首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In sodium-free buffer of low ionic strength, the uptake of chloride and sulfate in Vero cells was found to occur mainly by antiport which was very sensitive to inhibition by 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid. Efflux of anions from the cells appeared to energize the uptake. While the uptake of Cl- occurred over a wide pH range, that of SO4(2-) showed a clear maximum at pH 6-7. The rate of efflux of 36Cl- and 35SO4(2-) was strongly increased by the presence of permeant anions in the efflux buffer. Preincubation of the cells at slightly alkaline pH strongly increased the rate of C1- efflux into buffers nominally free of permeant anions, as well as the efflux by exchange. This increase did not occur if the cells were depleted for ATP during the preincubation. Depolarization of the cells reduced the rate of efflux into buffers without permeant anions, indicating that the efflux is at least partly due to net, electrogenic, anion transport. The efflux by antiport was not affected by manipulations of the membrane potential, indicating electroneutral exchange. The uptake and efflux were increased to the same extent with increasing temperature, the activation energies were Ea = 25 kcal/mol of Cl- and Ea = 12 kcal/mol of SO4(2-). Similar anion antiport appears to occur in L, baby hamster kidney, and HeLa S3 cells.  相似文献   

2.
A permanent cell line with inducible expression of the trout anion exchanger protein (trAE1) was constructed in a derivative of human embryonic kidney cells (HEK-293). In the absence of the inducer, muristerone A, the new cell line had no detectable trAE1 protein by Western analysis, biotinylation, and (36)Cl(-) flux. The amount of trAE1 protein increased with increasing dose and incubation time with muristerone A. Anion exchange inhibitors significantly inhibited the inducible flux of anions (i.e., (36)chloride and (35)sulfate) and taurine in isotonic media. The transfected cells had the characteristics of trAE1-mediated transport in intact trout erythrocytes: (1) inhibition by anion transport inhibitors, (2) pH independence over the pH range of 6.5-7.5, and (3) activation of (35)sulfate efflux by external anions in the selective order of Cl > Br > I > or = F. These cells, in contrast to trout erythrocytes, were not sensitive to the anion exchange inhibitor, 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), suggesting some difference in the properties of the transfected AE1. These results demonstrate the inducible expression of new anion transport membrane protein in HEK-293 cells. This is the first expression of trAE1 in a mammalian system.  相似文献   

3.
Cations were generally ineffective in stimulating succinate transport in a succinate dehydrogenase mutant of Bacillus subtilis unless accompanied by polyvalent anions; phosphate and sulfate being particularly active. The Km values for the phosphate or sulfate requirement were approx. 3 mM.Biphasic kinetics were characteristic of both the succinate (Km values 0.1 and 1 mM), and inorganic phosphate (Km values 0.1 and 3 mM) transport system(s). The phosphate transport system(s) was repressed by high inorganic phosphate and a coordinate increase in the transport of phosphate, arsenate, and phosphate-stimulated succinate transport accompanied growth in low phosphate media.A class of arsenate resistant mutants were simultaneously defective in the transport of arsenate, phosphate and succinate when cells were repressed for phosphate transport, however, the transport of these ions was regained in these mutants when grown in low phosphate media. Organic phosphate esters did not stimulate succinate transport in arsenate resistant mutants but were effective after growth in low phosphate media. Growth under phosphate limitation permitted the simultaneous regain of both phosphate and sulfate dependent succinate transport activities whereas sulfate limitation alone was ineffective.Succinate was not transported by an anion exchange diffusion mechanism since phosphate efflux was low or absent during succinate transport.The transport of C4-dicarboxylates in B. subtilis is strongly stimulated by intracellular polyvalent anions. The absence of an anion permeability mechanism precludes succinate transport but partial escape from this restriction is mediated by the derepression of a phosphate transport system.  相似文献   

4.
Structurally diverse anions (folate, 5-formyltetrahydrofolate, AMP, ADP, thiamine pyrophosphate, phosphate, sulfate, and chloride) that are competitive inhibitors of methotrexate influx in L1210 cells also enhance the efflux of methotrexate from these cells. The increase in efflux reaches a maximum of 2- to 4-fold depending upon the anion employed, and the anion concentrations required for half-maximal stimulation of efflux are similar to their Ki values for inhibition of methotrexate influx. A competitive inhibitor of methotrexate uptake (fluorescein-diaminopentane-methotrexate) that is not transported by this system, does not increase methotrexate efflux. These results suggest that the efflux of intracellular methotrexate is coupled to the concomitant uptake of an extracellular anion.  相似文献   

5.
The unicellular protozoan parasite, Crithidia luciliae, responded to osmotic swelling by undergoing a regulatory volume decrease. This process was accompanied by the efflux of amino acids (predominantly alanine, proline and glycine). The relative loss of the electroneutral amino acids proline, valine, alanine and glycine was greater than that for the anionic amino acid, glutamate; there was negligible loss of the cationic amino acids, lysine, arginine and ornithine. The characteristics of amino acid release were investigated using a radiolabeled form of the nonmetabolized alanine analogue α-aminoisobutyrate. α-Aminoisobutyrate efflux was activated within a few seconds of a reduction of the osmolality, and inactivated rapidly (again within a few seconds) on restoration of isotonicity. The initial rate of efflux of α-aminoisobutyrate from cells in hypotonic medium was unaffected by the extracellular amino acid concentration. Hypotonically activated α-aminoisobutyrate efflux (as well as the associated regulatory volume decrease) was inhibited by the sulfhydryl reagent N-ethylmaleimide but was not inhibited by a range of anion transport blockers. As in the efflux experiments, unidirectional influx rates for α-aminoisobutyrate increased markedly following reduction of the osmolality, consistent with the swelling-activated amino acid release mechanism allowing the flux of solutes in both directions. Hypotonically activated α-aminoisobutyrate influx showed no tendency to saturate up to an extracellular concentration of 50 mm. The functional characteristics of the amino acid release mechanism are those of a channel, with a preference for electroneutral and anionic amino acids over cationic amino acids. However, the pharmacology of the system differs from that of the anion-selective channels that are thought to mediate the volume-regulatory efflux of organic osmolytes from vertebrate cells. Received: 13 May 1996/Revised: 9 July 1996  相似文献   

6.
The organic anion transport system in the proximal tubule of the kidney is of major importance for the excretion of a variety of endogenous and potentially toxic exogenous substances. Furthermore, the clearance of model substrates (e.g. para-aminohippurate) of this system is used for the determination of renal blood flow. We investigated regulation of organic anion secretion in a way that allowed us to examine simultaneously regulation of overall transepithelial secretion and to estimate the separate contributions of regulation of the basolateral and apical transport steps to this overall regulation. The data were verified by measurement of initial basolateral uptake rate and initial apical efflux rate. Opossum kidney cells were used as a suitable model system for proximal tubule cells, and [14C]para-aminohippurate was utilized as an organic anion. Stimulation of protein kinase C inhibited transepithelial secretion because of inhibition of both apical efflux and basolateral uptake. Inhibition of the mitogen-activated protein kinase (MAPK) kinase MEK reduced transepithelial secretion via inhibition of basolateral uptake and apical efflux. Epidermal growth factor (EGF) enhanced transepithelial secretion via stimulation of basolateral uptake but did not affect apical efflux. EGF induced stimulation of basolateral uptake was abolished by inhibition of MEK. EGF led to phosphorylation of ERK1/2, which was also abolished by inhibition of MEK. Thus, EGF stimulated basolateral uptake of organic anions via MAPKs. Transepithelial organic anion secretion can be regulated at two sites, at least: basolateral uptake and apical efflux. Both steps are under control of protein kinase C and MAPK. The pathophysiologically relevant growth factor EGF enhances transepithelial secretion via stimulation of basolateral uptake. EGF stimulates basolateral uptake via MEK and ERK1/2. Thus, renal organic anion extraction may be modulated, especially under pathophysiological conditions.  相似文献   

7.
Closing of stomatal pores in the leaf epidermis of higher plants is mediated by long-term release of potassium and the anions chloride and malate from guard cells and by parallel metabolism of malate. Previous studies have shown that slowly activating anion channels in the plasma membrane of guard cells can provide a major pathway for anion efflux while also controlling K+ efflux during stomatal closing: Anion efflux produces depolarization of the guard cell plasma membrane that drives K+ efflux required for stomatal closing. The patch-clamp technique was applied to Vicia faba guard cells to determine the permeability of physiologically significant anions and halides through slow anion channels to assess the contribution of these anion channels to anion efflux during stomatal closing. Permeability ratio measurements showed that all tested anions were permeable with the selectivity sequence relative to Cl- of NO3- > Br- > F- ~ Cl- ~ I- > malate. Large malate concentrations in the cytosol (150 mM) produced a slow down-regulation of slow anion channel currents. Single anion channel currents were recorded that correlated with whole-cell anion currents. Single slow anion channels confirmed the large permeability ratio for nitrate over chloride ions. Furthermore, single-channel studies support previous indications of multiple conductance states of slow anion channels, suggesting cooperativity among anion channels. Anion conductances showed that slow anion channels can mediate physiological rates of Cl- and initial malate efflux required for mediation of stomatal closure. The large NO3- permeability as well as the significant permeabilities of all anions tested indicates that slow anion channels do not discriminate strongly among anions. Furthermore, these data suggest that slow anion channels can provide an efficient pathway for efflux of physiologically important anions from guard cells and possibly also from other higher plant cells that express slow anion channels.  相似文献   

8.
Cellular accumulation and efflux of the anionic fluorescent dye carboxy-2',7'-dichlorofluorescein (CF) were studied in rat liver SDVI cells thought to derive from primitive bile ductules, in order to characterize carrier-related membrane transport of organic anions in epithelial cells. Probenecid, a common blocker of anion transport, was found to strongly enhance CF levels in SDVI cells in a dose-dependent manner through inhibition of dye efflux. Such an outwardly-directed transport was demonstrated to be temperature-dependent and down-regulated by various metabolic inhibitors, therefore outlining its requirement for energy; it was shown to be Na+- and membrane potential-independent and inhibited by anionic drugs such as indomethacin, indoprofen and rifamycin B. These functional features are closed to those described for multidrug resistance-associated protein 1 (MRP1) that was furthermore demonstrated, in contrast to P-glycoprotein, to be expressed in SDVI cells and to lower CF accumulation in MRP1-overexpressing drug-resistant tumor cells. These data therefore suggest that active membrane transport of organic anions such as CF occurs in epithelial cells like cultured liver biliary SDVI cells through a MRP1-related efflux system.  相似文献   

9.
Sulfate efflux from an intracellular pool was observed with both wild-type and cys-11 cells of Neurospora and apparently occurs by way of the sulfate transport system. Efflux requires the presence of external sulfate or the related ions, chromate, selenate, or thiosulfate, and probably occurs by an exchange reaction. The sulfur amino acids, cysteine or methionine, do not promote sulfate efflux. The Km for efflux is much greater than the Km for sulfate uptake, which permits the accumulation of a considerable intracellular pool before efflux becomes significant. Substantial transmembrane movement of sulfate both influx and exit, was found to occur in azidetreated cells, although the net uptake of sulfate was abolished by this inhibitor. Both sulfate uptake and efflux are inhibited by p-chloromercuribenzoate which suggests that the sulfate permease possesses an essential sulfhydryl group.  相似文献   

10.
Membrane destabilization in erythrocytes plays an important role in the premature hemolysis and development of anemia during visceral leishmaniasis (VL). Marked degradation of the anion channel protein band 3 is likely to allow modulation of anion flux across the red cell membrane in infected animals. The present study describes the effect of structural modification of band 3 on phosphate transport in VL using (31)P NMR. The result showed progressive decrease in the rate and extent of phosphate transport during the post-infection period. Interdependence between the intracellular ionic levels seems to be a determining factor in the regulation of anion transport across the erythrocyte membrane in control and infected conditions. Infection-induced alteration in band 3 made the active sites of transport more susceptible to binding with amino reactive agents. Inhibition of transport by oxidation of band 3 and subsequent reversal by reduction using dithiothreitol suggests the contribution of sulfhydryl group in the regulation of anion exchange across the membrane. Quantitation of sulfhydryl groups in the anion channel protein showed the inhibition to be closely related to the decrease of sulfhydryl groups in the infected hamsters. Downregulation of phosphate transport during leishmanial infection may be ascribed to the sulfhydryl modification of band 3 resulting in the impaired functioning of this protein under the diseased condition.  相似文献   

11.
In red cells of several species, the sulfhydryl reagent N-ethylmaleimide activates a Cl- -dependent, ouabain-resistant K+ transport pathway. Here we report our attempts to demonstrate ouabain-resistant Cl- -dependent K+ fluxes stimulated by N-ethylmaleimide in resealed human red cell ghosts using Rb+ as a K+ analogue. In contrast to intact cells, the rate constants of the base level Rb+ efflux in ghosts were similar in NaNO3 and NaCl (okRb = 0.535 +/- 0.079 h-1 and 0.534 +/- 0.085 h-1, respectively), while 1 mM N-ethylmaleimide stimulated Rb+ efflux strongly in NaNO3 (okRb = 14.26 +/- 1.32 h-1) and moderately in NaCl (okRb = 2.73 +/- 0.54 h-1). This effect was dependent on the presence of internal ATP. Stimulation of Rb+ efflux was observed in the presence of greater than or equal to 0.2 mM N-ethylmaleimide and increased at pH values approaching 8.0, consistent with titration of SH groups. N-Ethylmaleimide-stimulated Rb+ efflux was approx. 50% inhibited by 100 microM quinine sulfate whereas 1 microM bumetanide had no effect. In NaCl the N-ethylmaleimide-stimulated efflux saturated with initial internal ghost Rb+ concentration, but rates increased linearly in NaNO3. Replacement of external Na+ with glucamine or choline decreased the N-ethylmaleimide-stimulated Rb+ efflux, suggesting a role for external Na+. N-Ethylmaleimide-stimulated Rb+ efflux was greater in buffers with lipophilic anions such as SCN- or NO3- than in solutions with Cl- or acetate. However, the cation selectivity of the pathway studied was low, as Li+ efflux was also stimulated by N-ethylmaleimide. We conclude that the effect of N-ethylmaleimide on ouabain-resistant cation effluxes of human red cell ghosts is very different from the selective action of N-ethylmaleimide on Rb+ influxes in intact red cells.  相似文献   

12.
The characteristics of the anion transport system in human erythrocyte, which can be modified by eosin 5-isothiocyanate (EITC), were studied using the pH titration method and by measuring the sulfate efflux. Based on the pH dependence of EITC binding to the erythrocyte ghosts, it was found that the reaction rate was maximal at about pH 6.4, and that the pH profile of EITC binding was similar to that of divalent anion transport. The interaction between EITC and ghosts was interpreted by a two-step reaction, a fast ionic-binding reaction and a slow covalent-binding reaction. The induced CD spectrum of the EITC-ghost system was also dependent on pH. The intensity of the CD band at 530 nm was decreased in acidic pH region, and the inflection point was observed at about pH 6.3, indicating a participation of the histidine residue in the interaction of EITC with band 3. In order to characterize the EITC-binding site, the kinetics of sulfate efflux in intact and EITC-modified cells were examined at various pH values. The inhibitory effect of EITC was dependent on pH. From the experimental results, the followings are suggested. The rate of ionic interaction in the early stage is much slower than that in a general ionic reaction. A conformational change may participate in the reaction. The conformation of the EITC-binding site depends on pH, relating to the dissociation of the histidine residues. The EITC molecules act also as a competitive inhibitor to the sulfate efflux after binding covalently to band 3 protein.  相似文献   

13.
Superoxide anion (O2-) generated either by the autoxidation of dihydroxyfumaric acid (DHF) or enzymatically by the xanthine-xanthine oxidase system inhibited the uptake of 2-aminoisobutyric acid (AIB) in thymocytes. The transport of this non-metabolizable amino acid in thymocytes is mediated by a Na+-dependent mechanism. Inhibition of this transport system by O2- was similar to that observed when radiosensitive lymphocytes are subjected to ionizing radiation. As in irradiated thymocytes, O2- generation affected primarily the maximal rate of uptake of the amino acid (i.e. Vmax). No change was observed in the apparent affinity of the amino acid for its carrier (i.e. Km) or the efflux rate of the amino acid. The data suggests that the superoxide anion may be one of the major species responsible for the observed radiation damage to radiosensitive lymphoid cells.  相似文献   

14.
The bidirectional transport properties of cholate have been examined in leukemic L1210 mouse cells and compared with the transport of methotrexate. The cell entry of [3H]cholate was Na(+)-independent, linear with increasing concentrations of substrate, enhanced by decreasing pH, and uneffected by excess unlabeled cholate or by various anion-transport inhibitors and hence had the characteristics of passive diffusion or a pH-dependent mediated process with a high Kt for cholate. The efflux of [3H]cholate, however, could be attributed to carrier-mediated and energy-dependent transport. Efflux was rapid (t1/2 = 1.5 min) and could be increased with glucose and decreased with metabolic inhibitors, and it was inhibited by various compounds including bromosulfophthalein, probenecid, prostaglandin A1, reserpine, verapamil, quinidine, diamide, 1-methyl-3-isobutylxanthine and vincristine. The most potent inhibitor was prostaglandin A1, which reduced efflux by 50% at a concentration of 0.10 microM. Half-maximal inhibition by vincristine occurred at 4.8 microM. The maximum extent of inhibition with most of the inhibitors was 95%, although a lower value was observed with bromosulfophthalein (85%). When cholate efflux was compared with the efflux of methotrexate, both processes responded similarly to changes in the metabolic state of the cell. Moreover, the various inhibitors of cholate efflux also inhibited the efflux of methotrexate and the same concentration of each inhibitor was required for half-maximal inhibition of both processes. The efflux of folate and urate also proceeded via outwardly directed, unidirectional processes which were sensitive to bromosulfophthalein and probenecid. The results suggest that L1210 cells have the capacity for the unidirectional extrusion of cholate, methotrexate and probably other large, structurally dissimilar organic anions and that this efflux occurs via two or more very similar transport systems with a broad anion specificity. The function of an organic anion efflux system in vivo may be to facilitate the extrusion of cytotoxic metabolic anions which are too large to exit via the general anion-exchange carrier of these cells. Similarities in inhibitor specificity were also apparent between unidirectional anion efflux in L1210 cells and the drug efflux pump which is over-produced in cells with multidrug resistance.  相似文献   

15.
Summary A brief review of the data relating the glucose transport system and other membrane functions of red cells to surface sulfhydryl groups is presented. The effect of a variety of sulfhydryl reagents on glucose efflux rates from loaded red cells was studied. Neither iodoacetate nor iodoacetamide at 5mm inhibited efflux. Several maleimide derivatives and disulfides inhibited efflux in 0.7 to 2.0mm concentrations. Organomercury compounds, on the other hand, were active in the 0.07 to 0.1mm range. These data suggest that, if sulfhydryl groups are important in the glucose efflux process, they are not equally accessible to the above reagents; and that the primary effect of these reagents may be on structural elements near membrane sulfhydryl groups.  相似文献   

16.
Summary The molecular mechanism of anion exchange across the human red blood cell membrane was assessed with the fluorescent substrate analog NBD-taurine and the method of continuous monitoring of transport by fluorescence. The efflux of NBD-taurine was studied under a variety of experimental conditions such as temperature, pH and anion composition of cells and media. The temperature profile of NBD-taurine transfer from Cl-loaded cells into Cl media resembled that of Cl self-exchange, whereas that of NBD-taurine transfer from sulfate-loaded cells into sulfate media resembled that of sulfate self-exchange. Although the pH profiles of NBD-taurine transfer from Cl-loaded cells into Cl media and that of Cl self-exchange resembled each other, the analogous transfer with sulfate replacing Cl was markedly different. These and other data were analyzed and found to be consistent with a model which comprises the following: (a) a H+-titratable group in the carrier mechanism; (b) alteration of transport sites between the two sides of the membrane (i.e., ping-pong kinetics); and (c) transmembrane distribution of transport sites which is modulated by pH. It is shown that NBD-taurine transfer represents a tracer flux of a fluorescent substrate which gives a measure for the presence of monovalent transport sites at the inner surface of the membrane. The latter is markedly affected by the relative concentrations of anions and H+ on both sides of the red blood cell membrane.  相似文献   

17.
The kinetics of Cl-SO4-(2) exchange in Ehrlich ascites tumor cells was investigated in an attempt to determine the stoichiometry of this process. When tumor cells, equilibrated in Cl--free, 25 mM SO4-(2) medium are placed in SO4-(2)-free, 25 mm Cl-medium, both the net amount and rate of Cl-uptake far exceeds SO4-(2) loss.. Addition of the anion transport inhibitor SITS (4-acetamido-4,-isothiocyano-stilbene-2,2'-disulfonic acid) greatly reduces sulfate efflux (97%), but has no measurable effect on chloride uptake. Addition of furosemide, a Cl-transport inhibitor, reduces chloride uptake 94% but is without effect on sulfate efflux. These findings suggest that a chloride permeability pathway exists distinct from that utilized by SO4-(2). SITS, when added to furosemide treated cells, further reduces chloride uptake as well as inhibiting sulfate efflux, and under these experimental conditions, a linear relationship exists between SITS-sensitive, net chloride uptake and sulfate loss. The slope of this line is 1.05 (correlation coefficient = 0.996) which suggests the stoichiometry of Cl-SO4-(2) exchange is 1:1. Assuming a 1:1 stoichiometry, measurement of the initial chloride influx and initial sulfate efflux indicate that 92% of net chloride uptake is independent of sulfate efflux. Taken altogether, these results support the contention that the tumor cell possesses a permeability pathway which facilitates the exchange of one sulfate for one chloride. Under conditions where anion transport is not inhibited, this coupling is obscured by a second and quantitatively more important pathway for chloride uptake. This pathway is SITS-insensitive, although partially inhibited by furosemide.  相似文献   

18.
As shown by cytofluorimetric technique, fluorescein anions formed in macrophages due to hydrolysis of fluorescein diacetate (FDA) release into the extracellular medium through the probenecid-inhibitable transport system of organic acids. Technical procedures have been elaborated to record separately the process of FDA hydrolysis characterising the activity of intracellular esterases, and the fluorescein anion transport representing secretion of organic acids by macrophages. It has been established that the tetrapeptide tuftsin stimulates the cell esterase activity without affecting the rate of fluorescein efflux. The peptide KPR (Lys-Pro-Arg) decreases both the esterase activity and the fluorescein anion efflux.  相似文献   

19.
1. In short-circuited toad skin preparations exposed bilaterally to NaCl-Ringer's containing 1 mM SO2(-4), influx of sulfate was larger than efflux showing that the skin is capable of transporting sulfate actively in an inward direction. 2. This active transport was not abolished by substituting apical Na+ for K+. 3. Following voltage activation of the passive Cl- permeability of the mitochondria-rich (m.r.) cells sulfate flux-ratio increased to a value predicted from the Ussing flux-ratio equation for a monovalent anion. 4. In such skins, which were shown to exhibit vanishingly small leakage conductances, the variation of the rate coefficient for sulfate influx (y) was positively correlated with the rate coefficient for Cl- influx (x), y = 0.035 x - 0.0077 cm/sec (r = 0.9935, n = 15). 5. Addition of the phosphodiesterase inhibitor, 3-isobutyl-1-methyl-xanthine to the serosal bath of short-circuited preparations resulted in a significant stimulation of the passive Cl- and SO2(-4) permeabilities. 6. It is suggested that SO2(-4) and Cl- ions are transported along the same pathway of the m.r. cells. Depending on the transport mode of the apical Cl- transport system, electro-diffusion, active transport (sulfate:bicarbonate exchange) and self-exchange diffusion take place. Irrespective of the mechanism of transport, sulfate is probably transported as a monovalent anion species.  相似文献   

20.
The effects of the nonpenetrating amino reactive reagent 4-acetamido-4′-isothiocyano-stilbene-2-2′-dilsulfonic acid (SITS) on anion transport (sulfate, chloride, and inorganic phosphate) were investigated in Ehrlich ascites tumor cells. Short time exposure to SITS produces a reversible inhibition (92%) of sulfate transport. The kinetics of interaction suggest that reversibly bound SITS competitively inhibits sulfate transport, Ki = 3 × 10?6 M. Incubation of tumor cells with SITS (1 × 10?4 M) for longer periods of time results in a time dependent irreversible inhibition of sulfate transport which obeys first order kinetics. The rate coefficient for the inactivation process is 0.040 min?1. The kinetics of irreversible inhibition is best explained by the irreversible binding of SITS to the sulfate transport site, and therefore makes SITS a potentially useful probe for the quantitation of these sites in the tumor cell. The lack of effect of irreversibly bound SITS on either chloride or inorganic phosphate transport points to a specificity in the interaction of SITS with the tumor cell membrane, as well as indicating that an alternate pathway exists for the movement of these anions across the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号