首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of methylation on rat growth hormone (rGH) promoter activity was determined in GH3 cells by measuring rGH-Neo and rGH-CAT fusion gene expression with or without prior in vitro treatment with the site-specific DNA methyltransferases, M-BsuE and M-HhaI. To assay for rGH-promoter-specific effects of DNA methylation, RSV-Neo and RSV-CAT activities with or without M-BsuE, M-HhaI and M-HpaII treatment were measured in parallel cultures of GH3 cells. GH1-Neo and RSV-Neo fusion gene expression was inhibited by in vitro methylation from 44 to 83% as measured by the number of Geneticin-resistant GH3 cell colonies. Methylation of the GH1 promoter by M-BsuE exhibited some selective inhibition of Neo expression as determined by colony numbers, although extensive methylation of non-promoter DNA in GH1-Neo and RSV-Neo by M-HhaI and M-HpaII also inhibited Neo expression. Southern blot analysis of genomic DNA isolated from the Geneticin-resistant GH3 cells indicated that Geneticin-resistance was accompanied by demethylation of the BsuE (ThaI) sites in stably incorporated GH1-Neo DNA but not RSV-Neo DNA. Transient expression of the CAT gene in GH3 cells was selectively inhibited by 60% upon methylation of two BsuE (ThaI) sites in the GH1 promoter of GH1-CAT by M-BsuE. The data demonstrate, for the first time, to our knowledge, a direct effect of DNA methylation on the activity of the rat growth hormone promoter.  相似文献   

2.
3.
H E Carlson 《Life sciences》1984,35(17):1747-1754
Nickel (Ni++) is a potent inhibitor of prolactin (PRL) secretion from isolated rat pituitary quarters in vitro, suppressing both basal PRL release and the stimulation of PRL secretion due to theophylline and dibutyryl cyclic AMP. Stimulation of growth hormone (GH) secretion by synthetic GHRH is also blunted by Ni++, although basal GH release and stimulated GH release due to theophylline or dibutyryl cyclic AMP are not suppressed. Ni++ antagonizes the stimulation of both PRL and GH secretion by barium (Ba++) ion, suggesting that the inhibitory effects of Ni++ on hormone release are due to an antagonism of calcium uptake or redistribution.  相似文献   

4.
Activin-A, a homodimeric protein composed of two inhibin beta A-subunits, was first isolated from gonadal fluids based upon its ability to stimulate FSH secretion and biosynthesis, but was also observed to suppress GH secretion. The present report describes the effects of activin on the biosynthesis of GH and the proliferation of pituitary somatotrophs. In pituitary cells cultured in the presence of 0.7 nM activin for 3 days, GH secretion was decreased by 50% compared to the control value. Inhibition of GH biosynthesis, measured by quantitative immunoprecipitation of [35S]methionine-labeled cells, could be observed after 24 h of activin treatment, and maximal (70%) inhibition of GH biosynthesis was observed after 3 days. Activin inhibited basal as well as GH-releasing factor (GRF)-, glucocorticoid-, and thyroid hormone-stimulated GH biosynthesis. Inhibin, which is known to reverse the effect of activin on FSH secretion, did not reverse the effect of activin on GH biosynthesis. Treatment of somatotrophs with activin for 3 days completely inhibited the growth-promoting effect of GRF on somatotrophs. However, no effect of activin on GRF-stimulated expression of the c-fos protooncogene was observed. These data demonstrate that activin, in addition to its stimulatory effect on FSH secretion, is able to inhibit both expression of GH and growth of somatotropic cells.  相似文献   

5.
A polypeptide isolated from porcine hypothalami was found to inhibit the release of growth hormone (GH) from isolated rat pituitaries. This polypeptide was identified chemically and biologically as α-MSH. Pure natural α-MSH isolated from beef posterior pituitary extracts and synthetic α-MSH also inhibit the release of GH in vitro. In addition, other substances not yet identified, present in porcine hypothalamic extracts, also share this property.  相似文献   

6.
7.
Proliferin-related protein (PRP) is a potent placental antiangiogenic hormone. To test the antiangiogenic potential of PRP to block tumor growth, we engineered tumor cells to express this hormone. Both SV40-transformed BALB/c mouse 3T3 fibroblasts and rat C6 glioma cells have markedly reduced growth rates as tumors in mice if they express high levels of PRP. In both models, the small tumors that form are largely avascular, whereas control tumors are rich in blood vessels, consistent with PRP limiting tumor growth by preventing neovascularization of the tumors. The antiangiogenic effects of PRP are also detected on human endothelial cells, suggesting that the receptor and signaling pathway of this mouse hormone are conserved between mouse and human and may represent useful targets for the development of antiangiogenic therapeutics. That signaling pathway appears to involve an inhibition of arachidonic acid release, based on the ability of arachidonic acid to overcome the antiangiogenic effects of PRP.  相似文献   

8.
The action of the tripeptide aldehyde t-butyloxycarbonyl-DPhe-Pro-Arg-H (boc-fPR-H), belonging to a family of serine proteinase inhibitors, on the release of immunoreactive prolactin (iPRL) and growth hormone (iGH) has been studied. In rat anterior pituitary cell cultures and pituitary quarters 1 mM boc-fPR-H inhibited basal iPRL and iGH release. Thyroliberin-induced iPRL release by cultured cells was also markedly inhibited with a concomitant accumulation of intra-cellular iPRL. During the short- and long-term exposure of cells to boc-fPR-H there no changes in total cell protein contents and in activities of some lysosomal marker enzymes. A wide scale of unchanged parameters characteristic for cellular metabolism indicated that the tripeptide aldehyde has no cytotoxic effect. The marked inhibition of basal as well as stimulated hormone release in the presence of the enzyme inhibitor might suggest that at least a portion of the hormones is released via a proteolytic enzyme-dependent process.  相似文献   

9.
Our aim has been to characterize the molecular mechanisms regulating the expression of the channel-forming tight-junctional protein claudin-2 in response to the pro-inflammatory cytokine tumor necrosis factor-α (TNFα), which is elevated, for example, in active Crohn’s disease. TNFα caused an 89% decrease of the paracellular resistance in colonic HT-29/B6 cells, whereas transcellular resistance was unaltered. The claudin-2 protein level was increased by TNFα without changes in subcellular tight-junctional protein localization as revealed by confocal laser scanning microscopy. Enhanced gene expression was identified as the source of this increase, since claudin-2-specific mRNA and promoter activity was elevated, whereas mRNA stability remained unaltered. Specific inhibitors and phospho-specific antibodies revealed that the increased gene expression of claudin-2 after TNFα treatment was mediated by the phosphatidylinositol-3-kinase pathway. Thus, the up-regulation of claudin-2 by TNFα is attributable to the regulation of the expression of the gene, as a result of which epithelial barrier function is disturbed, for example, during chronic intestinal inflammation. J. Mankertz and M. Amasheh contributed equally to this work. This work was supported by the Deutsche Forschungsgemeinschaft and the Sonnenfeld-Stiftung Berlin.  相似文献   

10.
11.
12.
Garlic extract (1 mg dry weight/ml) produced an inhibition of the coagulase reaction and increased the time of coagulation by a factor of 1.5, whereas 4 mg dry weight/ml increased the coagulation time factor by 2.75. At this latter concentration of garlic, coagulation was only partially complete at 4 h. Garlic extract (1.4 mg dry weight/ml) reduced growth in nutrient broth whereas 5.6 mg dry weight/ml was completely inhibitory. These effects were not observed until 8 h after exposure of the organisms to the garlic extracts. There were 5.9% more survivors among garlic treated mice compared to non-treated animals, but this difference is not significant.  相似文献   

13.
The present report demonstrates that the naturally occurring biologic substance, platelet-derived growth factor (PDGF), substantially inhibits human natural killer (NK) cell activity. More precisely, pretreatment of peripheral blood mononuclear cells for 2 h with nanogram amounts of either partially purified PDGF or highly purified PDGF significantly inhibited peripheral blood NK cell activity (cytotoxicity) in a dose-dependent manner as measured against the NK-sensitive target, K-562. Furthermore, pretreatment of purified NK cells for 2 h with nanogram amounts of purified PDGF also resulted in a significant, dose-dependent inhibition of human NK cell activity (cytotoxicity), as mediated by positively selected, B73.1+ human NK cells sorted on a fluorescence-activated cell sorter. In addition to the inhibition of NK-mediated cytotoxicity, nanogram amounts of purified PDGF also significantly inhibited the single-cell binding of B73.1+ human NK cells to the NK-sensitive target K-562, as determined by routine single-cell-binding assays (i.e. conjugate formation). The implications of these findings are discussed.  相似文献   

14.
15.
When isolated diaphragms of hypophysectomized rats were incubated with bovine growth hormone in the presence of the cyclic nucleotide inhibitors theophylline, quinine and papaverine, the stimulatory effects of the hormone on leucine incorporation into protein, α-aminoisobutyric acid and 3-O-methylglucose transport were suppressed or abolished entirely. The degree of suppression of the hormone effects appeared to correlate with the extent of glycogenolysis caused by the drugs. Thoephylline also rapidly reversed the stimulation of protein synthesis and amino acid and sugar transport produced by growth hormone. When protein synthesis and transport were stimulated by preincubation of the diaphragm with growth hormone, the subsequent addition of theophylline to the medium inhibited the hormonal effects on protein synthesis and sugar transport within 15 min and the effect on amino acid transport within 60 min. These results may mean that the rapid in vitro effects of growth hormone on protein synthesis and membrane transport in rat diaphragm muscle are mediated by a reduction in the cellular level of cyclic AMP or some other nucleotide.Attempts to block the action of growth hormone on 3-O-methylglucose transport by preincubation of the diaphragm with high concentrations (10 mM) of cyclic GMP, cyclic UMP, cyclic TMP and cyclic CMP were unsuccessful. Also an effort was made to mimic the action of growth hormone on sugar transport by incubating the diaphragm with high concentrations of imidazole and histamine, agents known to activate cyclic nucleotide phosphodiesterase. Slight stimulatory effects were obtained, but they could not be correlated with any certainty to the actions of imidazole and histamine on phosphodiesterase.Like growth hormone, insulin also stimulates protein synthesis and amino acid and sugar transport in the isolated rat diaphragm. However, the actions of insulin on these processes were not abolished by theophylline, suggesting some basic difference in the mode of action of these two hormones on protein synthesis and membrane transport in muscle.  相似文献   

16.
The N-terminal part sequences of pituitary growth hormone, N-acetyl-hGH 7–13 and hGH 6–13, promoted conversion of glycogen synthase b to glycogen synthase a in skeletal muscle and adipose tissue when injected intravenously. The peptides also caused conversion of phosphorylase a to phosphorylase b in liver and adipose tissue, but not in muscle, where the peptides antagonised activation of phosphorylase. Synthase phosphatase activity in muscle and phosphorylase phosphatase activity in liver increased after injection of peptide, with time courses of change similar to those seen for muscle synthase and liver phosphorylase activities. Injection of peptide also decreased both the cyclic AMP dependent and independent synthase kinase activities in muscle. These results show that the insulin-like activities of these peptides on glycogen synthase and phosphorylase involve both increases in protein phosphatase activities and inhibition of protein kinase activities. These results are discussed in relation to the insulin-like activities of growth hormone.  相似文献   

17.
The gene PRG2, encoding the proform of eosinophil major basic protein (proMBP), is one of the most highly expressed genes during human pregnancy, and low proMBP levels predict Down syndrome and poor pregnancy outcome. Reminiscent of a magnet, the primary structure of proMBP is extremely charge polarized, consisting of an N-terminal acidic propiece followed by a highly basic MBP domain in the C-terminal. Many tissues synthesize and secrete full-length proMBP, but only distinct cell types of the immune system process and store mature MBP in intracellular granules. MBP is released upon degranulation of eosinophil leukocytes and is toxic to bacteria, parasites, and mammalian cells. In contrast, proMBP is apparently nontoxic and functions in the inhibition of proteolysis and prohormone conversion. Recent research has revealed the complexity of proMBP biology and shed light on the process of MBP generation. ProMBP specifically forms disulfide-mediated, covalent complexes with the metzincin metalloproteinase pregnancy-associated plasma protein A (PAPPA) and the prohormone angiotensinogen (AGT). In both processes, PAPPA and AGT have reduced biological activity in the resulting complexes. In addition, proMBP is a component of high-molecular-weight AGT and, therefore, is potentially involved in the development of preeclampsia and in pregnancy-induced hypertension.  相似文献   

18.
19.
Thialysine (S-2-aminoethyl cysteine) is an analog of lysine and has been reported to inhibit the lysyl-tRNA synthetase activity of Escherichia coli. This analog inhibits the growth of Salmonella typhimurium when added to glucose minimal medium at concentrations of 1.25 mM or greater. The addition of lysine with thialysine restores the normal growth rate, whereas, methionine, valine, or leucine each enhances the growth inhibition casued by thialysine. Enzyme assays demonstrate that thialysine inhibits not only the lysyl-tRNA synthetase from S. typhimurium, but also the aspartokinase activity. Lysine and thialysine appear to inhibit the same 40% of the total aspartokinase because simultaneous addition of the two compounds to the reaction mixture does not increase the inhibition caused by either alone. Furthermore, the slow growth of cells in the presence of 2.5 mM thialysine decreases the level of aspartokinase activity, suggesting that thialysine causes repression of enzyme synthesis as well as inhibition of activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号