首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human cytomegalovirus (HCMV) growth in endothelial cells (EC) requires the expression of the UL131A-128 locus proteins. In this study, the UL130 protein (pUL130), the product of the largest gene of the locus, is shown to be a luminal glycoprotein that is inefficiently secreted from infected cells but is incorporated into the virion envelope as a Golgi-matured form. To investigate the mechanism of the UL130-mediated promotion of viral growth in EC, we performed a complementation analysis of a UL130 mutant strain. To provide UL130 in trans to viral infections, we constructed human embryonic lung fibroblast (HELF) and human umbilical vein endothelial cell (HUVEC) derivative cell lines that express UL130 via a retroviral vector. When the UL130-negative virus was grown in UL130-complementing HELF, the infectivity of progeny virions for HUVEC was restored to the wild-type level. In contrast, the infectivity of the UL130-negative virus for UL130-complementing HUVEC was low and similar to that of the same virus infecting control noncomplementing HUVEC. The UL130-negative virus, regardless of whether or not it had been complemented in the prior cycle, could form plaques only on UL130-complementing HUVEC, not control HUVEC. Because (i) both wild-type and UL130-transcomplemented virions maintained their infectivity for HUVEC after purification, (ii) UL130 failed to complement in trans the UL130-negative virus when it was synthesized in a cell separate from the one that produced the virions, and (iii) pUL130 is a virion protein, models are favored in which pUL130 acquisition in the producer cell renders HCMV virions competent for a subsequent infection of EC.  相似文献   

2.
Three tegument proteins of human cytomegalovirus (HCMV), ppUL82 (pp71), pUL69, and ppUL83 (pp65), were examined for the ability to stimulate the production of infectious virus from human diploid fibroblasts transfected with viral DNA. Although viral DNA alone had a low intrinsic infectivity of 3 to 8 plaques/microg of viral DNA, cotransfection of a plasmid expressing pp71 increased the infectivity of HCMV DNA 30- to 80-fold. The increase in infectivity produced by pp71 was reflected in an increased number of nuclei observed to express high levels of the major immediate-early proteins IE1 and IE2. Cotransfection of viral DNA with plasmids directing expression of IE1 and IE2 also resulted in extensive IE1 and IE2 expression in the transfected cells; however, the infectivity of viral DNA was only marginally increased. pp71 also facilitated late gene expression, virus transmission to adjacent cells, and plaque formation. In contrast, expression of pUL69 reduced the pp71- and IE1/IE2-mediated enhancement of HCMV DNA infectivity and also failed to produce any increase in the number of cells expressing IE1 and IE2 over that seen with viral DNA alone. Expression of pp65 did not alter the infectivity of HCMV DNA, nor did it modify the effects of pp71 or pUL69. These results imply that pp71 plays a critical role in the initiation of infection apart from its function as a transactivator of IE1 and IE2.  相似文献   

3.
4.
Cytotoxic T lymphocytes (CTLs) play a central role in the control of persistent human cytomegalovirus (HCMV) infection in healthy virus carriers. Previous analyses of the specificity of HCMV-reactive CD8(+) CTLs drawn from in vitro models in which antigen-presenting cells were autologous fibroblasts infected with laboratory HCMV strains have shown focusing of CTL responses against the major tegument protein, pp65. By contrast, the 72-kDa major immediate-early protein (IE1) was identified as a minor target for this response. Here we have studied the fine specificity and T-cell-receptor features of T-cell clones generated against autologous B lymphoblastoid cell lines stably transfected with HCMV cDNA coding for either pp65 or a natural variant of IE1. This strategy allowed efficient generation of T-cell clones against IE1 and pp65 and led to the identification of several new IE1 and pp65 epitopes, including some located in polymorphic regions of IE1. Such an approach may provide relevant information about the characteristics of the CTL response to IE1 and the effect of viral polymorphism on the immune response against HCMV.  相似文献   

5.
6.
The major immediate-early (MIE) gene locus of human cytomegalovirus (HCMV) is the master switch that determines the outcomes of both lytic and latent infections. Here, we provide evidence that alteration in the splicing of HCMV (Towne strain) MIE genes affects infectious-virus replication, movement through the cell cycle, and cyclin-dependent kinase activity. Mutation of a conserved 24-nucleotide region in MIE exon 4 increased the abundance of IE1-p38 mRNA and decreased the abundance of IE1-p72 and IE2-p86 mRNAs. An increase in IE1-p38 protein was accompanied by a slight decrease in IE1-p72 protein and a significant decrease in IE2-p86 protein. The mutant virus had growth defects, which could not be complemented by wild-type IE1-p72 protein in trans. The phenotype of the mutant virus could not be explained by an increase in IE1-p38 protein, but prevention of the alternate splice returned the recombinant virus to the wild-type phenotype. The lower levels of IE1-p72 and IE2-p86 proteins correlated with a delay in early and late viral gene expression and movement into the S phase of the cell cycle. Mutant virus-infected cells had significantly higher levels of cdk-1 expression and enzymatic activity than cells infected with wild-type virus. The mutant virus induced a round-cell phenotype that accumulated in the G(2)/M compartment of the cell cycle with condensation and fragmentation of the chromatin. An inhibitor of viral DNA synthesis increased the round-cell phenotype. The round cells were characteristic of an abortive viral infection.  相似文献   

7.
The human cytomegalovirus (HCMV) UL82-encoded tegument protein pp71 has recently been shown to activate viral immediate-early (IE) gene expression by neutralizing a cellular intrinsic immune defense instituted by the ND10 protein hDaxx. Pp71 localizes to ND10 upon infection and induces the degradation of hDaxx. Here, we report the successful generation of a recombinant HCMV expressing enhanced yellow fluorescent protein (EYFP) fused to the N terminus of pp71. Intriguingly, insertion of the EYFP-UL82 coding sequence into the HCMV AD169 genome gave rise to a recombinant virus, termed AD169/EYFP-pp71, that replicates to significantly higher titers than wild-type AD169. In particular, we noticed strongly increased protein levels of pp71 after AD169/EYFP-pp71 inoculation. Although the high abundance of pp71 resulted in augmented packaging of the tegument protein into viral particles, no increased hDaxx degradation was detectable upon AD169/EYFP-pp71 infection. In contrast, further investigation revealed a significantly enhanced viral DNA replication compared to wild-type AD169. Thus, we hypothesize that an as-yet-unidentified function of pp71 contributes to the enhanced infectivity of AD169/EYFP-pp71. This assumption is additionally supported by the observation that increased early and late gene expression after AD169/EYFP-pp71 infection occurs independent of elevated IE protein levels. Finally, immunofluorescence analyses confirmed that hDaxx determines the ND10-localization of pp71 upon infection, since pp71 exhibited a nucleolar distribution in the absence of hDaxx. Taken together, we generated a recombinant HCMV that constitutes a useful tool not only to dissect the in vivo dynamics of pp71 subnuclear localization more precisely but also to explore new features of this viral transactivator.  相似文献   

8.
In addition to productive lytic infections, herpesviruses such as human cytomegalovirus (HCMV) establish a reservoir of latently infected cells that permit lifelong colonization of the host. When latency is established, the viral immediate-early (IE) genes that initiate the lytic replication cycle are not expressed. HCMV IE gene expression at the start of a lytic infection is facilitated by the viral pp71 protein, which is delivered to cells by infectious viral particles. pp71 neutralizes the Daxx-mediated cellular intrinsic immune defense that silences IE gene expression by generating a repressive chromatin structure on the viral major IE promoter (MIEP). In naturally latently infected cells and in cells latently infected in vitro, the MIEP also adopts a similar silenced chromatin structure. Here we analyze the role of Daxx in quiescent HCMV infections in vitro that mimic some, but not all, of the characteristics of natural latency. We show that in these "latent-like" infections, the Daxx-mediated defense that represses viral gene expression is not disabled because pp71 and Daxx localize to different cellular compartments. We demonstrate that Daxx is required to establish quiescent HCMV infections in vitro because in cells that would normally foster the establishment of these latent-like infections, the loss of Daxx causes the lytic replication cycle to be initiated. Importantly, the lytic cycle is inefficiently completed, which results in an abortive infection. Our work demonstrates that, in certain cell types, HCMV must silence its own gene expression to establish quiescence and prevent abortive infection and that the virus usurps a Daxx-mediated cellular intrinsic immune defense mechanism to do so. This identifies Daxx as one of the likely multiple viral and cellular determinants in the pathway of HCMV quiescence in vitro, and perhaps in natural latent infections as well.  相似文献   

9.
10.
This study examines the role of the cellular protein hDaxx in controlling human cytomegalovirus (HCMV) immediate-early (IE) gene expression and viral replication. Using permissive cell lines that either overexpress hDaxx or are depleted of hDaxx expression by the use of short hairpin RNA, we demonstrate that hDaxx functions as a repressor of HCMV IE gene expression and replication. In addition, we demonstrate that the impaired growth phenotype associated with the UL82 (pp71) deletion mutant is abolished when hDaxx knockdown cells are infected, suggesting that pp71 functions to relieve hDaxx-mediated repression during HCMV infection.  相似文献   

11.
Human cytomegalovirus (HCMV) infection of permissive cells has been reported to induce a cell cycle halt. One or more viral proteins may be involved in halting progression at different stages of the cell cycle. We investigated how HCMV infection, and specifically IE86 protein expression, affects the cell cycles of permissive and nonpermissive cells. We used a recombinant virus that expresses the green fluorescent protein (GFP) to determine the effects of HCMV on the cell cycle of permissive cells. Fluorescence by GFP allowed us to select for only productively infected cells. Replication-defective adenovirus vectors expressing the IE72 or IE86 protein were also used to efficiently transduce 95% or more of the cells. The adenovirus-expressed IE86 protein was determined to be functional by demonstrating negative autoregulation of the major immediate-early promoter and activation of an early viral promoter in the context of the viral genome. To eliminate adenovirus protein effects, plasmids expressing GFP for fluorescent selection of only transfected cells and wild-type IE86 protein or a mutant IE86 protein were tested in permissive and nonpermissive cells. HCMV infection induced the entry of U373 cells into the S phase. All permissive cells infected with HCMV were blocked in cell cycle progression and could not divide. After either transduction or transfection and IE86 protein expression, the number of all permissive or nonpermissive cell types in the S phase increased significantly, but the cells could no longer divide. The IE72 protein did not have a significant effect on the S phase. Since IE86 protein inhibits cell cycle progression, the IE2 gene in a human fibroblast IE86 protein-expressing cell line was sequenced. The IE86 protein in these retrovirus-transduced cells has mutations in a critical region of the viral protein. The locations of the mutations and the function of the IE86 protein in controlling cell cycle progression are discussed.  相似文献   

12.
13.
14.
The human cytomegalovirus (HCMV) US12 gene family comprises a set of 10 contiguous genes (US12 to US21), each encoding a predicted seven-transmembrane protein and whose specific functions have yet to be ascertained. While inactivation of individual US12 family members in laboratory strains of HCMV has not been found to affect viral replication in fibroblasts, inactivation of US16 was reported to increase replication in microvascular endothelial cells. Here, we investigate the properties of US16 further by ascertaining the expression pattern of its product. A recombinant HCMV encoding a tagged version of the US16 protein expressed a 33-kDa polypeptide that accumulated with late kinetics in the cytoplasmic virion assembly compartment. To elucidate the function(s) of pUS16, we generated US16-deficient mutants in the TR clinical strain of HCMV. According to previous studies, inactivation of US16 had no effect on viral replication in fibroblasts. In contrast, the US16-deficient viruses exhibited a major growth defect in both microvascular endothelial cells and retinal pigment epithelial cells. The expression of representative IE, E, and L viral proteins was impaired in endothelial cells infected with a US16 mutant virus, suggesting a defect in the replication cycle that occurs prior to IE gene expression. This defect must be due to an inefficient entry and/or postentry event, since pp65 and viral DNA did not move to the nucleus in US16 mutant-infected cells. Taken together, these data indicate that the US16 gene encodes a novel virus tropism factor that regulates, in a cell-specific manner, a pre-immediate-early phase of the HCMV replication cycle.  相似文献   

15.
Human cytomegalovirus immediate early proteins and cell growth control   总被引:20,自引:0,他引:20  
Castillo JP  Kowalik TF 《Gene》2002,290(1-2):19-34
It is widely accepted that small DNA tumor viruses, such as adenovirus, simian virus 40 and papillomavirus, push infected cells into S-phase to facilitate the replication of their genome. Until recently, it was believed that the large DNA viruses (i.e. herpesviruses) functioned very differently in this regard by inducing a G1 arrest in infected cells as part of their replication process. However, studies over the last 6–8 years have uncovered striking parallels (and differences) between the functions of the major immediate early (IE) proteins of at least one herpesvirus, human cytomegalovirus (HCMV) and IE equivalents encoded by small DNA tumor viruses, such as adenovirus. Similarities between the HCMV major IE proteins and adenovirus IE proteins include targeting of members of the RB and p53 families and an ability of these viral factors to induce S-phase in quiescent cells. However, unlike the small DNA tumor virus proteins, individual HCMV IE proteins target different RB family members. HCMV also encodes several other IE gene products as well as virion tegument proteins that act early during infection to prevent an infected cell from replicating its host genome and from undergoing apoptosis. Here, we review the specifics of several HCMV IE proteins, two virion components, and their functions in relation to cell growth control.  相似文献   

16.
Human cytomegalovirus (HCMV) pp65 protein is the major constituent of viral dense bodies but is dispensable for viral growth in vitro. pp65 copurifies with a S/T kinase activity and has been implicated in phosphorylation of HCMV IE1 immediate-early protein and its escape from major histocompatibility complex 1 presentation. Furthermore, the presence of pp65 correlates with a virion-associated kinase activity. To clarify the role of pp65, yeast two-hybrid system (THS) screening was performed to identify pp65 cellular partners. A total of 18 out of 48 yeast clones harboring cDNAs for putative pp65 binding proteins encoded the Polo-like kinase 1 (Plk1) C-terminal domain. Plk1 behaved as a bona fide pp65 partner in THS control crosses, and the interaction was confirmed by in vitro binding experiments. Endogenous Plk1 was coimmunoprecipitated with pp65 from transiently transfected COS7 cells. In infected fibroblasts, Plk1 was coimmunoprecipitated with pp65 at late infection stages. Furthermore, Plk1 was detected within wild-type HCMV particles but not within the particles of a pp65-negative mutant (RVAd65). The hydrophilic region of pp65 was phosphorylated in vitro by Plk1. These results suggest that one function of pp65 may be to capture a cell kinase, perhaps in order to alter its activity, nucleotide preference, substrate specificity, or subcellular localization to the advantage of HCMV.  相似文献   

17.
Using bacterial artificial chromosome (BAC) technology, we have constructed and characterized a human cytomegalovirus recombinant virus with a mutation in the exon specific for the major immediate-early region 2 (IE2) gene product. The resulting IE2 86-kDa protein (IE2 86) has an internal deletion of amino acids 136 to 290 and is fused at the carboxy terminus to enhanced green fluorescent protein (EGFP). The deletion also removes the promoter and initiator methionine for the p40 form of IE2 and initiator methionine for the p60 form of the protein, and therefore, these late gene products are not produced. The mutant virus IE2 86 Delta SX-EGFP is viable but exhibits altered growth characteristics in tissue culture compared with a full-length wild-type (wt) IE2 86-EGFP virus or a revertant virus. When cells are infected with the mutant virus at a low multiplicity of infection (MOI), there is a marked delay in the production of infectious virus. This is associated with slower cell-to-cell spread of the virus. By immunofluorescence and Western blot analyses, we show that the early steps in the replication of the mutant virus are comparable to those for the wt. Although there is significantly less IE2 protein in the cells infected with the mutant, there is only a modest lag in the initial accumulation of IE1 72 and viral early proteins, and viral DNA replication proceeds normally. The mutation also has only a small effect on the synthesis of the viral major capsid protein. The most notable molecular defect in the mutant virus infection is that the steady-state levels of the pp65 (UL83) and pp28 (UL99) matrix proteins are greatly reduced. In the case of UL83, but not UL99, there is also a corresponding decrease in the amount of mRNA present in cells infected with the mutant virus.  相似文献   

18.
The human cytomegalovirus (HCMV) major immediate-early (IE) proteins share an 85-amino-acid N-terminal domain specified by exons 2 and 3 of the major IE region, UL122-123. We have constructed IE Delta30-77, a recombinant virus that lacks the majority of IE exon 3 and consequently expresses smaller forms of both IE1 72- and IE2 86-kDa proteins. The mutant virus is viable but growth impaired at both high and low multiplicities of infection and exhibits a kinetic defect that is not rescued by growth in fibroblasts expressing IE1 72-kDa protein. The kinetics of mutant IE2 protein accumulation in IE Delta30-77 virus-infected cells are approximately normal compared to wild-type virus-infected cells, but the IE Delta30-77 virus is delayed in expression of early viral genes, including UL112-113 and UL44, and does not sustain expression of mutant IE1 protein as the infection progresses. Additionally, cells infected with IE Delta30-77 exhibit altered expression of cellular proteins compared to wild-type HCMV-infected cells. PML is not dispersed but is retained at ND10 sites following infection with IE Delta30-77 mutant virus. While the deletion mutant retains the ability to mediate the stabilization of cyclin B1, cdc6, and geminin in infected cells, its capacity to upregulate the expression of cyclin E has been reduced. These data indicate that the activity of one or both of the HCMV major IE proteins is required in vivo for the modulation of cell cycle proteins observed in cells infected with wild-type HCMV.  相似文献   

19.
20.
The human cytomegalovirus (HCMV) immediate-early 2 (IE2) transactivator has previously been shown to form intranuclear, dot-like accumulations in association with subnuclear structures known as promyelocytic leukemia protein (PML) nuclear bodies or ND10. We recently observed that IE2 can form dot-like structures even after infection of PML knockdown cells, which lack genuine ND10. To further analyze the determinants of IE2 subnuclear localization, a recombinant HCMV expressing IE2 fused to the enhanced green fluorescent protein was constructed. We infected primary human fibroblasts expressing Sp100 fused to the autofluorescent protein mCherry while performing live-cell imaging experiments. These experiments revealed a very dynamic association of IE2 dots with ND10 structures during the first hours postinfection: juxtaposed structures rapidly fused to precise co-localizations, followed by segregation, and finally, the dispersal of ND10 accumulations. Furthermore, by infecting PML knockdown cells we determined that the number of IE2 accumulations was dependent on the multiplicity of infection. Since time-lapse microscopy in live-infected cells revealed that IE2 foci developed into viral replication compartments, we hypothesized that viral DNA could act as a determinant of IE2 accumulations. Direct evidence that IE2 molecules are associated with viral DNA early after HCMV infection was obtained using fluorescence in situ hybridization. Finally, a DNA-binding-deficient IE2 mutant could no longer be recruited into viral replication centers, suggesting that the association of IE2 with viral DNA is mediated by a direct DNA contact. Thus, we identified viral DNA as an important determinant of IE2 subnuclear localization, which suggests that the formation of a virus-induced nucleoprotein complex and its spatial organization is likely to be critical at the early stages of a lytic infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号