首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Of the three major human pepsins, pepsin 1 has greater proteolytic activity towards ovalbumin than has pepsin 3. Pepsin 5 has low activity towards this substrate. 2. Proteolytic pH-activity curves show only on pH maximum, about pH 1.4 for pepsin 1, pH 1.4--1.5 for pepsin 3 and pH 1.2--1.4 for pepsin 5. The curve for pepsin 3 has a shoulder between pH 2.4 and 3.4. 3. The rate of digestion of ovalbumin by pepsin 1 is approximately three times slower than are those of bovine haemoglobin or human globin. 4. The results suggest that there may be a physiological advantage in having more than one pepsin.  相似文献   

2.
The aspartic protease pepsin is less specific than other endoproteinases. Because aspartic proteases like pepsin are active at low pH, they are utilized in hydrogen deuterium exchange mass spectrometry (HDX MS) experiments for digestion under hydrogen exchange quench conditions. We investigated the reproducibility, both qualitatively and quantitatively, of online and offline pepsin digestion to understand the compliment of reproducible pepsin fragments that can be expected during a typical pepsin digestion. The collection of reproducible peptides was identified from > 30 replicate digestions of the same protein and it was found that the number of reproducible peptides produced during pepsin digestion becomes constant above 5–6 replicate digestions. We also investigated a new aspartic protease from the stomach of the rice field eel (Monopterus albus Zuiew) and compared digestion efficiency and specificity to porcine pepsin and aspergillopepsin. Unique cleavage specificity was found for rice field eel pepsin at arginine, asparagine, and glycine. Different peptides produced by the various proteases can enhance protein sequence coverage and improve the spatial resolution of HDX MS data. This article is part of a Special Issue entitled: Mass spectrometry in structural biology.  相似文献   

3.
The Antarctic notothenioid Trematomus bernacchii (rock cod) lives at a constant mean temperature of -1.9 degrees C. Gastric digestion under these conditions relies on the proteolytic activity of aspartic proteases such as pepsin. To understand the molecular mechanisms of Antarctic fish pepsins, T. bernacchii pepsins A1 and A2 were cloned, overexpressed in Escherichia coli, purified and characterized with a number of biochemical and biophysical methods. The properties of these two Antarctic isoenzymes were compared to those of porcine pepsin and found to be unique in a number of ways. Fish pepsins were found to be more temperature sensitive, generally less active at lower pH and more sensitive to inhibition by pepstatin than their mesophilic counterparts. The specificity of Antarctic fish pepsins was similar but not identical to that of pig pepsin, probably owing to changes in the sequence of fish enzymes near the active site. Gene duplication of Antarctic rock cod pepsins is the likely mechanism for adaptation to the harsh temperature environment in which these enzymes must function.  相似文献   

4.
The contamination of oral rotavirus vaccines by porcine circovirus (PCV) raised questions about potential PCV contamination of other biological products when porcine trypsin or pepsin is used in production process. Several methods can be potentially implemented as a safety barrier when animal derived trypsin or pepsin is used. Removal of PCV is difficult by the commonly used viral filters with the pore size cutoff of approximately 20 nm because of the smaller size of PCV particles that are around 17 nm. It was speculated that operating the chromatography step at a pH higher than pepsin's low pI, but lower than pIs, of most viruses would allow the pepsin to flow through the resin and be recovered from the flow through pool whilst the viruses would be retained on the resin. In this study, we investigated low pH inactivation of viruses including PCV Type 1 (PCV1) and PCV1 removal by cation exchange chromatography (CEX) in the presence of pepsin. Both parvovirus and PCV1 could be effectively inactivated by low pH and PCV1 could be removed by POROS 50HS CEX. The POROS 50HS method presented in this article is helpful for designing other CEX methods for the same purpose and not much difference would be expected for similar product intermediates and same process parameters. While the effectiveness needs to be confirmed for specific applications, the results demonstrate that both low pH (pH 1.7) and CEX methods were successful in eliminating PCV1 and thus either can be considered as an effective virus barrier.  相似文献   

5.
Pepstatin, a peptide inhibitor of pepsin isolated from cultures of Actinomycetes, is shown to be a powerful inhibitor of cathepsin D preparations obtained from bovine uterus and rabbit ear cartilage. The digestion of hemoglobin at pH 3.2 is completely blocked by pepstatin at a 1:1 molar ratio of inhibitor to enzyme. The digestion at pH 5 of protein-polysaccharide-light complex from bovine nasal cartilage is 98% inhibited.  相似文献   

6.
The peptide Leu-Val-Lys-Val-Pro-Leu-Val-Arg-Lys-Lys-Ser-Leu-Arg-Gln-Asn-Leu, a known pepsin inhibitor, is derived from the first 16 amino acids of porcine pepsinogen. It was prepared from the activation mixture and was modified by guanidination of its three lysine residues to form homoarginine residues. The modified peptide is a better pepsin inhibitor than the native peptide; for 50% inhibition of the milk clotting action of pepsin at pH 5.3, the molar ratio of peptide to pepsin required is 9 for the native inhibitor and only 2 for the guanidinated inhibitor. The dissociation constants (k1) of the inhibitor-pepsin complexes are 7 X 10(-8) and 1.4 X 10(-8) M for the native and guanidinated peptides, respectively. The guanidinated peptide is more resistant to digestion by pepsin at pH 3.5. The native and modified peptides partially protect pepsin from inactivation at pH 7. Stepwise removal of the amino-terminal Leu-Val-Har residues from the guanidinated inhibitor by Edman degradation decreases the pepsin-inhibiting activity only slightly at the first step, but markedly at the second and third steps. Thus, all of the amino-terminal sequence except the leucine residue is necessary for full activity.  相似文献   

7.
A new staining protocol is described for the immunocytochemical detection of BrdUrd labeled nuclei. Pepsin treatment of ethanol fixed cells or tissue, followed by DNA denaturation at low pH, resulted in increased sensitivity of BrdUrd staining comparable to the thermal denaturation protocol, and decreased background binding. This technique is applicable to cell suspensions, including cultured cells and bone marrow cells. Furthermore, pepsin digestion of ethanol fixed tissue fragments resulted in a high recovery of nuclei in which incorporated BrdUrd could be detected. This possibility, together with the high sensitivity, make this method especially suitable for cell kinetic studies of human solid tumors in vivo.  相似文献   

8.
Limited pepsin digestion of human plasma albumin at pH 3.5 and 0 degrees in the presence of octanoate caused cleavage at residue 307 of the albumin molecule to yield two fragments. Thw two fragments corresponding to the NH2- and the COOH-terminal halves of the molecule were isolated in yields of about 15%. The COOH-terminal fragment is a mixture in which about 85% of the molecules had an additional cleavage at residue 422 of the albumin molecule. The COOH-terminal fragment with the additional cleavage at residue 422 contains two peptides which are linked by a disulfide bridge at residues 391 and 437 of the albumin molecule. Both the NH2- and the COOH-terminal fragment of human albumin showed no detectable binding of octanoate anions, that is, less than 1/170 of the binding constant of the primary site of human albumin. These findings differ from earlier observations on limited pepsin digestion of bovine plasma albumin where the corresponding COOH-terminal fragment had the octanoate-binding activity, about 1/8 of the primary binding constant of bovine albumin, while the NH2-terminal fragment did not. The COOH-terminal fragment of bovine albumin did not have cleavage at residue 422 as in the corresponding fragment of human albumin. However, it is not clear that the loss of octanoate-binding activity of fragment C of human albumin is a direct consequence of the cleavage at residue 422.  相似文献   

9.
10.
Human gastric juice contains 3 major proteolytic components (pepsins1,3 and 5 or gastricsin). Pepsin 1 is increased in peptic ulcer and it's properties are relatively poorly understood. Studies with pepstatin the highly specific aspartic-protease inhibitor have therefore been carried out on individual active and proenzymes to assess any enzymic similarities. Human pepsin 1 was inhibited with high affinity similar to pepsin 3, whereas pepsin 5(gastricsin) was at least 40 times less sensitive. Inhibition of human pepsinogens 1,3 and 5 and pig pepsinogen A showed similar trends to the active enzymes. Studies using Sephadex gel filtration showed that pepstatin does not bind to pepsinogens and inhibition arises from pepstatin binding the pepsins released upon activation. Pepstatin inhibition was shown to be relatively independent of pH between 1.5 and 3.8 although at higher pH inhibition was less effective. The evidence suggests that pepsin 1 is similar to pepsin 3 and pepstatin inhibits by a one to one molecular binding to the active site. The explanation for the reduced affinity of pepstatin to pepsin 5(gastricsin) needs further study by co-crystallisation X-ray analysis.  相似文献   

11.
A method is described for isolating a crystalline protein of high tryptic activity from beef pancreas. The protein has constant proteolytic activity and optical activity under various conditions and no indication of further fractionation could be obtained. The loss in activity corresponds to the decrease in native protein when the protein is denatured by heat, digested by pepsin, or hydrolyzed in dilute alkali. The enzyme digests casein, gelatin, edestin, and denatured hemoglobin, but not native hemoglobin. It accelerates the coagulation of blood but has little effect on the clotting of milk. It digests peptone prepared by the action of pepsin on casein, edestin or gelatin. The extent of the digestion of gelatin caused by this enzyme is the same as that caused by crystalline pepsin and is approximately equivalent to tripling the number of carboxyl groups present in the solution. The activity of the preparation is not increased by enterokinase. The molecular weight by osmotic pressure measure is about 34,000. The diffusion coefficient in ½ saturated magnesium sulfate at 6°C. is 0.020 ±0.001 cm.2 per day, corresponding to a molecular radius of 2.6 x 10–7 cm. The isoelectric point is probably between pH 7.0 and pH 8.0. The optimum pH for the digestion of casein is from 8.0–9.0. The optimum stability is at pH 1.8.  相似文献   

12.
Partially purified native-pig gastric mucus and purified pig gastric mucin, prepared by column chromatography and caesium chloride (CsCl) density-gradient ultracentrifugation, were subjected to pepsin digestion. The products of peptic digestion were chromatographed on Sepharose CL-2B, and fractions were assayed for carbohydrate by the periodic acid-Schiff reaction. The polymeric gastric mucin in the purified mucin samples was readily degraded by pepsin. In sharp contrast, the polymeric mucin in the partially purified mucus was relatively resistant to pepsin digestion. In 45 min, pepsin degraded 40% of the polymeric mucin in the purified samples, whereas it produced no significant degradation (less than 10%) in the partially purified mucus samples. In partially purified gastric mucus, treated with CsCl but not fractionated by ultracentrifugation, digestion with pepsin was also slow and incomplete. This showed that differences in susceptibility between partially purified and purified preparations are not due to the chaotropic effects of CsCl. In addition, the recombination of low-density nonmucin fractions in CsCl ultracentrifugation with the mucin also resisted pepsin digestion. Finally, we have shown that the low-density fractions in mucus exhibited a strong inhibitory effect of peptic activity in vitro. We conclude that under our experimental conditions, pepsin has little effect on partially purified mucus, and our findings indicate an inhibitor of peptic digestion is present in native gastric mucus. It is likely, but unproven, that this inhibitor is a noncovalently bound lipid present in the low-density fraction.  相似文献   

13.
Bivariate distributions obtained from nominal acid hydrolysis or thermal treatment methods used in the cell cycle analysis of incorporated bromodeoxyuridine were shown to be unacceptable with hybridomas. Four different cell treatment and staining methods were compared. These methods are acid hydrolysis, thermal denaturation, nuclei extraction with pepsin digestion, and simultaneous pepsin digestion and acid hydrolysis. The nuclei extraction method was determined to be the most appropriate for the immunocytochemical staining of incorporated bromodeoxyuridine in hybridomas. The resulting bivariate distribution provides a clear distinction between labelled and unlabelled cell fractions. The method based on nuclei extraction with pepsin digestion was optimized for a hybridoma line used in this study.  相似文献   

14.
An inter-Group common antigen was detected between Group A type 28 (Small)- and Group F (21/58/O'Mahoney, Colindale)-streptococcal cells by the T-typing agglutination reaction. The characteristics of this antigen coincide with those of the 28R-antigen, which was first detected in the Group A type 28 (Small) cells by Lancefield in 1943, in the following points: 1) It can be extracted from the cells with HC1 at pH 2.0 at 100 C in a stable state; 2) It can be kept in a stable state by heating in an alkaline solution at pH 7.8; 3) The antigen on the heat-killed cells was not affected by trypsin digestion at pH 7.8 but was destroyed by pepsin digestion at pH 2.0.  相似文献   

15.
The action of enzymes on rhodopsin   总被引:1,自引:0,他引:1       下载免费PDF全文
The effects have been examined of chymotrypsin, pepsin, trypsin, and pancreatic lipase on cattle rhodopsin in digitonin solution. The digestion of rhodopsin by chymotrypsin was measured by the hydrolysis of peptide bonds (formol titration), changes in pH, and bleaching. The digestion proceeds in two stages: an initial rapid hydrolysis which exposes about 30 amino groups per molecule, without bleaching; superimposed on a slower hydrolysis which exposes about 50 additional amino groups, with proportionate bleaching. The chymotryptic action begins at pH about 6.0 and increases logarithmically in rate to pH 9.2. Trypsin and pepsin also bleach rhodopsin in solution. A preparation of pancreatic lipase bleached it slightly, but no more than could be explained by contamination with proteases. In digitonin solution each rhodopsin molecule is associated in a micelle with about 200 molecules of digitonin; yet the latter do not appear to hinder enzyme action. It is suggested that the digitonin sheath is sufficiently fluid to be penetrated on collision with an enzyme molecule; and that once together the enzyme and substrate are held together by intermolecular attractive forces, and by the "cage effect" of bombardment by surrounding solvent molecules. The two stages of chymotryptic digestion of rhodopsin may correspond to an initial rapid fragmentation, such as has been observed with many proteinases and substrates; superimposed upon a slower digestion of the fragments. Since the first phase involves no bleaching, this may mean that rhodopsin can be broken into considerably smaller fragments without loss of optical properties.  相似文献   

16.
Noncovalent aggregation as a side reaction competing with the reconstitution of oligomeric enzymes is enhanced by slow conformational changes within the partially unfolded subunits. This has been shown for lactic dehydrogenase from pig muscle after acid dissociation [G., Zettlmeissl R. Rudolph, and R. Jaenicke (1981)Eur. J. Biochem.121, 169–175]. The present experiments confirm previous spectroscopic evidence (from circular dichroism) applying pepsin digestion and subsequent analysis of the fragments on sodium dodecyl sulfate-polyacrylamide gradient gels. The susceptibility of certain fragmentation sites toward pepsin digestion changes with increasing incubation at acid pH, in accordance with a slow M1 → M2 transition of the acid-dissociated monomers. Constant pulses of pepsin at varying times after transferring native enzyme to pH 2.3 yield distinct changes in the fragmentation pattern consisting of undigested monomers (Mr = 35,000) plus 12 fragments ranging from 31,000 to 5000. Short digestion of the M2 species at low concentrations of pepsin preferentially yields 25,000 and 10,500 fragments (molar ratio pepsin:lactic dehydrogenase = 1:24). The time-dependent decrease of monomers upon incubation in 0.1 m sodium phosphate, pH 2.3, at 20 °C strictly parallels the formation of the two fragments. The quantitative kinetic analysis of the changes in peptide pattern yields a first-order rate constant K1 = 8 ± 2 × 10?4 s?1. The observed increase in proteolytic susceptibility is in the time range of the above mentioned decrease in the far-ultraviolet circular dichroism, and the parallel decrease in the yield of reactivation. The results suggest that during the M1 → M2 transition at acid pH a specific interdomain cleavage site is becoming exposed. As taken from the molecular weight of the two main fragments the trp 225-lys 226 peptide bond is the most probable candidate for this cleavage site.  相似文献   

17.
Human gastric juice contains 3 major proteolytic components (pepsins1,3 and 5 or gastricsin). Pepsin 1 is increased in peptic ulcer and it's properties are relatively poorly understood. Studies with pepstatin the highly specific aspartic-protease inhibitor have therefore been carried out on individual active and proenzymes to assess any enzymic similarities. Human pepsin 1 was inhibited with high affinity similar to pepsin 3, whereas pepsin 5(gastricsin) was at least 40 times less sensitive. Inhibition of human pepsinogens 1,3 and 5 and pig pepsinogen A showed similar trends to the active enzymes. Studies using Sephadex gel filtration showed that pepstatin does not bind to pepsinogens and inhibition arises from pepstatin binding the pepsins released upon activation. Pepstatin inhibition was shown to be relatively independent of pH between 1.5 and 3.8 although at higher pH inhibition was less effective. The evidence suggests that pepsin 1 is similar to pepsin 3 and pepstatin inhibits by a one to one molecular binding to the active site. The explanation for the reduced affinity of pepstatin to pepsin 5(gastricsin) needs further study by co-crystallisation X-ray analysis.  相似文献   

18.
Large fragments of human serum albumin were produced by treatment of the native protein with pepsin at pH3.5. Published sequences of human albumin [Behrens, Spiekerman & Brown (1975) Fed. Proc. Fed. Am. Soc. Exp. Biol. 34, 591; Meloun, Moravek & Kostka (1975) FEBSLett.58, 134-137]were used to locate the fragments in the primary structure. The fragments support both the sequence and proposed disulphide-linkage pattern (Behrens et al., 1975). As the pH of a solution of albumin is lowered from pH4 to pH3.5, the protein undergoes a reversible conformational change known as the N-F transition. The distribution of large fragments of human albumin digested with pepsin in the above pH region was critically dependent on pH. It appeared that this distribution was dependent on the conformation of the protein at low pH, rather than the activity of pepsin. The yields of the large fragments produced by peptic digestion at different values of pH suggested that the C-terminal region of albumin unfolds or separates from the rest of the molecule during the N-F transition. The similarity of peptic fragments of human and bovine albumin produced under identical conditions supports the proposed similar tertiary structure of these molecules.  相似文献   

19.
The specificity of the winged bean chymotrypsin inhibitor is restricted to the chymotrypsins (EC 3.4.21.1 and EC 3.4.21.2). Trypsins (EC 3.4.21.4), elastase (EC 3.4.21.11), subtilisins (EC 3.4.21.14), proteinase K (EC 3.4.21.14) and Pronase (EC 3.4.24.4) are not inhibited. The inhibitor reacts with two molecules of chymotrypsin to form a stable complex (Mr approx. 70 0000) which was isolated by gel filtration on Sephadex G-100. When mixed with substrate, the interaction of the inhibitor with alpha-chymotrypsin is characterized by substrate-induced dissociation of the complex. In contrast, the interaction with chymotrypsin B is quantitative with no substrate-induced dissociation. The inhibitor reacts with alpha-chymotrypsin to form a 1 : 2 molar complex at all ratios of [I]/[E]; however, the interaction with chymotrypsin B is characterized by the formation of initially of a 1 : 1 molar complex at [I] greater than [E] followed by the formation of the 1 : 2 molar complex at [I] less than 2[E]; an intermediate species of Mr approx. 48 000 was demonstrated by gel filtration on Sephadex G-100. The inhibitor is stable over the pH range 2.0-11.5 and to heating up to 70 degrees C at pH 4.1 and 8.0, and up to 90 degrees C at pH 3.0. The inhibitor resists denaturation in 8.0 M urea at pH 8.0 and 4.0, is stable in 0.12 M beta-mercaptoethanol at pH 8.0; however, reduction in 8.0 M urea results in a loss of inhibitory activity. The inhibitor resists digestion with pepsin at pH 2.0, being only slowly degraded over a period of 7 days with an equimolar amount of pepsin.  相似文献   

20.
Comparison has been made of a simple method originated by Absolon and modified in our laboratories for assay of proteolytic activity using RISA (radioactive iodinated serum albumin—Abbott Laboratories), with the commonly used photometric methods of Anson and Kunitz. In this method, pepsin was incubated with an albumin substrate containing RISA, followed by precipitation of the undigested substrate with trichloroacetic acid and measurement of radioactive digestion products in the supernatant fluid. The I131—albumin bond was shown in the present studies to be altered only by the proteolytic activity, and not by the incubation procedures at various values of pH. Any free iodine present originally in the RISA was removed by a single passage through a resin column (amberlite IRA-400-C1). Pepsin was shown to be most stable in solution at a pH of 5.5. Activity of pepsin was shown to be maximal when it was incubated with albumin at a pH of 2.5. Pepsin activity was shown to be altered in the presence of various electrolytes. Pepsin activity measured by the RISA and Anson methods as a function of concentration or of time of incubation indicated that these two methods are in good agreement and are equally sensitive. Consistently smaller standard errors were obtained by the RISA method of pepsin assay than were obtained with either of the other methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号