首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In cardiac mitochondria, matrix free Ca2+ ([Ca2+]m) is primarily regulated by Ca2+ uptake and release via the Ca2+ uniporter (CU) and Na+/Ca2+ exchanger (NCE) as well as by Ca2+ buffering. Although experimental and computational studies on the CU and NCE dynamics exist, it is not well understood how matrix Ca2+ buffering affects these dynamics under various Ca2+ uptake and release conditions, and whether this influences the stoichiometry of the NCE. To elucidate the role of matrix Ca2+ buffering on the uptake and release of Ca2+, we monitored Ca2+ dynamics in isolated mitochondria by measuring both the extra-matrix free [Ca2+] ([Ca2+]e) and [Ca2+]m. A detailed protocol was developed and freshly isolated mitochondria from guinea pig hearts were exposed to five different [CaCl2] followed by ruthenium red and six different [NaCl]. By using the fluorescent probe indo-1, [Ca2+]e and [Ca2+]m were spectrofluorometrically quantified, and the stoichiometry of the NCE was determined. In addition, we measured NADH, membrane potential, matrix volume and matrix pH to monitor Ca2+-induced changes in mitochondrial bioenergetics. Our [Ca2+]e and [Ca2+]m measurements demonstrate that Ca2+ uptake and release do not show reciprocal Ca2+ dynamics in the extra-matrix and matrix compartments. This salient finding is likely caused by a dynamic Ca2+ buffering system in the matrix compartment. The Na+- induced Ca2+ release demonstrates an electrogenic exchange via the NCE by excluding an electroneutral exchange. Mitochondrial bioenergetics were only transiently affected by Ca2+ uptake in the presence of large amounts of CaCl2, but not by Na+- induced Ca2+ release.  相似文献   

2.
E Chávez  C Bravo 《Life sciences》1988,43(12):975-981
The effect of silymarin on different functions of mitochondria isolated from rat kidneys was studied. Addition of silymarin to mitochondria oxidizing succinate, induced stimulation of the respiratory State 4; while in mitochondria oxidizing NAD-dependent substrates, the drug produced inhibition of the oxygen consumption. It is also shown that silymarin induces mitochondrial swelling, a drop in the transmembrane potential, as well as Ca2+ release. It is proposed that due to its hydrophobic character, silymarin produces an alteration in the lipidic milieu of the inner membrane which is conductive to an inhibition of the electron transport in the NAD-CoQ span of the respiratory chain, as well as to the loss of the energy dependent accumulated Ca2+.  相似文献   

3.
Stimulation of human platelets with thrombin is accompanied by activation of both phospholipases C and A2. These have been considered to be sequential events, with phospholipase A2 activation resulting from the prior hydrolysis of inositol phospholipids and mobilization of intracellular Ca2+ stores. However, our and other laboratories have recently questioned this proposal, and we now present further evidence that these enzymes may be activated by separate mechanisms during thrombin stimulation. Alpha-thrombin induced the rapid hydrolysis of inositol phospholipids, and formation of inositol trisphosphate and phosphatidic acid. This was paralleled by mobilization of Ca2+ from internal stores. These responses were blocked by about 50% by prostacyclin. In contrast, the liberation of arachidonic acid induced by alpha-thrombin was totally inhibited by prostacyclin. The less-effective agonists, platelet activating factor (PAF) and gamma-thrombin also both stimulated phospholipase C, but whereas PAF evoked a rapid and transient response, that of gamma-thrombin was delayed and more sustained. The abilities of these agonists to induce the release of Ca2+ stores closely paralleled phospholipase C activation. However, the maximal intracellular Ca2+ concentrations achieved by these two agents were the same. Despite this, gamma-thrombin and not PAF, was able to release a small amount of arachidonic acid. When alpha-thrombin stimulation of platelets was preceded by epinephrine, there was a potentiation of phospholipase C activation, Ca2+ mobilization and aggregation. The same was true for gamma-thrombin and PAF. However, unlike alpha-thrombin, the gamma-thrombin-stimulated arachidonic acid release was not potentiated by epinephrine, but rather somewhat reduced. These results suggested that phospholipase C and phospholipase A2 were separable events in activated platelets. The mechanism by which alpha-thrombin stimulated phospholipase A2 did not appear to be through dissociation of the inhibitory GTP-binding protein, Gi, since gamma-thrombin decreased the pertussis toxin-induced ADP-ribosylation of the 41 kDa protein as much as did alpha-thrombin, but was a much less effective agent than alpha-thrombin at inducing arachidonic acid liberation.  相似文献   

4.
The mechanism of lysosome activation by 17beta-estradiol has been studied in mussel blood cells. Cell treatment with estradiol induced a sustained increase of cytosolic free Ca2+ that was completely prevented by preincubating the cells with the Ca2+ chelator BAPTA-AM. Estradiol treatment was also followed by destabilization of the lysosomal membranes, as detected in terms of the lysosomes' increased permeability to neutral red. The effect of estradiol on lysosomes was almost completely prevented by preincubation with the inhibitor of cytosolic Ca2+ -dependent PLA2 (cPLA2), arachidonyl trifluoromethyl ketone (AACOCF3), and was significantly reduced by preincubation with BAPTA-AM. In contrast, it was virtually unaffected by preincubation with the inhibitor of Ca2+ -independent PLA2, (E)-6-(bromomethylene)tetrahydro-3-(1-naphtalenyl)-2H-pyran-2-one (BEL). The Ca2+ ionophore A-23187 yielded similar effects on [Ca2+](i) and lysosomes. Exposure to estradiol also resulted in cPLA2 translocation from cytosol to membranes, lysosome enlargement, and increased protein degradation. These results suggest that the destabilization of lysosomal membranes following cell exposure to estradiol occurs mainly through a Ca2+ -dependent mechanism involving activation of Ca2+ -dependent PLA2. This mechanism promotes lysosome fusion and catabolic activities and may mediate short-term estradiol effects.  相似文献   

5.
6.
The effect of the alkylating reagent dicyclohexylcarbodiimide (DCCD) on mitochondrial Ca2+ content was studied. The results obtained indicate that DCCD at a concentration of 100 µM induces mitochondrial Ca2+ efflux. This reaction is accompanied by an increasing energy drain on the system, stimulation of oxygen consumption, and mitochondrial swelling. These DCCD effects can be partially suppressed by supplementing the incubation medium with 1 mM phosphate. By electrophoretic analysis on polyacrylamide-sodium dodecyl sulfate, it was found that DCCD binds to a membrane component with anM r of 20 to 29 kDa.  相似文献   

7.
Lathrop B  Gadd M  Biltonen RL  Rule GS 《Biochemistry》2001,40(11):3264-3272
Changes in the affinity of calcium for phospholipase A2 from Agkistrodon piscivorus piscivorus during activation of the enzyme on the surface of phosphatidylcholine vesicles have been investigated by site-directed mutagenesis and fluorescence spectroscopy. Changes in fluorescence that occur during lipid binding and subsequent activation have been ascribed to each of the three individual Trp residues in the protein. This was accomplished by generating a panel of mutant proteins, each of which lacks one or more Trp residues. Both Trp21, which is found in the interfacial binding region, and Trp119 show changes in fluorescence upon protein binding to small unilamellar zwitterionic vesicles or large unilamellar vesicles containing sufficient anionic lipid. Trp31, which is near the Ca2+ binding loop, exhibits little change in fluorescence upon lipid bilayer binding. A change in the fluorescence of the protein also occurs during activation of the enzyme. These changes arise from residue Trp31 as well as residues Trp21 and Trp119. The calcium dependence of the fluorescence change of Trp31 indicates that the affinity of the enzyme for calcium increases at least 3 orders of magnitude upon activation. These studies suggest either that a change in conformation of the enzyme occurs upon activation or that the increase in calcium affinity reflects formation of a ternary complex of calcium, enzyme, and substrate.  相似文献   

8.
Resveratrol, a natural polyphenolic antioxidant, has been reported to possess the cancer chemopreventive potential in wide range by means of triggering tumor cells apoptosis through various pathways. It induced apoptosis through the activation of the mitochondrial pathway in some kinds of cells. In the present reports, we showed that resveratrol-induced HepG2 cell apoptosis and mitochondrial dysfunction was dependent on the induction of the mitochondrial permeability transition (MPT), because resveratrol caused the collapse of the mitochondrial membrane potential (ΔΨm) with the concomitant release of cytochrome c (Cyt.c). In addition, resveratrol induced a rapid and sustained elevation of intracellular [Ca2+], which compromised the mitochondrial ΔΨm and triggered the process of HepG2 cell apoptosis. In permeabilized HepG2 cells, we further demonstrated that the effect of the resveratrol was indeed synergistic with that of Ca2+ and Ca2+ is necessary for resveratrol-induced MPT opening. Calcium-induced calcium release from mitochondria (mCICR) played a key role in mitochondrial dysfunction and cell apoptosis: (1) mCICR inhibitor, ruthenium red (RR), prevent MPT opening and Cyt.c release; and (2) RR attenuated resveratrol-induced HepG2 cell apoptotic death. Furthermore, resveratrol promotes MPT opening by lowering Ca2+-threshold. These data suggest modifying mCICR and Ca2+ threshold to modulate MPT opening may be a potential target to control cell apoptosis induced by resveratrol. Xuemei Tian—Foundation item: Chinese National Natural Science Foundation (No.30300455).  相似文献   

9.
The pharmacologic agents verapamil, nifedipine, diltiazem, prenylamine, N-oleoylethanolamine, R 24571, trifluoperazine, dibucaine, and quinacrine are examined as potential inhibitors of rat liver mitochondrial phospholipase A2 acting on endogenous phospholipid. Their potency as inhibitors of the enzyme is compared to their activities as inhibitors of phospholipase A2-dependent swelling and ruthenium red-induced Ca2+ release in intact mitochondria. For verapamil, diltiazem, trifluoperazine, dibucaine, and quinacrine, there is complete agreement between the relative potencies as inhibitors of phospholipase A2 and the two other processes. Nifedipine and prenylamine, which are weak inhibitors of phospholipase A2, produce a permeable inner membrane, provided that the mitochondrial have accumulated Ca2+. R 24571, which strongly inhibits the enzyme, disrupts mitochondria by a Ca2+-independent mechanism. N-Oleoylethanolamine, which is an effective inhibitor of swelling, does not inhibit phospholipase A2 or ruthenium red-induced Ca2+ release. The results support a proposed scheme wherein ruthenium red-induced Ca2+ release is viewed as reverse activity of the Ca2+-uptake uniporter occurring subsequent to decline in the proton motive force. The latter effect is proposed to arise from a specific phospholipase A2-dependent increase in inner-membrane H+ conductance of mitochondrial subpopulations. It is further shown that mitochondrial membranes display cyclic oscillations in free fatty acid content which are not dependent on the presence of Ca2+ or on the capacity to generate acylcoenzyme A.  相似文献   

10.
1. Mitochondrial Ca2+, accumulated by succinate oxidation was released by addition of 50 microM atractyloside. Beside this Ca2+ efflux, a large oxidation of pyridine nucleotides and sustained membrane depolarization occurs. An absolute requirement for acetate to support Ca2+ release is demonstrated. 2. Membrane de-energization, NAD(P)H oxidation, and Ca2+ efflux as induced by atractyloside were temperature-dependent, since it occurs when mitochondria are incubated at 22 degrees C and was abolished at 4 degrees C. 3. Taking into account this latter, the effects of atractyloside on mitochondrial Ca2+ release appears not to be a simple result of the binding of the inhibitor to adenine nucleotide translocase. 4. It is proposed that the mechanism involved in atractyloside-driven membrane permeability to Ca2+ must be related with the transference of the conformational change of the carrier, to another membrane structure responsible for the maintenance permeability to ions.  相似文献   

11.
Mitochondria contribute to the maintenance of the intracellular Ca2+ homeostasis by taking up and releasing the cation via separate and specific pathways. The molecular details of the release pathway are elusive but its stimulation by the cross-linking of some vicinal thiols and consequently NAD+ hydrolysis are known. Thiol cross-linking and NAD+ hydrolysis can be achieved by addition of peroxynitrite (ONOO-), the product of the reaction between superoxide (O2-) and nitric oxide (nitrogen monoxide, NO*) to mitochondria. Mitochondria contain an NO synthase (mtNOS), which is stimulated by Ca2+, and are a copious source of O2-. We show here that intramitochondrially formed ONOO- stimulates the specific, NAD+-linked Ca2+ release from mitochondria. Our findings that upon Ca2+ uptake mtNOS is stimulated, that ONOO- is formed, and that Ca2+ is subsequently released from intact mitochondria suggest the existence of a feedback loop, which prevents overloading of mitochondria with Ca2+.  相似文献   

12.
The purpose of this study was to define the role of secretory phospholipase A2 (sPLA2), calcium-independent PLA2, and cytosolic PLA2 (cPLA2) in arachidonic acid (AA) release from fMLP-stimulated human neutrophils. While fMLP induced the release of extracellular sPLA2 activity and AA, 70% of sPLA2 activity remained associated with the cell. Treatment with the cell-impermeable sPLA2 inhibitors DTT or LY311-727, or the anti-sPLA2 Ab 3F10 all inactivated extracellular sPLA2 activity, but had minimal effect on neutrophil AA mass release. In contrast, coincubation of streptolysin-O toxin-permeabilized neutrophils with DTT, LY311-727, or 3F10 all decreased [3H8]AA release from [3H8]AA-labeled, fMLP-stimulated cells. Exposure to fMLP resulted in a decrease in the electrophoretic mobility of cPLA2, a finding consistent with cPLA2 phosphorylation, and stimulated the translocation of cPLA2 from cytosolic to microsomal and nuclear compartments. The role of cPLA2 was further evaluated with the cPLA2 inhibitor methyl arachidonyl fluorophosphonate, which attenuated cPLA2 activity in vitro and decreased fMLP-stimulated AA mass release by intact neutrophils, but had no effect on neutrophil sPLA2 activity. Inhibition of calcium-independent PLA2 with haloenol lactone suicide substrate had no effect on neutrophil cPLA2 activity or AA mass release. These results indicate a role for cPLA2 and an intracellular or cell-associated sPLA2 in the release of AA from fMLP-stimulated human neutrophils.  相似文献   

13.
Apoptosis-inducing factor (AIF), a flavoprotein with NADH oxidase activity anchored to the mitochondrial inner membrane, is known to be involved in complex I maintenance. During apoptosis, AIF can be released from mitochondria and translocate to the nucleus, where it participates in chromatin condensation and large-scale DNA fragmentation. The mechanism of AIF release is not fully understood. Here, we show that a prolonged ( approximately 10 min) increase in intracellular Ca(2+) level is a prerequisite step for AIF processing and release during cell death. In contrast, a transient ATP-induced Ca(2+) increase, followed by rapid normalization of the Ca(2+) level, was not sufficient to trigger the proteolysis of AIF. Hence, import of extracellular Ca(2+) into staurosporine-treated cells caused the activation of a calpain, located in the intermembrane space of mitochondria. The activated calpain, in turn, cleaved membrane-bound AIF, and the soluble fragment was released from the mitochondria upon outer membrane permeabilization through Bax/Bak-mediated pores or by the induction of Ca(2+)-dependent mitochondrial permeability transition. Inhibition of calpain, or chelation of Ca(2+), but not the suppression of caspase activity, prevented processing and release of AIF. Combined, these results provide novel insights into the mechanism of AIF release during cell death.  相似文献   

14.
We have developed a simple fluorescent assay for detection of phospholipase A2 (PLA2) activity in zebrafish embryos that utilizes a fluorescent phosphatidylcholine substrate. By using this assay in conjunction with selective PLA2 inhibitors and Western blot analysis, we identified the principal activity in zebrafish embryogenesis as characteristic of the Ca2+-dependent cytosolic PLA2 (cPLA2) subtype. Embryonic cPLA2 activity remained constant from the 1-cell stage until the onset of somitogenesis, at which time it increased sharply. This increase was preceded by the expression of a previously identified zebrafish cPLA2 homologue (Nalefski, E., Sultzman, L., Martin, D., Kriz, R., Towler, P., Knopf, J., and Clark, J. (1994) J. Biol. Chem. 269, 18239-18249). By using a quenched BODIPY-labeled phosphatidylcholine that fluoresces only upon cleavage by PLA2, lipase activity was visualized in the cells of living embryos where it localized to perinuclear membranes.  相似文献   

15.
The molecular mechanism of cytotoxic effect exerted by the lethal toxin (LeTx) of Bacillus anthracis is not well understood. In the present study, using primary culture of mouse peritoneal macrophages, we have investigated possible cytotoxic mechanisms. LeTx was not found to induce high levels of nitric oxide (NO) production for NO-mediated toxicity. Fragmentation of DNA, a biochemical marker of apoptosis, was not observed in LeTx-treated cells. Pretreatment of cells with antioxidants such as melatonin and dehydroepiandrosterone (DHEA) did not protect the LeTx-induced cytotoxicity. However, addition of phospholipase A2 (PLA2) inhibitors (quinacrine, p-bromophenacyl bromide, manoalide, butacaine) to the culture medium resulted in the inhibition of cytotoxicity of LeTx in a dose-dependent manner. LeTx-induced cytotoxicity was also inhibited by the tyrosine-specific protein kinase inhibitor genistein, but not by the protein kinase C inhibitors staurosporine or H-7. The results of these studies indicate a role for PLA2 and protein kinase in the cytotoxic mechanism of macrophages by anthrax lethal toxin.  相似文献   

16.
Overactivation of ionotropic glutamate receptors in oligodendrocytes induces cytosolic Ca2+ overload and excitotoxic death, a process that contributes to demyelination and multiple sclerosis. Excitotoxic insults cause well-characterized mitochondrial alterations and endoplasmic reticulum (ER) dysfunction, which is not fully understood. In this study, we analyzed the contribution of ER-Ca2+ release through ryanodine receptors (RyRs) and inositol triphosphate receptors (IP3Rs) to excitotoxicity in oligodendrocytes in vitro. First, we observed that oligodendrocytes express all previously characterized RyRs and IP3Rs. Blockade of Ca2+-induced Ca2+ release by TMB-8 following α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) receptor-mediated insults attenuated both oligodendrocyte death and cytosolic Ca2+ overload. In turn, RyR inhibition by ryanodine reduced as well the Ca2+ overload whereas IP3R inhibition was ineffective. Furthermore, AMPA-triggered mitochondrial membrane depolarization, oxidative stress and activation of caspase-3, which in all instances was diminished by RyR inhibition. In addition, we observed that AMPA induced an ER stress response as revealed by α subunit of the eukaryotic initiation factor 2α phosphorylation, overexpression of GRP chaperones and RyR-dependent cleavage of caspase-12. Finally, attenuating ER stress with salubrinal protected oligodendrocytes from AMPA excitotoxicity. Together, these results show that Ca2+ release through RyRs contributes to cytosolic Ca2+ overload, mitochondrial dysfunction, ER stress and cell death following AMPA receptor-mediated excitotoxicity in oligodendrocytes.  相似文献   

17.
The mitochondrial membrane potential (m) underlies many mitochondrial functions, including Ca2+ influx into the mitochondria, which allows them to serve as buffers of intracellular Ca2+. Spontaneous depolarizations of m, flickers, have been observed in isolated mitochondria and intact cells using the fluorescent cationic lipophile tetramethylrhodamine ethyl ester (TMRE), which distributes across the inner mitochondrial membrane in accordance with the Nernst equation. Flickers in cardiomyocytes have been attributed to uptake of Ca2+ released from the sarcoplasmic reticulum (SR) via ryanodine receptors in focal transients called Ca2+ sparks. We have shown previously that an increase in global Ca2+ in smooth muscle cells causes an increase in mitochondrial Ca2+ and depolarization of m. Here we sought to determine whether flickers in smooth muscle cells are caused by uptake of Ca2+ released focally in Ca2+ sparks. High-speed three-dimensional imaging was used to monitor m in freshly dissociated myocytes from toad stomach that were simultaneously voltage clamped at 0 mV to ensure the cytosolic TMRE concentration was constant and equal to the low level in the bath (2.5 nM). This approach allows quantitative analysis of flickers as we have previously demonstrated. Depletion of SR Ca2+ not only failed to eliminate flickers but rather increased their magnitude and frequency somewhat. Flickers were not altered in magnitude or frequency by ryanodine or xestospongin C, inhibitors of intracellular Ca2+ release, or by cyclosporin A, an inhibitor of the permeability transition pore. Focal Ca2+ release from the SR does not cause flickers in the cells employed here. mitochondria; mitochondrial membrane potential; intracellular calcium; permeability transition pore; sarcoplasmic reticulum  相似文献   

18.
19.
The effect of sarcoendoplasmic reticulum Ca(2+)-ATPase (SERCA) inhibition on the cytoplasmic Ca(2+) concentration ([Ca(2+)](i)) was studied in primary insulin-releasing pancreatic beta-cells isolated from mice, rats and human subjects as well as in clonal rat insulinoma INS-1 cells. In Ca(2+)-deficient medium the individual primary beta-cells reacted to the SERCA inhibitor cyclopiazonic acid (CPA) with a slow rise of [Ca(2+)](i) followed by an explosive transient elevation. The [Ca(2+)](i) transients were preferentially observed at low intracellular concentrations of the Ca(2+) indicator fura-2 and were unaffected by pre-treatment with 100 microM ryanodine. Whereas 20mM caffeine had no effect on basal [Ca(2+)](i) or the slow rise in response to CPA, it completely prevented the CPA-induced [Ca(2+)](i) transients as well as inositol 1,4,5-trisphosphate-mediated [Ca(2+)](i) transients in response to carbachol. In striking contrast to the primary beta-cells, caffeine readily mobilized intracellular Ca(2+) in INS-1 cells under identical conditions, and such mobilization was prevented by ryanodine pre-treatment. The results indicate that leakage of Ca(2+) from the endoplasmic reticulum after SERCA inhibition is feedback-accelerated by Ca(2+)-induced Ca(2+) release (CICR). In primary pancreatic beta-cells this CICR is due to activation of inositol 1,4,5-trisphosphate receptors. CICR by ryanodine receptor activation may be restricted to clonal beta-cells.  相似文献   

20.
Vasopressin, angiotensin II and epinephrine elicited the accumulation of phosphatidylethanol in rat hepatocytes exposed to ethanol and of phosphatidate in the absence of ethanol. When isolated liver plasma membranes were exposed to ethanol, GTP gamma S stimulated the production of phosphatidylethanol whereas phosphatidate was formed in the absence of ethanol. With increasing ethanol concentrations, phosphatidate formation declined whereas phosphatidylethanol production increased. These findings suggest that rat hepatocytes possess a hormone-dependent phospholipase D activity that can also catalyze the formation of phosphatidylethanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号