0 or 4.0 mg/kg body wt of progesterone 2 h before sacrifice, the total and occupied nuclear E2R accumulation in the anterior pituitary by a subsequent ethinylestradiol injection 1 h later did not show any decrease. This response was different from that observed previously in estradiol-primed animals in which progesterone showed a multiphasic decrease of occupied form of nuclear E2R. However, in the uterus of ethinylestradiol-primed rats, a partial decrease of total and occupied nuclear E2R accumulation was observed in the presence of the three doses of progesterone used. The decrease of uterine nuclear E2R with the three progesterone doses was different from the dose-dependent effect of progesterone observed in the uterus of estradiol-primed rats. Affinity constants of the interaction between [3H]estradiol and the nuclear E2R were similar among groups treated with ethinylestradiol, estradiol and progesterone. These results demonstrate the involvement of 17 beta-HSD in the reduction of anterior pituitary gland E2R by progesterone in the estradiol-treated animals. Furthermore, the mechanism of decrease of E2R by progesterone in the uterus appears to be different from the pituitary gland.  相似文献   

18.
The molecular forms of estrogen receptor (ER) in estrogen-responsive mouse Leydig cell line (B-1) have been examined in relation to their biological activity. ER was predominantly recovered in the nuclear fraction upon homogenization even after cells were precultured in the absence of E2 and Phenol Red. This unoccupied nuclear ER (ERn) whose hormone binding ability was extremely thermostable could be extracted with 0.4 M KCl. This stability enabled us to determine hydrodynamic parameters in the ligand-free condition. The Stokes radius and sedimentation constant of this ERn in high salt condition were 5.5 nm and 6.0S, respectively, resulting in its molecular weight of 140,000. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of ER labeled with [3H]tamoxifen aziridine gave a single band of 65,000 Da, indicating that this ERn had a oligomer structure similar to that of transformed nuclear ER complexed with estrogen in the putative target cells. Therefore, we further examined the possibility that this ERn in B-1 cells can activate estrogen-responsive genes without any aid from estrogen. Estrogen responsive element-thymidine kinase promoter-chloramphenicol acetyltransferase fusion gene (ERE-tk-CAT) was transfected into B-1 cells. CAT activity was enhanced only in cells stimulated with estrogen. It may be concluded from these results that transformed ERn can be formed in the absence of estrogen but that binding to estrogen may be required in order to exert its biological activity.  相似文献   

19.
In this report the occurrence of mammosomatotroph (MS) cells was correlated with changes in the somatotroph population of adult rat pituitary gland submitted to various experimental conditions (ovariectomized, orchidectomized and intact males, and after treatment with oestradiol benzoate). Cell and volume density of somatotrophs were assessed in sections stained with the immunogold-silver enhancement technique. Mammosomatotrophs were identified by double immunogold labelling at the electron microscopic level. Colocalization of prolactin (PRL) and growth hormone (GH) in the same cell was rarely observed. Only a few MS cells (0.1–0.2% of all parenchymal cells) were found in some experimental models. Oestrogen treatment decreased both cell and volume density of somatotrophs in ovariectomized rats. In this model, serum GH increased significantly but no changes in the pituitary content of the hormone were observed. Our results demonstrate that MS cells are an uncommon cell type in the pituitary of adult ovariectomized, orchidectomized and intact male rats. The oestrogen treatment, which is well known to induce proliferation of lactotrophs, has no effects on the MS population. Data presented in this report do not support the suggested role for mammosomatotrophs as transitional cells in the presumptive interconversion of PRL and GH producing cells.  相似文献   

20.
Humanin (HN) is a 24-amino acid peptide with cytoprotective action in several cell types such as neurons and testicular germ cells. Rattin (HNr), a homologous peptide of HN expressed in several adult rat tissues, also has antiapoptotic action. In the present work, we demonstrated by immunocytochemical analysis and flow cytometry the expression of HNr in the anterior pituitary of female and male adult rats as well as in pituitary tumor GH3 cells. HNr was localized in lactotropes and somatotropes. The expression of HNr was lower in females than in males, and was inhibited by estrogens in pituitary cells from both ovariectomized female and orquidectomized male rats. However, the expression of HNr in pituitary tumor cells was not regulated by estrogens. We also evaluated HN action on the proapoptotic effect of TNF-α in anterior pituitary cells assessed by the TUNEL method. HN (5 µM) per se did not modify basal apoptosis of anterior pituitary cells but completely blocked the proapoptotic effect of TNF-α in total anterior pituitary cells, lactotropes and somatotropes from both female and male rats. Also, HN inhibited the apoptotic effect of TNF-α on pituitary tumor cells. In summary, our results demonstrate that HNr is present in the anterior pituitary gland, its expression showing sexual dimorphism, which suggests that gonadal steroids may be involved in the regulation of HNr expression in this gland. Antiapoptotic action of HN in anterior pituitary cells suggests that this peptide could be involved in the homeostasis of this gland. HNr is present and functional in GH3 cells, but it lacks regulation by estrogens, suggesting that HN could participate in the pathogenesis of pituitary tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号