首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.

Background

Acute lower respiratory infections (ALRI) are a leading cause of death among African children under five. A significant proportion of these are attributable to household air pollution from solid fuel use.

Methods

We assessed the relationship between cooking practices and ALRI in pooled datasets of Demographic and Health Surveys conducted between 2000 and 2011 in countries of sub-Saharan Africa. The impacts of main cooking fuel, cooking location and stove ventilation were examined in 18 (n = 56,437), 9 (n = 23,139) and 6 countries (n = 14,561) respectively. We used a causal diagram and multivariable logistic mixed models to assess the influence of covariates at individual, regional and national levels.

Results

Main cooking fuel had a statistically significant impact on ALRI risk (p<0.0001), with season acting as an effect modifier (p = 0.034). During the rainy season, relative to clean fuels, the odds of suffering from ALRI were raised for kerosene (OR 1.64; CI: 0.99, 2.71), coal and charcoal (OR 1.54; CI: 1.21, 1.97), wood (OR 1.20; CI: 0.95, 1.51) and lower-grade biomass fuels (OR 1.49; CI: 0.93, 2.35). In contrast, during the dry season the corresponding odds were reduced for kerosene (OR 1.23; CI: 0.77, 1.95), coal and charcoal (OR 1.35; CI: 1.06, 1.72) and lower-grade biomass fuels (OR 1.07; CI: 0.69, 1.66) but increased for wood (OR 1.32; CI: 1.04, 1.66). Cooking location also emerged as a season-dependent statistically significant (p = 0.0070) determinant of ALRI, in particular cooking indoors without a separate kitchen during the rainy season (OR 1.80; CI: 1.30, 2.50). Due to infrequent use in Africa we could, however, not demonstrate an effect of stove ventilation.

Conclusions

We found differential and season-dependent risks for different types of solid fuels and kerosene as well as cooking location on child ALRI. Future household air pollution studies should consider potential effect modification of cooking fuel by season.  相似文献   

2.

Purpose

Cooking energy is an essential requirement of any human dwelling. With the recent upsurge in petroleum prices coupled with intrinsic volatility of international oil markets, it is fast turning into a politico-socio-economic dilemma for countries like India to sustain future subsidies on liquefied petroleum gas (LPG) and kerosene. The aim of this paper is to evaluate and compare the environmental performance of various cooking fuel options, namely LPG (NG), LPG (CO), kerosene, coal, electricity, firewood, crop residue, dung cake, charcoal, and biogas, in the Indian context. The purpose of this study is to find environmentally suitable alternatives to LPG and kerosene for rural and urban areas of the country.

Methods

The study assessed the cooking fuel performance on 13 ReCiPe environmental impact categories using the life cycle assessment methodology. The study modeled the system boundary for each fuel based on the Indian scenario and prepared a detailed life cycle inventory for each cooking fuel taking 1 GJ of heat energy transferred to cooking pot as the functional unit.

Results and discussion

The cooking fuels with the lowest life cycle environmental impacts are biogas followed by LPG, kerosene, and charcoal. The environmental impacts of using LPG are about 15 to 18 % lower than kerosene for most environmental impact categories. LPG derived from natural gas has about 20 to 30 % lower environmental impact than LPG derived from crude oil. Coal and dung cake have the highest environmental impacts because of significant contributions to climate change and particulate formation, respectively. Charcoal produced from renewable wood supply performs better than kerosene on most impact categories except photochemical oxidation, where its contribution is 19 times higher than kerosene.

Conclusions

Biogas and charcoal can be viewed as potentially sustainable cooking fuel options in the Indian context because of their environmental benefits and other associated co-benefits such as land farming, local employment opportunities, and skill development. The study concluded that kerosene, biogas, and charcoal for rural areas and LPG, kerosene, and biogas for urban areas have the lower environmental footprint among the chosen household cooking fuels in the study.  相似文献   

3.
A four-year longitudinal study of the prevalence of respiratory symptoms and disease in schoolchildren and related environmental and socio-economic factors is in progress. We report results for the first year of this study (1973). A total of 5758 children aged 6 to 11 years from 28 randomly selected areas of England and Scotland were examined. In an analysis of the effects on health of possible indoor pollutants, boys and girls from homes in which gas was used for cooking were found to have more cough, "colds going to the chest", and bronchitis than children from homes where electricity was used. The girls also had more wheeze if their families used gas for cooking. This "cooking effect" appeared to be independent of the effects of age, social class, latitude, population density, family size, overcrowding, outdoor levels of smoke and sulphur dioxide and types of fuel used for heating. It was concluded that elevated levels of oxides of nitrogen arising from the combustion of gas might be the cause of the increased respiratory illness.  相似文献   

4.
BackgroundOver 3.5 billion individuals worldwide are exposed to household air pollution from solid fuel use. There is limited evidence from cohort studies on associations of solid fuel use with risks of major eye diseases, which cause substantial disease and economic burden globally.Methods and findingsThe China Kadoorie Biobank recruited 512,715 adults aged 30 to 79 years from 10 areas across China during 2004 to 2008. Cooking frequency and primary fuel types in the 3 most recent residences were assessed by a questionnaire. During median (IQR) 10.1 (9.2 to 11.1) years of follow-up, electronic linkages to national health insurance databases identified 4,877 incident conjunctiva disorders, 13,408 cataracts, 1,583 disorders of sclera, cornea, iris, and ciliary body (DSCIC), and 1,534 cases of glaucoma. Logistic regression yielded odds ratios (ORs) for each disease associated with long-term use of solid fuels (i.e., coal or wood) compared to clean fuels (i.e., gas or electricity) for cooking, with adjustment for age at baseline, birth cohort, sex, study area, education, occupation, alcohol intake, smoking, environmental tobacco smoke, cookstove ventilation, heating fuel exposure, body mass index, prevalent diabetes, self-reported general health, and length of recall period.After excluding participants with missing or unreliable exposure data, 486,532 participants (mean baseline age 52.0 [SD 10.7] years; 59.1% women) were analysed. Overall, 71% of participants cooked regularly throughout the recall period, of whom 48% used solid fuels consistently. Compared with clean fuel users, solid fuel users had adjusted ORs of 1.32 (1.07 to 1.37, p < 0.001) for conjunctiva disorders, 1.17 (1.08 to 1.26, p < 0.001) for cataracts, 1.35 (1.10 to 1.66, p = 0.0046) for DSCIC, and 0.95 (0.76 to 1.18, p = 0.62) for glaucoma. Switching from solid to clean fuels was associated with smaller elevated risks (over long-term clean fuel users) than nonswitching, with adjusted ORs of 1.21 (1.07 to 1.37, p < 0.001), 1.05 (0.98 to 1.12, p = 0.17), and 1.21 (0.97 to 1.50, p = 0.088) for conjunctiva disorders, cataracts, and DSCIC, respectively. The adjusted ORs for the eye diseases were broadly similar in solid fuel users regardless of ventilation status. The main limitations of this study include the lack of baseline eye disease assessment, the use of self-reported cooking frequency and fuel types for exposure assessment, the risk of bias from delayed diagnosis (particularly for cataracts), and potential residual confounding from unmeasured factors (e.g., sunlight exposure).ConclusionsAmong Chinese adults, long-term solid fuel use for cooking was associated with higher risks of not only conjunctiva disorders but also cataracts and other more severe eye diseases. Switching to clean fuels appeared to mitigate the risks, underscoring the global health importance of promoting universal access to clean fuels.

Ka Hung Chan and co-workers study associations between use of solid fuel for cooking and eye disorders in China.  相似文献   

5.
Current attention to improved cook stoves (ICS) focuses on the "triple benefits" they provide, in improved health and time savings for households, in preservation of forests and associated ecosystem services, and in reducing emissions that contribute to global climate change. Despite the purported economic benefits of such technologies, however, progress in achieving large-scale adoption and use has been remarkably slow. This paper uses Monte Carlo simulation analysis to evaluate the claim that households will always reap positive and large benefits from the use of such technologies. Our analysis allows for better understanding of the variability in economic costs and benefits of ICS use in developing countries, which depend on unknown combinations of numerous uncertain parameters. The model results suggest that the private net benefits of ICS will sometimes be negative, and in many instances highly so. Moreover, carbon financing and social subsidies may help enhance incentives to adopt, but will not always be appropriate. The costs and benefits of these technologies are most affected by their relative fuel costs, time and fuel use efficiencies, the incidence and cost-of-illness of acute respiratory illness, and the cost of household cooking time. Combining these results with the fact that households often find these technologies to be inconvenient or culturally inappropriate leads us to understand why uptake has been disappointing. Given the current attention to the scale up of ICS, this analysis is timely and important for highlighting some of the challenges for global efforts to promote ICS.  相似文献   

6.
This study integrates analysis of wood charcoal assemblages with climate proxies, palaeoenvironmental and archaeological data sets in hyper-arid Wadi Sana, Yemen, to address the availability and use of wood fuels by South Arabian hunter-herder groups from the Early Holocene (8000–7700 cal. b.p.) to Middle Holocene (6900–4800 cal. b.p.) periods. The Early Holocene environment, regulated by a stronger Southwest Asian monsoon, was moister than the present, providing a marshy winter grazing area for cattle herders, whose construction of hearths and food preparation strategies changed over time. This study provides an insight into long term stability of land cover and use as well as the dynamics of human contributions to landscape change. We suggest that complex environmental and cultural processes affect species availability, fuel choice and land use management. Despite environmental and economic changes in Wadi Sana, our dataset does not show changes in fuel choice from the Early to Middle Holocene.  相似文献   

7.
Standard life cycle assessment (LCA) methodology has been used to determine and compare the environmental impacts of three different cooking fuels used in Ghana, namely, charcoal, biogas, and liquefied petroleum gas (LPG). A national policy on the use of cooking fuels would have to look at the environmental, social, and cost implications associated with the fuel types. This study looked at the environmental aspect of using these fuels. The results showed that global warming and human toxicity were the most significant overall environmental impacts associated with them, and charcoal and LPG, respectively, made the largest contribution to these impact categories. LPG, however, gave relatively higher impacts in three other categories of lesser significance—that is, eutrophication, freshwater aquatic ecotoxicity, and terrestrial ecotoxicity potentials. Direct comparison of the results showed that biogas had the lowest impact in five out of the seven categories investigated. Charcoal and LPG had only one lowest score each. From the global warming point of view, however, LPG had a slight overall advantage over the others, and it was also the most favorable at the cooking stage, in terms of its effect on humans.  相似文献   

8.
《Free radical research》2013,47(10):829-835
Abstract

More than half the world's population still rely on burning biomass fuels to heat and light their homes and cook food. Household air pollution, a common component of which is inhalable particulate matter (PM), emitted from biomass burning is associated with increased vulnerability to respiratory infection and an enhanced risk of developing chronic obstructive pulmonary disease. In the light of an emerging hypothesis linking chronic PM exposure during childhood and increased vulnerability to respiratory diseases in adulthood, in a chain of events involving oxidative stress, reduced immunity and subsequent infection, the aim of this study was to characterise the oxidative potential (OP) of PM collected during the burning of wood and mixed biomass, whilst cooking food in the Kathmandu Valley, Nepal. Our assessments were based on the capacity of the particles to deplete the physiologically relevant antioxidants from a validated, synthetic respiratory tract lining fluid (RTLF). Incubation of mixed biomass and wood smoke particles suspensions with the synthetic RTLF for 4 h resulted in a mean loss of ascorbate of 64.76 ± 16.83% and 83.37 ± 14.12% at 50 μg/ml, respectively. Reduced glutathione was depleted by 49.29 ± 15.22% in mixed biomass and 65.33 ± 13.01% in wood smoke particles under the same conditions. Co-incubation with the transition metal chelator diethylenetriaminepentaacetate did not inhibit the rate of ascorbate oxidation, indicating a negligible contribution by redox-active metals in these samples. The capacity of biomass smoke particles to elicit oxidative stress certainly has the potential to contribute towards negative health impacts associated with traditional domestic fuels in the developing world.  相似文献   

9.
《Biomass》1990,21(2):83-99
This paper reports on the authors' efforts to improve the small farm community welfare in Kenya by promoting biogas technology. The survey showed that fuel was used in Kenyan farms mainly for cooking and lighting, and wood, crop residue, and charcoal were the predominant fuel sources. Mostly women collected firewood, fetched water, and cooked. Building a fire with these fuels was time-consuming, and smoke from these fires was damaging to the living environment. Hence, applying biogas technology to Kenyan small farms not only guarantees a reliable, renewable energy source, but also provides other benefits, such as cleaner household environments, better working conditions for housewives,  相似文献   

10.
Cooking is a significant source of indoor air pollution (IAP) and is associated with significant morbidity and mortality. Liquefied petroleum gas (LPG; predominant cooking fuel of urban India), though safer than solid fuels, emits significant concentration of fine particles, NOx and several other pollutants, which may trigger respiratory ailments. Effect of exposure to pollutants, generated from fuel combustion and cooking activities, on subjects of different microenvironments has been assessed by carrying out a health survey using a questionnaire and by conducting spirometry. A significant increase in prevalence of cough and impairment of lung functions has been found among cooks compared to non-cooks. A significant difference in prevalence of cough between smoker and non-smoker non-cooks but no such difference in cooks suggests that kitchen pollutants and smoking have similar effects on respiratory system. Comparison of lung functions (average FEV1% predicted and average FVC% predicted) of cooks (90.6% and 82.6%) and non-cooks (93.7% and 86.2%) shows a significant difference in certain categories. The study brings out a close association between different kitchen microenvironments and specific respiratory parameters, signifying short- and long-term impairment. The impairment is prevalent in both rural and urban Indian cooks, signifying that fuel usage (biomass and LPG) and cooking practices play a prominent role in affecting respiratory health.  相似文献   

11.
Diesel particulate emissions from used cooking oil biodiesel   总被引:8,自引:1,他引:8  
Two different biodiesel fuels, obtained from waste cooking oils with different previous uses, were tested in a DI diesel commercial engine either pure or in 30% and 70% v/v blends with a reference diesel fuel. Tests were performed under a set of engine operating conditions corresponding to typical road conditions. Although the engine efficiency was not significantly affected, an increase in fuel consumption with the biodiesel concentration was observed. This increase was proportional to the decrease in the heating value. The main objective of the work was to study the effect of biodiesel blends on particulate emissions, measured in terms of mass, optical effect (smoke opacity) and size distributions. A sharp decrease was observed in both smoke and particulate matter emissions as the biodiesel concentration was increased. The mean particle size was also reduced with the biodiesel concentration, but no significant increases were found in the range of the smallest particles. No important differences in emissions were found between the two tested biodiesel fuels.  相似文献   

12.

Background

The International Study on Asthma and Allergies in Childhood (ISAAC) reported a prevalence of asthma symptoms in 17 centers in nine Latin American countries that was similar to prevalence rates reported in non-tropical countries. It has been proposed that the continuous exposure to infectious diseases in rural populations residing in tropical areas leads to a relatively low prevalence of asthma symptoms. As almost a quarter of Latin American people live in rural tropical areas, the encountered high prevalence of asthma symptoms is remarkable. Wood smoke exposure and environmental tobacco smoke have been identified as possible risk factors for having asthma symptoms.

Methods

We performed a cross-sectional observational study from June 1, 2012 to September 30, 2012 in which we interviewed parents and guardians of Warao Amerindian children from Venezuela. Asthma symptoms were defined according to the ISAAC definition as self-reported wheezing in the last 12 months. The associations between wood smoke exposure and environmental tobacco smoke and the prevalence of asthma symptoms were calculated by means of univariate and multivariable logistic regression analyses.

Results

We included 630 children between two and ten years of age. Asthma symptoms were recorded in 164 of these children (26%). The prevalence of asthma symptoms was associated with the cooking method. Children exposed to the smoke produced by cooking on open wood fires were at higher risk of having asthma symptoms compared to children exposed to cooking with gas (AOR 2.12, 95% CI 1.18 - 3.84). Four percent of the children lived in a household where more than ten cigarettes were smoked per day and they had a higher risk of having asthma symptoms compared to children who were not exposed to cigarette smoke (AOR 2.69, 95% CI 1.11 - 6.48).

Conclusion

Our findings suggest that children living in rural settings in a household where wood is used for cooking or where more than ten cigarettes are smoked daily have a higher risk of having asthma symptoms.  相似文献   

13.
The transition to a cooked diet represents an important shift in human ecology and evolution. Cooking requires a set of sophisticated cognitive abilities, including causal reasoning, self-control and anticipatory planning. Do humans uniquely possess the cognitive capacities needed to cook food? We address whether one of humans'' closest relatives, chimpanzees (Pan troglodytes), possess the domain-general cognitive skills needed to cook. Across nine studies, we show that chimpanzees: (i) prefer cooked foods; (ii) comprehend the transformation of raw food that occurs when cooking, and generalize this causal understanding to new contexts; (iii) will pay temporal costs to acquire cooked foods; (iv) are willing to actively give up possession of raw foods in order to transform them; and (v) can transport raw food as well as save their raw food in anticipation of future opportunities to cook. Together, our results indicate that several of the fundamental psychological abilities necessary to engage in cooking may have been shared with the last common ancestor of apes and humans, predating the control of fire.  相似文献   

14.
A combined sulfuric acid-free ethanol cooking and pulverization process was developed in order to achieve the complete saccharification of the cellulosic component of woody biomass, thereby avoiding the problems associated with the use of strong acid catalysts. Eucalyptus wood chips were used as a raw material and exposed to an ethanol/water/acetic acid mixed solvent in an autoclave. This process can cause the fibrillation of wood chips. During the process, the production of furfural due to an excessive degradation of polysaccharide components was extremely low and delignification was insignificant. Therefore, the cooking process is regarded not as a delignification but as an activation of the original wood. Subsequently, the activated solid products were pulverized by ball-milling in order to improve their enzymatic digestibility. Enzymatic hydrolysis experiments demonstrated that the conversion of the cellulosic components into glucose attained 100% under optimal conditions. Wide-angle X-ray diffractometry and particle size distribution analysis revealed that the scale affecting the improvement of enzymatic digestibility ranged from 10 nm to 1 microm. Field emission scanning electron microscopy depicted that the sulfuric acid-free ethanol cooking induced a pore formation by the removal of part of the lignin and hemicellulose fractions in the size range from a few of tens nanometers to several hundred nanometers.  相似文献   

15.
Currently 70% of the population in Cameroon are reliant on solid fuel for cooking (90% in rural communities) and the associated household air pollution contributes to significant mortality and morbidity in the country. To address the problems of energy security, deforestation and pollution the government has developed a strategy (Masterplan) to increase use of liquified petroleum gas (LPG) as a cooking fuel from 12% to 58% by 2030. As a clean fuel scaled adoption of LPG has the potential to make significant positive impacts on population health. The LPG Adoption in Cameroon Evaluation (LACE) studies are assessing in the community (i) barriers and enablers for and (ii) local interventions to support, adoption and sustained use of LPG. A census survey conducted for LACE in rural and peri-urban regions of SW Cameroon provided an opportunity to investigate current fuel use patterns and factors associated with primary and exclusive use of LPG. A cross-sectional survey of 1577 households (1334 peri-urban and 243 rural) was conducted in March 2016 using standardised fuel use and household socio-demographic questions, administered by trained fieldworkers. Wood (40.7%) and LPG (51.1%) were the most frequently reported fuels, although the dominant fuels in rural and peri-urban communities were wood (81%) and LPG (58%) respectively. Fuel stacking was observed for the majority of LPG using households (91% of peri-urban and 99% of rural households). In rural homes, a higher level of education, access to sanitation and piped water and household wealth (income and asset ownership) were all significantly associated with LPG use (p < 0.05). In peri-urban homes, younger age, access to sanitation and piped water and increasing education were significantly associated with both any and exclusive use of LPG (p < 0.05). However, whilst household wealth was related to any LPG use, there was no relationship with exclusive use. Results from this census survey of a relatively well-established LPG market with lower levels of poverty and high levels of education than Cameroon as a whole, find LPG usage well below target levels set by the Cameroon government (58% by 2030). Fuel stacking is an issue for the majority of LPG using households. Whilst, as observed here, education, household wealth and socio-economic status are well recognised predictors of adoption and sustained use of clean modern fuels, it is important to consider factors across the whole LPG eco-system when developing policies to support their scaled expansion. A comprehensive approach is therefore required to ensure implementation of the Cameroon LPG Masterplan achieves its aspirational adoption target within its stated timeframe.  相似文献   

16.
OBJECTIVE--To examine the relation between damp and mould growth and symptomatic ill health. DESIGN--Cross-sectional study of random sample of households containing children; separate and independent assessments of housing conditions (by surveyor) and health (structured interview by trained researcher). SETTING--Subjects'' homes (in selected areas of public housing in Glasgow, Edinburgh, and London). SUBJECTS--Adult respondents (94% women) and 1169 children living in 597 households. END POINTS--Specific health symptoms and general evaluation of health among respondents and children over two weeks before interview; and score on general health questionnaire (only respondents). MEASUREMENTS AND MAIN RESULTS--Damp was found in 184 (30.8%) dwellings and actual mould growth in 274 (45.9%). Adult respondents living in damp and mouldy dwellings were likely to report more symptoms overall, including nausea and vomiting, blocked nose, breathlessness, backache, fainting, and bad nerves, than respondents in dry dwellings. Children living in damp and mouldy dwellings had a greater prevalence of respiratory symptoms (wheeze, sore throat, runny nose) and headaches and fever compared with those living in dry dwellings. The mean number of symptoms was higher in damp and mouldy houses and positively associated with increasing severity of dampness and mould (dose response relation). All these differences persisted after controlling for possible confounding factors such as household income, cigarette smoking, unemployment, and overcrowding. Other possible sources of bias that might invalidate the assumption of a causal link between housing conditions and ill health--namely, investigator bias, respondent bias, and selection bias--were also considered and ruled out. CONCLUSION--Damp and mouldy living conditions have an adverse effect on symptomatic health, particularly among children.  相似文献   

17.

Background

In the backdrop of conflicting reports (some studies reported adverse outcomes of biomass fuel use whereas few studies reported absence of any association between adverse health effect and fuel use, may be due to presence of large number of confounding variables) on the respiratory health effects of biomass fuel use, this cross sectional survey was undertaken to understand the role of fuel use on pulmonary function.

Method

This study was conducted in a village of western India involving 369 randomly selected adult subjects (165 male and 204 female). All the subjects were interviewed and were subjected to pulmonary function test. Analysis of covariance was performed to compare the levels of different pulmonary function test parameters in relation to different fuel use taking care of the role of possible confounding factors.

Results

This study showed that biomass fuel use (especially wood) is an important factor for deterioration of pulmonary function (particularly in female). FEV1 (p < .05), FEV1 % (p < .01), PEFR (p < .05) and FEF25–75 (p < .01) values were significantly lower in biomass fuel using females than nonusers. Comparison of only biomass fuel use vs. only LPG (Liquefied Petroleum Gas) use and only wood vs. only LPG use has showed that LPG is a safer fuel so far as deterioration of pulmonary function is concerned. This study observes some deterioration of pulmonary function in the male subjects also, who came from biomass fuel using families.

Conclusion

This study concluded that traditional biomass fuels like wood have adverse effects on pulmonary function.  相似文献   

18.

Background

In the backdrop of conflicting reports (some studies reported adverse outcomes of biomass fuel use whereas few studies reported absence of any association between adverse health effect and fuel use, may be due to presence of large number of confounding variables) on the respiratory health effects of biomass fuel use, this cross sectional survey was undertaken to understand the role of fuel use on pulmonary function.

Method

This study was conducted in a village of western India involving 369 randomly selected adult subjects (165 male and 204 female). All the subjects were interviewed and were subjected to pulmonary function test. Analysis of covariance was performed to compare the levels of different pulmonary function test parameters in relation to different fuel use taking care of the role of possible confounding factors.

Results

This study showed that biomass fuel use (especially wood) is an important factor for deterioration of pulmonary function (particularly in female). FEV1 (p < .05), FEV1 % (p < .01), PEFR (p < .05) and FEF25–75 (p < .01) values were significantly lower in biomass fuel using females than nonusers. Comparison of only biomass fuel use vs. only LPG (Liquefied Petroleum Gas) use and only wood vs. only LPG use has showed that LPG is a safer fuel so far as deterioration of pulmonary function is concerned. This study observes some deterioration of pulmonary function in the male subjects also, who came from biomass fuel using families.

Conclusion

This study concluded that traditional biomass fuels like wood have adverse effects on pulmonary function.  相似文献   

19.
Like many other countries, Ghana relies on biomass (mainly wood and charcoal) for most of its cooking needs. A national action plan aims to expand liquefied petroleum gas (LPG) access to 50% of the country’s population by 2020. While the country’s southern urban areas have made progress toward this goal, LPG use for cooking remains low in the north. The aim of this cross-sectional study was to characterize the current state of the LPG market in this area and examine opportunities and barriers to scale up LPG adoption. We interviewed 16 LPG suppliers (stove, cylinder, and fuel vendors) as well as 592 households in the Kassena-Nankana Districts (KND) of Ghana. We find large rural–urban differences in LPG uptake: less than 10% of rural households own LPG stoves compared with over half of urban households. Awareness of LPG is high across the region, but accessibility of fuel supply is highly limited, with just one refilling station located in the KND. Affordability is perceived as the main barrier to LPG adoption, and acceptability is also limited by widespread concerns about the safety of cooking with LPG. Transitioning to a cylinder recirculation model, and providing more targeted subsidies and credit options, should be explored to expand access to cleaner cooking in this region.  相似文献   

20.
Abstract

Wood fuels being a renewable source of primary energy have been considered environmentally friendly. However, wood combustion in domestic boilers is a source of air pollution. The lack of a dust collection device is the reason why flue gases emit a significant load of particulate pollutants into the air, including heavy metals. The aim of this research was to assess the environmental hazard caused by both emissions of heavy metals during wood combustion in domestic boilers and their chemical forms present in fly ash.

From the various wood fuels burnt in domestic boilers, the fly ash selected for this study came from the combustion of briquettes of softwood from non-polluted areas, and from burning hardwood fuel from trees exposed to pollutants from heavy traffic. The wood fuels satisfy the quality demands determined in the EN 14961 Solid Biofuels - Fuel quality assurances. However, the concentrations of Cd, Cu, Pb and Zn in the fly ash are considerably higher than the appropriate limit values determined for soil improvers. Sequential extraction shows that Cd and Zn are associated mainly with the water leaching and carbonate fractions, regarded as mobile and bioavailable, and pose the potentially greatest hazard to the environment and human health. Cu, Mn and Pb associated with less mobile fractions may not pose a direct air quality hazard but, due to their high concentrations, medium-term and long-term effects on soils and surface and subsurface waters should be considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号