首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relationship between phospholipase A2 and C activation and secretion was investigated in intact human neutrophils and differentiated HL60 cells. Activation by either ATP or fMetLeuPhe leads to [3H]arachidonic acid release into the external medium from prelabelled cells. This response was inhibited when the cells were pretreated with pertussis toxin. When the [3H]arachidonic acid-labelled cells were stimulated with fMetLeuPhe, ATP or Ca2+ ionophore A23187, and the lipids analysed by t.l.c., the increase in free fatty acid was accompanied by decreases in label from phosphatidylinositol and phosphatidylcholine. Moreover, incorporation of label into triacylglycerol and to a lesser extent phosphatidylethanolamine was evident. Activation of secretion was evident with ATP and fMetLeuPhe but not with A23187. The pharmacological specificity of the ATP receptor in HL60 cells was investigated by measuring secretion of beta-glucuronidase, formation of inositol phosphatases and release of [3H]arachidonic acid. External addition of ATP, UTP, ITP, adenosine 5'-[gamma-thio]triphosphate (ATP[S]), adenosine 5'-[beta gamma-imido]triphosphate (App[NH]p), XTP, CTP, GTP, 8-bromo-ATP and guanosine 5'-[gamma-thio]triphosphate (GTP[S]) to intact HL60 cells stimulated inositol phosphate production, but only the first five nucleotides were effective at stimulating secretion or [3H]arachidonic acid release. In human neutrophils, addition of ATP, ITP, UTP and ATP[S] also stimulated secretion from specific and azurophilic granules, and this was accompanied by increases in cytosolic Ca2+ and in [3H]arachidonic acid release. The addition of phorbol 12-myristate 13-acetate (PMA; 1 nM) prior to the addition of either fMetLeuPhe or ATP led to inhibition of phospholipase C activity. In contrast, this had no effect on phospholipase A2 activation, whilst secretion was potentiated. Phospholipase A2 activation by either agonist was dependent on an intact cell metabolism, as was secretion. It is concluded that (1) activation of phospholipase C does not always lead to activation of phospholipase A2, (2) phospholipase A2 is coupled to the receptor independently of phospholipase C via a pertussis-toxin-sensitive G-protein and (3) for secretion to take place, the receptor has to activate both phospholipases C and A2.  相似文献   

2.
This study evaluates the role of phosphatidylinositol 4,5-bisphosphate (PIP2) and its metabolites as possible mediators in the activation of phospholipases A2 in porcine aortic endothelial cells. We compared the time courses of bradykinin-induced turnover of phosphoinositides and the appearance of unesterified arachidonic acid (uAA) and eicosanoids. The metabolism of phosphoinositides was examined in cells prelabeled with [3H]inositol, which has a similar distribution as the endogenous inositol lipids. At 37 degrees C, bradykinin induced a rapid rise in lysophosphatidylinositol (lyso-PI) and inositol 1,4,5-trisphosphate (IP3) as well as a decrease in PIP2. Lyso-PI formation was detected at 10 s, as early as PIP2 degradation and IP3 formation. This suggests that the activation of PIP2-hydrolyzing phospholipase C and PI-hydrolyzing phospholipase A2 are simultaneous. However, at 30 degrees C, lyso-PI formation was detected in the absence of an increase in IP3 indicating that the activation of phospholipase A2 does not require the accumulation of IP3. The time course of formation of uAA and eicosanoids were examined in [3H]arachidonic acid-prelabeled cells. The 3H radioactivity was distributed among the phospholipid classes and subclasses the same as the endogenous phospholipids. Bradykinin stimulated the intracellular accumulation of uAA, detectable at 5 s, earlier than that of 1,2-diacylglycerol and phosphatidic acid. Such immediate formation of uAA further supports the notion that activation of phospholipase A2 is a very early event during the interaction of bradykinin with porcine endothelial cells, and that PIP2 hydrolysis is not prerequisite for the initial activation of phospholipase A2.  相似文献   

3.
A technique has been developed for prelabelling and permeabilisation of guinea pig uterine myocytes to enable measurement of arachidonic acid release/phospholipase A2 activity in cells with intact membranes. Intact cells were prelabelled with [3H]inositol or [3H]arachidonic acid for measurement of phospholipase C and A2 respectively. In intact cells 10 nM endothelin-1 or 1 microM bradykinin stimulated both inositol polyphosphate and arachidonic acid release, whilst 1 microM oxytocin, arginine vasopressin or histamine were without effect. In Streptolysin-O permeabilised myometrial cells calcium-stimulation of inositol polyphosphate and arachidonic acid release was detected between 10 microM and 1 mM free calcium. The patterns of inositol polyphosphate and arachidonic acid release were broadly similar. Responses to 1 mM calcium were not detected in intact cells not treated with Streptolysin-O. For arachidonic acid release the K0.5 for calcium activation was about 7 microM, a level above that normally likely to be found in the uterine myocyte. Hence it is concluded that unless there are high local concentrations of calcium close to the plasma membrane, calcium is unlikely alone to be the primary regulator of arachidonic acid release and phospholipase A2.  相似文献   

4.
We observed that in hypoxic myocardial cells prostacyclin and arachidonic acid release increased and that during hypoxia phospholipid degradation also occurred. In order to clarify the mechanism of phospholipid degradation, we determined the activity of phospholipases A2 and C. We found that phosphatidylcholine (PC) and phosphatidylethanolamine (PE) were markedly decreased and that lysophosphatidylcholine and lysophosphatidylethanolamine were increased. In contrast, there was only slight phosphatidylinositol degradation and no lysophosphatidylinositol elevation was observed. These results show that phospholipase A2 was activated in hypoxic myocytes and had substrate specificity towards PC and PE. To study phospholipase C activity, membrane phospholipids were labeled with [3H]choline, [3H]inositol or [3H]ethanolamine. The release of inositol was observed, but neither choline nor ethanolamine was released. In hypoxia, myocardial-cell phospholipase C has high substrate specificity towards phosphatidylinositol. The activation of phospholipases is closely related to the intracellular Ca2+ concentration; it is though that inositol polyphosphatides may regulate intracellular Ca2+. We determined how Ca2+ influx occurs in hypoxia. beta-Adrenergic blockade and Ca2+ antagonists markedly suppressed Ca2+ influx, phospholipase A2 activity, phospholipase C activity and cell death. However, the alpha 1-adrenergic blockade was less effective in suppressing these phenomena. These results suggest that in hypoxic myocardial cells Ca2+ influx mediated by beta-adrenergic stimulation activates phospholipases A2 and C, and that phospholipid degradation and prostacyclin release then occur.  相似文献   

5.
Previous studies have reported an increased turnover of phospholipid in isolated islets of Langerhans in response to raised glucose concentrations. The present investigation was thus undertaken to determine the nature of any phospholipases that may be implicated in this phenomenon by employing various radiolabelled exogenous phospholipids. Hydrolysis of 1-acyl-2-[14C]arachidonoylglycerophosphoinositol by a sonicated preparation of islets optimally released radiolabelled lysophosphatidylinositol, arachidonic acid and 1,2-diacylglycerol at pH 5,7 and 9 respectively. This indicates the presence of a phospholipase A1 and a phospholipase C. However, the lack of any labelled lysophosphatidylinositol production when 2-acyl-1-[14C]stearoylglycerophosphoinositol was hydrolysed argues against a role for phospholipase A2 in the release of arachidonic acid. Phospholipase C activity as measured by phosphatidyl-myo-[3H]inositol hydrolysis was optimal around pH8, required Ca2+ for activity and was predominantly cytosolic in origin. The time course of phosphatidylinositol hydrolysis at pH 6 indicated a precursor-product relationship for 1,2-diacylglycerol and arachidonic acid respectively. The release of these two products when phosphatidylinositol was hydrolysed by either islet or acinar tissue was similar. However, phospholipase A1 activity was 20-fold higher in acinar tissue. Substrate specificity studies with islet tissue revealed that arachidonic acid release from phosphatidylethanolamine and phosphatidylcholine was only 8% and 2.5% respectively of that from phosphatidylinositol. Diacylglycerol lipase was also demonstrated in islet tissue being predominantly membrane bound and stimulated by Ca2+. The availability of non-esterified arachidonic acid in islet cells could be regulated by changes in the activity of a phosphatidylinositol-specific phospholipase C acting in concert with a diacylglycerol lipase.  相似文献   

6.
T W Martin  D Lagunoff 《Biochemistry》1982,21(6):1254-1260
The presence of phospholipase A2 in intact rat peritoneal mast cells was investigated by using two synthetic radiolabeled phosphatidylserine (PS) substrates. Incubation of intact cells with 1-oleoyl-2-[3H]oleoyl-PS resulted in the release of a considerable quantity of [3H]oleic acid from the substrate. To establish that [3H]oleic acid release was mediated via direct enzymatic attack at the sn-2 position, we measured release of the [3H]serine moiety from the glycerol backbone of 1,2-dimyristoylphosphatidyl[3H]serine. This activity, which represents the combined actions of phospholipases C and D, was 10-fold lower than [3H]oleic acid release, indicating that neither of these enzymes is required for the release of the preponderance of [3H]oleic acid. These results establish the existence in intact rat mast cells of a phospholipase A2 active toward exogenous PS. Over the concentration range at which exogenous PS activates mast cell secretion, intact mast cells and broken cells possessed nearly equal levels of phospholipase A2 activity, and enzyme activity was 3--4-fold higher toward PS than phosphatidylcholine. Several agents were tested for their ability to inhibit phospholipase A2 in intact mast cells. Of the agents tested, an N-substituted derivative of PS previously identified as an inhibitor of mast cell secretion was shown to be a particularly potent and efficacious inhibitor of mast cell phospholipase A2. The concentration dependence of enzyme inhibition paralleled inhibition of histamine secretion, providing a strong positive correlation between the level of phospholipase A2 in mast cells and the capacity for secretion.  相似文献   

7.
The pathways for degradation of phosphatidylinositol (PI) were investigated in sonicated suspensions prepared from confluent cultures of bovine pulmonary artery endothelial cells. The time courses of formation of 3H-labeled and 14C-labeled metabolites of phosphatidyl-[3H]inositol ([3H]Ins-PI) and 1-stearoyl-2-[14C] arachidonoyl-PI were determined at 37 degrees C and pH 7.5 in the presence of 2 mM EDTA with or without a 2 mM excess of Ca2+. The rates of formation of lysophosphatidyl-[3H]inositol ([3H]Ins-lyso-PI) and 1-lyso-2-[14C] arachidonoyl-PI were similar in the presence and absence of Ca2+, and the absolute amounts of the two radiolabeled lyso-PI products formed were nearly identical. This indicated that lyso-PI was formed by phospholipase A1, and phospholipase A2 was not measurable. In the presence of EDTA, [14C]arachidonic acid release from 1-stearoyl-2-[14C]arachidonoyl-PI paralleled release of glycerophospho-[3H]inositol ([3H]GPI) from [3H]Ins-PI. Formation of [3H]GPI was inhibited by treatment with the specific sulfhydryl reagent, 2,2'-dithiodipyridine, and this was accompanied by an increase in [3H]Ins-lyso-PI. In the presence of Ca2+, [14C] arachidonic acid release from 1-stearoyl-2-[14C]arachidonoyl-PI was increased 2-fold and was associated with Ca2+-dependent phospholipase C activity. Under these conditions, [3H]inositol monophosphate production exceeded formation of [14C]arachidonic acid-labeled phospholipase C products, diacylglycerol plus monoacylglycerol, by an amount that was equal to the amount of [14C]arachidonic acid formed in excess of [3H]GPI. Low concentrations of phenylmethanesulfonyl fluoride (15-125 microM) inhibited Ca2+-dependent [14C]arachidonic acid release, and the decrease in [14C] arachidonic acid formed was matched by an equivalent increase in 14C label in diacylglycerol plus monoacyclglycerol. These data supported the existence of two pathways for arachidonic acid release from PI in endothelial cells; a phospholipase A1-lysophospholipase pathway that was Ca2+-independent and a phospholipase C-diacylglycerol lipase pathway that was Ca2+-dependent. The mean percentage of arachidonic acid released from PI via the phospholipase C-diacylglycerol lipase pathway in the presence of Ca2+ was 65 +/- 8%. The mean percentage of nonpolar phospholipase C products of PI metabolized via the diacylglycerol lipase pathway to free arachidonic acid was 28 +/- 3%.  相似文献   

8.
We studied the effects of platelet-activating factor (PAF-acether) on phospholipase activity in renal epithelial cells. When platelet-activating factor was added to renal cells prelabeled with [3H]arachidonic acid, it induced the rapid hydrolysis of phospholipids. Up to 26% of incorporated [3H]arachidonic acid was released into the medium from renal cells. After the addition of PAF-acether, the degradation of phosphatidylcholine, phosphatidylinositol and phosphatidylethanolamine were observed. The amount of [3H]arachidonic acid released were comparable to the losses of phosphatidylcholine, phosphatidylinositol and phosphatidylethanolamine. In renal cells biosynthetically labeled by incorporation of [3H]choline into cellular phosphatidylcholine, lysophosphatidylcholine and sphingomyelin, the range of concentrations of PAF-acether-induced hydrolysis of labeled phosphatidylcholine were approximately equal to the amounts of lysophosphatidylcholine produced. We also observed a transient rise of diacylglycerol after the addition of platelet-activating factor to these cells. To test for action of phospholipase C, the accumulations of [3H]choline, [3H]inositol and [3H]ethanolamine were determined. The radioactivities in choline and ethanolamine showed little or no change. An increase in inositol was detectable within 1 min and it peaked at 3 min. These results indicate that platelet-activating factor stimulates phospholipase A2 and phosphatidylinositol-specific phospholipase C activity in renal epithelial cells. These phospholipase activities were Ca2+ dependent. Moreover, PAF-acether enhanced changes in cell-associated Ca2+. These results suggest that the increased Ca2+ permeability of cell membrane stimulates phospholipases A2 and C in renal epithelial cells. Prostaglandin biosynthesis was also enhanced in these cells by platelet-activating factor.  相似文献   

9.
P30, the major surface antigen of the parasitic protozoan Toxoplasma gondii, can be specifically labeled with [3H]palmitic acid and with myo-[2-3H]inositol. The fatty acid label can be released by treatment of P30 with phosphatidylinositol-specific phospholipase C (PI-PLC). Such treatment exposes an immunological "cross-reacting determinant" first described on Trypanosoma brucei variant surface glycoprotein. PI-PLC cleavage of intact parasites metabolically labeled with [35S]methionine results in the release of intact P30 polypeptide in a form which migrates faster in polyacrylamide gel electrophoresis. These results argue that P30 is anchored by a glycolipid. Results from thin layer chromatography analysis of purified [3H] palmitate-labeled P30 treated with PI-PLC, together with susceptibility to mild alkali hydrolysis and to cleavage with phospholipase A2, suggest that the glycolipid anchor of T. gondii P30 includes a 1,2-diacylglycerol moiety.  相似文献   

10.
In the present work we investigated the effect of serine esterase inhibitors such as 2-nitro-4-carboxyphenyl N,N-diphenylcarbamate (NCDC) and phenylmethylsulfonyl fluoride (PMSF), as well as the effect of mepacrine on thrombin-induced mobilization of arachidonic acid (AA) in human platelets. The inhibitor NCDC (0.6 mM) completely abolished the thrombin-induced activation of phospholipase C, phospholipase A2, and transacylase enzymes, whereas the pretreatment of platelets with PMSF (2 mM) resulted in a highly selective inhibition of phospholipase A2 and transacylase activities, with no marked effect on thrombin-induced activation of phospholipase C. The thrombin-induced release of [3H]AA from phosphatidylcholine and phosphatidylinositol was reduced by 90 and 56%, respectively, in the presence of PMSF. This inhibitor also caused a parallel inhibition in the accumulation of [3H]AA (85%) with little effect on thrombin-induced formation of [3H]phosphatidic acid (5%), whereas mepacrine (0.4 mM) caused a selective inhibition of phospholipase A2 and transacylase activities with concomitant stimulation of [3H]phosphatidic acid formation in intact human platelets. These results demonstrate that NCDC and PMSF (serine esterase inhibitors) do not affect agonist-induced activation of phospholipases that mobilize arachidonic acid through a common site. Our results further demonstrate that the inhibition of [3H]AA release observed in the presence of NCDC, PMSF, and mepacrine is primarily due to their direct effects on enzyme activities, rather than due to their indirect effects through formation of complexes between inhibitors and membrane phospholipids. Based upon these results, we also conclude that the combined hydrolysis of phosphatidylcholine and phosphatidylinositol by phospholipase A2 serves as a major source for eicosanoid biosynthesis in thrombin-stimulated human platelets.  相似文献   

11.
Inositol trisphosphate (IP3) is formed in response to specific agonists that cause activation of phospholipase C and degradation of phosphatidylinositol bisphosphate. IP3 is a second messenger that releases Ca2+ from the dense tubular system to the cytosol in stimulated platelets. Our present information indicates that [3H]IP3 is dephosphorylated to [3H]inositol bisphosphate (IP2) and [3H]inositol monophosphate (IP) by human platelets treated with 0.05-0.10% Triton X-100. This dephosphorylation of [3H]IP3 to [3H]IP2 and [3H]IP is also observed when platelets are permeabilized by electrical stimulation or by 20 micrograms/ml saponin. These detergents or electropermeabilization allow IP3 to access cytosolic IP3 phosphatase. Pretreatment of intact platelets with phorbol dibutyrate and 1-oleyl-2-acetyldiacylglycerol for 30 s, at concentrations that maximally activate protein kinase C, stimulates the conversion of IP3 to IP2 and IP. This suggests a role for protein kinase C in the regulation of IP3 degradation.  相似文献   

12.
The effect of bradykinin on the activation production of inositol 1,4,5-trisphosphate and prostaglandin E2 (PGE2) was examined in the murine osteoblastic cell line, MC3T3-E1. Bradykinin, at concentrations ranging from 1 to 1000 nM, stimulated the production of inositol 1,4,5-trisphosphate 2.5- to 3-fold within 10 s, and elevated cytosolic-free Ca2+, even in the absence of external Ca2+. This process is mediated through the activation of phospholipase C. Bradykinin at the same concentration also stimulated the production of PGE2 and caused a release of 3H radioactivity from the cells prelabeled with [3H]arachidonic acid, probably via the activation of phospholipase A2. Pretreatment of the cells with pertussis toxin inhibited the stimulation of PGE2 production and 3H radioactivity release, while the elevation in cytosolic Ca2+ and the production of inositol 1,4,5-trisphosphate were not altered by toxin-pretreatment. The addition of an unhydrolyzable analog of GTP, guanosine 5'-[gamma-thio]triphosphate (GTP gamma S) to the beta-escin-permeabilized cells prelabeled with [3H]arachidonic acid enhanced the release of 3H radioactivity. The simultaneous presence of bradykinin with GTP gamma S further activated the 3H radioactivity release in the beta-escin-permeabilized cells. These results provide evidence that receptors for bradykinin in the MC3T3-E1 couple stimulating arachidonate release, probably via the activation of phospholipase A2, through a guanine nucleotide binding protein sensitive to pertussis toxin.  相似文献   

13.
Incubation of rabbit platelets with thrombin resulted in rapid accumulations of inositol trisphosphate (IP3) in [3H]inositol-labeled platelets, increases of [3H]arachidonic acid [( 3H]AA) release, and [3H]serotonin secretion from the platelets prelabeled with these labeled compounds. The experiments using phospholipase A2 or C inhibitor suggested that not only phospholipase C but also phospholipase A2 activity plays an important role in serotonin secretion. We then studied the regulatory mechanisms of phospholipase A2 activity. Guanosine 5'-(3-O-thio)triphosphate (GTP gamma S), guanyl-5'-(beta,gamma-iminio)triphosphate), or AlF4- caused a significant liberation of AA in digitonin-permeabilized platelets but not in intact platelets. Thrombin-stimulated AA release was not observed in permeabilized platelets, whereas thrombin acted synergistically with GTP or GTP analogs to stimulate AA release. GTP analog-stimulated AA release was inhibited by guanosine 5'-(2-O-thio)diphosphate) and was also inhibited by decreased Mg2+ concentrations. Thrombin-induced, GTP-dependent AA release, but not IP3 formation, was diminished by 100 ng/ml of pertussis toxin, associated with ADP-ribosylation of membrane 41-kDa protein(s). Thrombin-stimulated AA release from intact platelets and GTP gamma S-stimulated release from permeabilized platelets were both markedly dependent on Ca2+. However, Ca2+ addition could not enhance AA release without GTP gamma S even when Ca2+ was increased up to 10(-4) M in permeabilized platelets. The results show that thrombin-stimulated AA release from rabbit platelets is mainly mediated by phospholipase A2 activity, not by phospholipase C activity, and that Ca2+ is an important factor to the activation of phospholipase A2 but is not the sole factor to the regulation. GTP-binding protein(s) is involved in receptor-mediated activation of phospholipase A2.  相似文献   

14.
The regulation of human platelet responses by cyclic AMP (cAMP) has been investigated by measuring thrombin-stimulated serotonin release, Ca2+ uptake and phospholipase activity. Thrombin-induced 1,2-diacylglycerol (DG) formation as a result of phospholipase C activation was inhibited by pretreatment with dibutyryl cAMP (dbcAMP) in a dose-dependent manner. Subsequent failure to produce phosphatidic acid (PA), which is converted from 1,2-DG by phosphorylation and would serve as intracellular Ca2+ ionophore, appeared to parallel the decrease in Ca2+ uptake activity. Phospholipase A2 activity, monitored by the production of [3H]lysophosphatidylcholine and [3H]lysophosphatidylethanolamine, was also suppressed by dbcAMP. These data indicate that the intracellular cAMP level may be closely associated with Ca2+ uptake and phospholipases activation. In addition, it is suggested that alteration of intracellular cAMP regulates phospholipase activation and consequently platelet responses, perhaps by controlling available Ca2+ content.  相似文献   

15.
Effects of Ca2+ on phosphoinositide breakdown in exocrine pancreas.   总被引:4,自引:3,他引:1       下载免费PDF全文
Recent studies have established that inositol 1,4,5-trisphosphate [I(1,4,5)P3] provides the link between receptor-regulated polyphosphoinositide hydrolysis and mobilization of intracellular Ca2+. Here, we report the effects of Ca2+ on inositol trisphosphate (IP3) formation from phosphatidylinositol bisphosphate (PIP2) catalysed by phospholipase C in intact and electrically permeabilized rat pancreatic acinar cells. In permeabilized cells, the Ca2+-mobilizing agonist caerulein stimulated [3H]IP3 formation when the free [Ca2+] was buffered at 140 nM, the cytosolic free [Ca2+] of unstimulated pancreatic acinar cells. When the free [Ca2+] was reduced to less than 10 nM, caerulein did not stimulate [3H]IP3 formation. Ca2+ in the physiological range stimulated [3H]IP3 formation and reduced the amount of [3H]PIP2 in permeabilized cells. The effects of Ca2+ and the receptor agonist caerulein were additive, but we have not established whether this reflects independent effects on the same or different enzymes. The effect of Ca2+ on [3H]IP3 formation by permeabilized cells was unaffected by inhibitors of the cyclo-oxygenase and lipoxygenase pathways of arachidonic acid metabolism; nor were the effects of Ca2+ mimicked by addition of arachidonic acid. These results suggest that the effects of Ca2+ on phospholipase C activity are not a secondary consequence of Ca2+ activation of phospholipase A2. Changes in free [Ca2+] (less than 10 nM-1.2 mM) did not affect the metabolism of exogenous [3H]I(1,4,5)P3 by permeabilized cells. In permeabilized cells, breakdown of exogenous [3H]IP3 to [3H]IP2 (inositol bisphosphate), and formation of [3H]IP3 in response to receptor agonists were equally inhibited by 2,3-bisphosphoglyceric acid. This suggests that the [3H]IP2 formed in response to receptor agonists is entirely derived from [3H]IP3. In intact cells, [3H]IP3 formation was stimulated when ionomycin was used to increase the cytosolic free [Ca2+]. However, a maximal concentration of caerulein elicited ten times as much IP3 formation as did the highest physiologically relevant [Ca2+]. We conclude that the major effect of receptor agonists on IP3 formation does not require an elevation of cytosolic free [Ca2+], although the increase in free [Ca2+] that normally follows IP3 formation may itself have a small stimulatory effect on phospholipase C.  相似文献   

16.
In this study, we examined the effects of streptokinase on arachidonic acid release and prostacyclin biosynthesis in cultured bovine pulmonary artery endothelial cells. When intact cells were incubated with streptokinase, a significant stimulatory effect on prostacyclin biosynthetic activity in cells was evident without any cellular damage at all concentrations used (1-10,000 units/ml). Streptokinase also caused a marked release of arachidonic acid. It induced rapid phospholipid hydrolysis, resulting in the release of up to 15% of incorporated [3H]arachidonic acid into the medium. After the addition of streptokinase, degradation of phosphatidylcholine and phosphatidylethanolamine was observed and lysophosphatidylcholine and lysophosphatidylethanolamine were produced. We also observed a transient rise in diacylglycerol after the addition of streptokinase. To test for phospholipase C activity, the release of incorporated [3H]choline, [3H]inositol and [3H]ethanolamine into the culture medium was determined. The level of radioactive inositol showed an increase, but the changes in choline and ethanolamine were comparatively small. An increase in inositol was detectable within 1 min after streptokinase addition and peaked after 15 min. Inositol phosphate and inositol trisphosphate were released, and these releases were suppressed by the addition of neomycin (50 microM). These results suggest that streptokinase stimulates phospholipase A2 and C activity, and that prostacyclin biosynthesis is subsequently increased in cultured endothelial cells.  相似文献   

17.
Previous studies of brown adipocytes identified an increased breakdown of phosphoinositides after selective alpha 1-adrenergic-receptor activation. The present paper reports that this response, elicited with phenylephrine in the presence of propranolol and measured as the accumulation of [3H]inositol phosphates, is accompanied by increased release of [3H]arachidonic acid from cells prelabelled with [3H]arachidonic acid. Differences between stimulated arachidonic acid release and formation of inositol phosphates included a requirement for extracellular Ca2+ for stimulated release of arachidonic acid but not for the formation of inositol phosphates and the preferential inhibition of inositol phosphate formation by phorbol 12-myristate 13-acetate. The release of arachidonic acid in response to phenylephrine was associated with an accumulation of [3H]arachidonic acid-labelled diacylglycerol, and this response was not dependent on extracellular Ca2+ but was partially prevented by treatment with the phorbol ester. The release of arachidonic acid was also stimulated by melittin, which increases the activity of phospholipase A2, by ionophore A23187, by lipolytic stimulation with forskolin and by exogenous phospholipase C. The arachidonic acid response to phospholipase C was completely blocked by RHC 80267, an inhibitor of diacylglycerol lipase, but this inhibitor had no effect on release stimulated with melittin or A23187 and inhibited phenylephrine-stimulated release by only 40%. The arachidonate response to forskolin was additive with the responses to either phenylephrine or exogenous phospholipase C. These data indicate that brown adipocytes are capable of releasing arachidonic acid from neutral lipids via triacylglycerol lipolysis, and from phospholipids via phospholipase A2 or by the sequential activities of phospholipase C and diacylglycerol lipase. Our findings also suggest that the action of phenylephrine to promote the liberation of arachidonic acid utilizes both of these reactions.  相似文献   

18.
The involvement of endogenous diacylglycerol production in the stimulation of phosphatidylcholine synthesis by exogenous phospholipase C was examined using a neuroblastoma (LA-N-2) cell line. Phospholipase C treatment (0.1 unit/ml) of intact cells stimulated CTP:phosphocholine cytidylyltransferase activity significantly more effectively than did maximally effective concentrations of the synthetic diacylglycerol sn-1,2-dioctanoylglycerol (1 mM). When added to cells together with phospholipase C, oleic acid, but not dioctanoylglycerol, further increased cytidylyltransferase activity with respect to phospholipase C treatment alone, indicating that the enzyme was not maximally activated by the lipase. This suggests that the lack of additivity of diacylglycerol and phospholipase C reflects a common mechanism of action. The time course of activation of cytidylyltransferase by phospholipase C paralleled that of [3H]diacylglycerol production in cells prelabeled for 24 h with [3H]oleic acid. Diacylglycerol mass was similarly increased. Significant elevations of [3H]oleic acid and total fatty acids occurred later than did the increases in cytidylyltransferase activity and diacylglycerol levels. No significant reduction in total or [3H]phosphatidylcholine was elicited by this concentration of phospholipase C, but higher concentrations (0.5 unit/ml) significantly reduced phosphatidylcholine content. The stimulation of cytidylyltransferase activity by phospholipase C or dioctanoylglycerol was also associated with enhanced incorporation of [methyl-14C]choline into phosphatidylcholine. Dioctanoylglycerol was more effective than phospholipase C at stimulating the formation of [14C]phosphatidylcholine, and the effects of the two treatments were additive. However, further analysis revealed that dioctanoylglycerol served as a precursor for [14C]dioctanoylphosphatidylcholine as well as an activator of cytidylyltransferase; and when corrections were made for this effect, the apparent additivity disappeared. The results indicate that the generation of diacylglycerol by exogenous phospholipase C (and possibly the subsequent production of fatty acids via diacylglycerol metabolism) activates cytidylyltransferase activity in neuronal cells under conditions in which membrane phosphatidylcholine content is not measurably reduced.  相似文献   

19.
The ability of cholinergic agonists to activate phospholipase C in bovine adrenal chromaffin cells was examined by assaying the production of inositol phosphates in cells prelabeled with [3H]inositol. We found that both nicotinic and muscarinic agonists increased the accumulation of [3H]inositol phosphates (mainly inositol monophosphate) and that the effects mediated by the two types of receptors were independent of each other. The production of inositol phosphates by nicotinic stimulation required extracellular Ca2+ and was maximal at 0.2 mM Ca2+. Increasing extracellular Ca2+ from 0.22 to 2.2 mM increased the sensitivity of inositol phosphates formation to stimulation by submaximal concentrations of 1,1-dimethyl-4-phenyl-piperazinium iodide (DMPP) but did not enhance the response to muscarine. Elevated K+ also stimulated Ca2+-dependent [3H]inositol phosphate production, presumably by a non-receptor-mediated mechanism. The Ca2+ channel antagonists D600 and nifedipine inhibited the effects of DMPP and elevated K+ to a greater extent than that of muscarine. Ca2+ (0.3-10 microM) directly stimulated the release of inositol phosphates from digitonin-permeabilized cells that had been prelabeled with [3H]inositol. Thus, cholinergic stimulation of bovine adrenal chromaffin cells results in the activation of phospholipase C by distinct muscarinic and nicotinic mechanisms. Nicotinic receptor stimulation and elevated K+ probably increased the accumulation of inositol phosphates through Ca2+ influx and a rise in cytosolic Ca2+. Because Ba2+ caused catecholamine secretion but did not enhance the formation of inositol phosphates, phospholipase C activation is not required for exocytosis. However, diglyceride and myo-inositol 1,4,5-trisphosphate produced during cholinergic stimulation of chromaffin cells may modulate secretion and other cellular processes by activating protein kinase C and/or releasing Ca2+ from intracellular stores.  相似文献   

20.
Alkaline phosphatase in a wide range of tissues has been shown to be anchored in the membrane by a specific interaction with the polar head group of phosphatidylinositol. It has previously been suggested that the production of low Mr alkaline phosphatase during the commonly used butanol extraction procedure may result from the activation of an endogenous phosphoinositide-specific phospholipase C which removes the 1,2-diacylglycerol responsible for membrane anchoring. This conversion process was investigated in greater detail with human placenta used as the source of alkaline phosphatase. Mr and hydrophobicity of the alkaline phosphatase were determined by gel filtration on TSK-250 and partitioning in Triton X-114, respectively. Alkaline phosphatase extracted from human placental particulate fraction with butanol at pH 5.4 or released by incubation with Staphylococcus aureus phosphatidylinositol-specific phospholipase C produced a form of alkaline phosphatase of Mr approx. 170,000 and relatively low hydrophobicity. By contrast, the butanol extract prepared at pH 8.3 was an aggregated form of Mr approx. 600,000 and was relatively hydrophobic. The effect of a variety of inhibitors and activators on the amount of low Mr alkaline phosphatase produced during butanol extraction revealed that it was a Ca2+- and thiol-dependent process. Proteinase inhibitors had no effect. [3H]Phosphatidylinositol hydrolysis by the particulate fraction, unlike low Mr alkaline phosphatase production, was relatively sensitive to heat inactivation, indicating that the phosphoinositide-specific phospholipases C from cytosol and lysosomes were unlikely to be responsible for conversion. A butanol-stimulated activity which removed the [3H]myristic acid from the variant surface glycoprotein ( [3H]mfVSG) of Trypanosoma brucei was detectable in the human placental particulate fraction. Since this activity was acid active, Ca2+- and thiol-dependent and relatively heat stable, it may be the same as that responsible for production of low Mr alkaline phosphatase. The only 3H-labelled product identified was phosphatidic acid, suggesting that the [3H]mfVSG-cleaving activity is a phospholipase D. These data strongly support the proposal that production of low Mr alkaline phosphatase during butanol extraction is an autolytic process occurring as the result of an endogenous phospholipase. However, they also suggest that the lysosomal and cytosolic phosphoinositide-specific phospholipases C that have previously been described in many mammalian tissues are not responsible for this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号