首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Functionally separate intracellular Ca2+ stores in smooth muscle   总被引:8,自引:0,他引:8  
In smooth muscle, release via the inositol 1,4,5-trisphosphate (Ins(1,4,5)P(3)R) and ryanodine receptors (RyR) on the sarcoplasmic reticulum (SR) controls oscillatory and steady-state cytosolic Ca(2+) concentrations ([Ca(2+)](c)). The interplay between the two receptors, itself determined by their organization on the SR, establishes the time course and spatial arrangement of the Ca(2+) signal. Whether or not the receptors are co-localized or distanced from each other on the same store or whether they exist on separate stores will significantly affect the Ca(2+) signal produced by the SR. To date these matters remain unresolved. The functional arrangement of the RyR and Ins(1,4,5)P(3)R on the SR has now been examined in isolated single voltage-clamped colonic myocytes. Depletion of the ryanodine-sensitive store, by repeated application of caffeine, in the presence of ryanodine, abolished the response to Ins(1,4,5)P(3), suggesting that Ins(1,4,5)P(3)R and RyR share a common Ca(2+) store. Ca(2+) release from the Ins(1,4,5)P(3)R did not activate Ca(2+)-induced Ca(2+) release at the RyR. Depletion of the Ins(1,4,5)P(3)-sensitive store, by the removal of external Ca(2+), on the other hand, caused only a small decrease ( approximately 26%) in caffeine-evoked Ca(2+) transients, suggesting that not all RyR exist on the common store shared with Ins(1,4,5)P(3)R. Dependence of the stores on external Ca(2+) for replenishment also differed; removal of external Ca(2+) depleted the Ins(1,4,5)P(3)-sensitive store but caused only a slight reduction in caffeine-evoked transients mediated at RyR. Different mechanisms are presumably responsible for the refilling of each store. Refilling of both Ins(1,4,5)P(3)-sensitive and caffeine-sensitive Ca(2+) stores was inhibited by each of the SR Ca(2+) ATPase inhibitors thapsigargin and cyclopiazonic acid. These results may be explained by the existence of two functionally distinct Ca(2+) stores; the first expressing only RyR and refilled from [Ca(2+)](c), the second expressing both Ins(1,4,5)P(3)R and RyR and dependent upon external Ca(2+) for refilling.  相似文献   

2.
Connexin26 is a ubiquitous gap junction protein that serves critical homeostatic functions. Four single-site mutations found in the transmembrane helices (M1-M4) cause different types of dysfunctional channels: 1), Cx26T135A in M3 produces a closed channel; 2), Cx26M34A in M1 severely decreases channel activity; 3), Cx26P87L in M2 has been implicated in defective channel gating; and 4), Cx26V84L in M2, a nonsyndromic deafness mutant, retains normal dye coupling and electrophysiological properties but is deficient in IP3 transfer. These mutations do not affect Cx26 trafficking in mammalian cells, and make normal-appearing channels in baculovirus-infected Sf9 membranes when imaged by negative stain electron microscopy. Upon dodecylmaltoside solubilization of the membrane fraction, Cx26M34A and Cx26V84L are stable as hexamers or dodecamers, but Cx26T135A and Cx26P87L oligomers are not. This instability is also found in Cx26T135A and Cx26P87L hemichannels isolated from mammalian cells. In this work, coexpression of both wild-type Cx26 and Cx26P87L in Sf9 cells rescued P87L hexamer stability. Similarly, in paired Xenopus oocytes, coexpression with wild-type restored function. In contrast, the stability of Cx26T135A hemichannels could not be rescued by coexpression with WT. Thus, T135 and P87 residues are in positions that are important for oligomer stability and can affect gap junction gating.  相似文献   

3.
Intracellular Ca(2+) waves and spontaneous transient depolarizations were investigated in gallbladder smooth muscle (GBSM) whole mount preparations with intact mucosal layer [full thickness (FT)] by laser confocal imaging of intracellular Ca(2+) and voltage recordings with microelectrodes, respectively. Spontaneous Ca(2+) waves arose most often near the center, but sometimes from the extremities, of GBSM cells. They propagated regeneratively by Ca(2+)-induced Ca(2+) release involving inositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)] receptors and were not affected by TTX and atropine (ATS). Spontaneous Ca(2+) waves and spontaneous transient depolarizations were more prevalent in FT than in isolated muscularis layer preparations and occurred with similar pattern in GBSM bundles. Ca(2+) waves were abolished by the Ins(1,4,5)P(3) receptor inhibitors 2-aminoethoxydiphenyl borate and xestospongin C and by caffeine and cyclopiazonic acid. These events were reduced by voltage-dependent calcium channels (VDCCs) inhibitors diltiazem and nifedipine, by PLC inhibitor U-73122, and by thapsigargin and ryanodine. ACh, CCK, and carbachol augmented Ca(2+) waves and induced Ca(2+) flashes. The actions of these agonists were inhibited by U-73122. These results indicate that in GBSM, discharge and propagation of Ca(2+) waves depend on sarco(endo)plasmic reticulum (SR) Ca(2+) release via Ins(1,4,5)P(3) receptors, PLC activity, Ca(2+) influx via VDCCs, and SR Ca(2+) concentration. Neurohormonal enhancement of GBSM excitability involves PLC-dependent augmentation and synchronization of SR Ca(2+) release via Ins(1,4,5)P(3) receptors. Ca(2+) waves likely reflect the activity of a fundamental unit of spontaneous activity and play an important role in the excitability of GBSM.  相似文献   

4.
Meşe G  Londin E  Mui R  Brink PR  White TW 《Human genetics》2004,115(3):191-199
Connexins (Cx) form gap junctions that allow the exchange of small metabolites and ions. In the inner ear, Cx26 is the major gap junction protein and mutations in the Cx26-encoding gene, GJB2, are the most frequent cause of autosomal recessive non-syndromic hearing loss (DFNB1). We have functionally analyzed five Cx26 mutations associated with DFNB1, comprising the following single amino-acid substitutions: T8M, R143W, V153I, N206S and L214P. Coupling of cells expressing wild-type or mutant Cx26 was measured in the paired Xenopus oocyte assay. We found that the R143W, V153I and L214P mutations were unable to form functional channels. In contrast, the T8M and N206S mutants did electrically couple cells, though their voltage gating properties were different from wild-type Cx26 channels. The electrical coupling of oocytes expressing the T8M and N206S mutants suggest that these channels may retain high permeability to potassium ions. Therefore, deafness associated with Cx26 mutations may not only depend on reduced potassium re-circulation in the inner ear. Instead, abnormalities in the exchange of other metabolites through the cochlear gap junction network may also produce deafness.  相似文献   

5.
Cortisol potentiated norepinephrine (NE)-mediated contractions in ovine uterine arteries (UA). We tested the hypothesis that cortisol regulated alpha(1)-adrenoceptor-mediated pharmacomechanical coupling differentially in nonpregnant UA (NUA) and pregnant UA (PUA). Cortisol (10 ng/ml for 24 h) significantly increased contractile coupling efficiency of alpha(1)-adrenoceptors in NUA, but increased alpha(1)-adrenoceptor density in PUA. Cortisol potentiated NE-induced inositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)] synthesis in both NUA and PUA, but increased coupling efficiency of alpha(1)-adrenoceptors to Ins(1,4,5)P(3) synthesis only in NUA. Carbenoxolone alone did not affect NE-mediated Ins(1,4,5)P(3) production, but significantly enhanced cortisol-mediated potentiation of NE-stimulated Ins(1,4,5)P(3) synthesis in PUA. In addition, cortisol potentiated the NE-induced increase in Ca(2+) concentration in PUA, but increased NE-mediated contraction for a given amount of Ca(2+) concentration in NUA. Collectively, the results indicate that cortisol potentiates NE-mediated contractions differentially in NUA and PUA, i.e., by upregulating alpha(1)-adrenoceptor density leading to increased Ca(2+) mobilization in PUA while increasing alpha(1)-adrenoceptor coupling efficiency and myofilament Ca(2+) sensitivity in NUA. In addition, the results suggest that pregnancy increases type 2 11 beta-hydroxysteroid dehydrogenase activity in the UA.  相似文献   

6.
Using the low-affinity fluorescent Ca(2+) indicators, Mag-Fura-2 and Mag-Fura Red, we studied light- and InsP(3)-induced Ca(2+) release in permeabilized microvillar photoreceptors of the medicinal leech, Hirudo medicinalis. Two major components of the phosphoinositide signaling pathway, phospholipase-C and the InsP(3) receptor, were characterized immunologically and appropriately localized in photoreceptors. Whereas phospholipase-C was abudantly expressed in photoreceptive microvilli, InsP(3) receptors were found mostly in submicrovillar endoplasmic reticulum (SER). Permeabilization of the peripheral plasma membrane with saponin allowed direct measurements of luminal free Ca(2+) concentration (Ca(L)) changes. Confocal Ca(2+) imaging using Mag-Fura Red demonstrated that Ins(1,4,5)P(3) mobilizes Ca(2+) from SER. As detected with Mag-Fura-2, a brief 50ms light flash activated rapid Ca(2+) depletion of SER, followed by an effective refilling within 1min of dark adaptation after the light flash. Sensitivity to Ins(1,4,5)P(3) of the Ca(2+) release from SER in leech photoreceptors was accompanied by irreversible uncoupling of phototransduction from Ca(2+) release. Depletion of Ca(2+) stores was induced by Ins(1,4,5)P(3)(EC(50)= 4.75 microM) and the hyper-potent agonist adenophostin A (EC(50)/40nM) while the stereoisomer L-myo Ins(1,4,5)P(3) was totally inactive. Ins(1,4,5)P(3)- or adenophostin A-induced Ca(2+) release was inhibited by 0.1-1mg/ml heparin. The Ca(2+) pump inhibitors, cyclopiazonic acid and thapsigargin, in the presence of Ins(1,4,5)P(3), completely depleted Ca(2+) stores in leech photoreceptors.  相似文献   

7.
Appropriate pollen germination is crucial for plant reproduction. Previous studies have revealed the importance of dehydration in maintaining pollen dormancy; here, we show that phosphatidylinositol pathway-controlled Ins(1,4,5)P(3)/Ca(2+) levels are crucial for maintaining pollen dormancy in Arabidopsis thaliana. An interesting phenotype, precocious pollen germination within anthers, results from a disruption of inositol polyphosphate 5-phosphatase 12 (5PT12). The knockout mutant 5pt12 has normal early pollen development and pollen dehydration, and exhibits hypersensitive ABA responses, indicating that precocious pollen germination is not caused either by abnormal dehydration or by suppressed ABA signaling. Deficiency of 5PT13 (a close paralog of 5PT12) synergistically enhances precocious pollen germination. Both basal Ins(1,4,5)P(3) levels and endogenous Ca(2+) levels are elevated in pollen from 5pt12 mutants, and 5pt12 5pt13 double mutants show an even higher precocious germination rate along with much higher levels of Ins(1,4,5)P(3)/Ca(2+). Strikingly, exogenous Ca(2+) stimulates the germination of wild-type pollen at floral stage 12, even in very low humidity, both in vitro and in vivo, and treatment with BAPTA, a [Ca(2+)](cyt) inhibitor, reduces the precocious pollen germination rates of 5pt12, 5pt13 and 5pt12 5pt13 mutants. These results indicate that the increase in the levels of Ins(1,4,5)P(3)/Ca(2+) caused by deficiency of inositol polyphosphate 5-phosphatases is sufficient to break pollen dormancy and to trigger early germination. The study reveals that independent of dehydration, the control of Ins(1,4,5)P(3)/Ca(2+) levels by Inositol polyphosphate 5-phosphatases is crucial for maintaining pollen dormancy.  相似文献   

8.
Spontaneous action potentials and Ca(2+) transients were investigated in intact gallbladder preparations to determine how electrical events propagate and the cellular mechanisms that modulate these events. Rhythmic phasic contractions were preceded by Ca(2+) flashes that were either focal (limited to one or a few bundles), multifocal (occurring asynchronously in several bundles), or global (simultaneous flashes throughout the field). Ca(2+) flashes and action potentials were abolished by inhibiting sarcoplasmic reticulum (SR) Ca(2+) release via inositol (1,4,5)-trisphosphate [Ins(1,4,5)P(3)] channels with 2-aminoethoxydiphenyl borate and xestospongin C or by inhibiting voltage-dependent Ca(2+) channels (VDCCs) with nifedipine or diltiazem or nisoldipine. Inhibiting ryanodine channels with ryanodine caused multiple spikes superimposed upon plateaus of action potentials and extended quiescent periods. Depletion of SR Ca(2+) stores with thapsigargin or cyclopiazonic acid increased the frequency and duration of Ca(2+) flashes and action potentials. Acetylcholine, carbachol, or cholecystokinin increased synchronized and increased the frequency of Ca(2+) flashes and action potentials. The phospholipase C (PLC) inhibitor U-73122 did not affect Ca(2+) flash or action potential activity but inhibited the excitatory effects of acetylcholine on these events. These results indicate that Ca(2+) flashes correspond to action potentials and that rhythmic excitation in the gallbladder is multifocal among gallbladder smooth muscle bundles and can be synchronized by excitatory agonists. These events do not depend on PLC activation, but agonist stimulation involves activation of PLC. Generation of these events depends on Ca(2+) entry via VDCCs and on Ca(2+) mobilization from the SR via Ins(1,4,5)P(3) channels.  相似文献   

9.
We have studied the Ca(2+)-dependence and wortmannin-sensitivity of the initial inositol 1,4,5-trisphosphate (Ins(1,4,5)P(3)) response induced by activation of either histamine or muscarinic receptors in smooth muscle from guinea pig urinary bladder. Activation of H(1) receptors with histamine (100 microM) produced a significant elevation in Ins(1,4,5)P(3) levels with only 5s stimulation and in the presence of external Ca(2+). However, this response was abolished fully by either the prolonged absence of external Ca(2+) or the depletion of internal Ca(2+) stores with thapsigargin (100nM) or ryanodine (10 microM). In contrast, the same conditions only slightly reduced the initial Ins(1,4,5)P(3) response induced by carbachol. The prolonged incubation of smooth muscle in 10 microM wortmannin to inhibit type III PI 4-kinase abolished both the early histamine-evoked Ins(1,4,5)P(3) and Ca(2+) responses. Conversely, wortmannin did not alter Ca(2+) release induced by carbachol, despite a partial reduction of its Ins(1,4,5)P(3) response. Collectively, these data indicate that the detectable histamine-induced increase in Ins(1,4,5)P(3) is more the consequence of Ca(2+) release from internal stores than a direct activation of phospholipase C by H(1) receptors. In addition, the effect of wortmannin implies the existence of a Ca(2+)-dependent amplification loop for the histamine-induced Ins(1,4,5)P(3) response in smooth muscle.  相似文献   

10.
Cellular signaling mediated by inositol (1,4,5)trisphosphate (Ins(1, 4,5)P(3)) results in oscillatory intracellular calcium (Ca(2+)) release. Because the amplitude of the Ca(2+) spikes is relatively invariant, the extent of the agonist-mediated effects must reside in their ability to regulate the oscillating frequency. Using electroporation techniques, we show that Ins(1,4,5)P(3), Ins(1,3,4, 5)P(4), and Ins(1,3,4,6)P(4) cause a rapid intracellular Ca(2+) release in resting HeLa cells and a transient increase in the frequency of ongoing Ca(2+) oscillations stimulated by histamine. Two poorly metabolizable analogs of Ins(1,4,5)P(3), Ins(2,4,5)P(3), and 2,3-dideoxy-Ins(1,4,5)P(3), gave a single Ca(2+) spike and failed to alter the frequency of ongoing oscillations. Complete inhibition of Ins(1,4,5)P(3) 3-kinase (IP3K) by either adriamycin or its specific antibody blocked Ca(2+) oscillations. Partial inhibition of IP3K causes a significant reduction in frequency. Taken together, our results indicate that Ins(1,3,4,5)P(4) is the frequency regulator in vivo, and IP3K, which phosphorylates Ins(1,4, 5)P(3) to Ins(1,3,4,5)P(4), plays a major regulatory role in intracellular Ca(2+) oscillations.  相似文献   

11.
Inositol 1,4,5-trisphosphate (Ins(1,4,5)P3), an intracellular second messenger produced from the hydrolysis of phosphatidylinositol 4,5-bisphosphate, interacts with cytoplasmic membrane structures to elicit the release of stored Ca2+. Ins(1,4,5)P3-induced Ca2+ mobilization is mediated through high affinity receptor binding sites; however, the biochemical mechanism coupling receptor occupation with Ca2+ channel opening has not been identified. In studies presented here, we examined the effects of naphthalenesulfonamide calmodulin antagonists, W7 and W13, and a new selective antagonist, CGS 9343B, on Ca2+ mobilization stimulated by Ins(1,4,5)P3 in neoplastic rat liver epithelial (261B) cells. Intact fura-2 loaded cells stimulated by thrombin, a physiological agent that causes phosphatidylinositol 4,5-bisphosphate hydrolysis and Ins (1,4,5)P3 release, responded with a rise in cytoplasmic free Ca2+ levels that was dose dependently inhibited by W7(Ki = 25 microM), W13 (Ki = 45 microM), and CGS 9343B (Ki = 110 microM). Intracellular Ca2+ release stimulated by the addition of Ins(1,4,5)P3 directly to electropermeabilized 261B cells was similarly inhibited by pretreatment with anti-calmodulin agents. W7 and CGS 9343B, which potently blocked Ca2+/calmodulin-dependent protein kinase, had no significant effect on protein kinase A or C in dose range required for complete inhibition of Ca2+ mobilization. Ca2+ release channels and Ca2+-ATPase pump activity were also unaffected by calmodulin antagonist treatment. These results indicate that calmodulin is tightly associated with the intracellular membrane mechanism coupling Ins(1,4,5)P3 receptors to Ca2+ release channels  相似文献   

12.
The physiological importance of connexin-26 (Cx26) gap junctions in regulating auditory function is indicated by the finding that autosomal recessive DFNB1 deafness is associated with mutations of the Cx26 gene. To investigate the pathogenic role of Cx26 mutation in recessive hearing loss, four putative DFNB1 Cx26 mutants (V84L, V95M, R127H, and R143W) were stably expressed in N2A cells, a communication-deficient cell line. In N2A cells expressing (R127H) Cx26 gap junctions, macroscopic junctional conductance and ability of transferring neurobiotin between transfected cells were greatly reduced. Despite the formation of defective junctional channels, immunoreactivity of (R127H) Cx26 was mainly localized in the cell membrane and prominent in the region of cell-cell contact. Mutant (V84L), (V95M), or (R143W) Cx26 protein formed gap junctions with a junctional conductance similar to that of wild-type Cx26 junctional channels. (V84L), (V95M), or (R143W) Cx26 gap junctions also permitted neurobiotin transfer between pairs of transfected N2A cells. The present study suggests that (R127H) mutation associated with hereditary sensorineural deafness results in the formation of defective Cx26 gap junctions, which may lead to the malfunction of cochlear gap junctions and hearing loss. Further studies are required to determine the exact mechanism by which mutant (V84L), (V95M), and (R143W) Cx26 proteins, which are capable of forming functional homotypic junctional channels in N2A cells, cause the cochlear dysfunction and sensorineural deafness.  相似文献   

13.
D-Myo-inositol 1,4,5-trisphosphate (Ins[1,4-,5]P3) inhibits rat heart sarcolemmal Ca(2+)-ATPase activity (T. H. Kuo, Biochem. Biophys. Res. Commun. 152: 1111, 1988). We have studied the effect and mechanism of action of Ins(1,4,5)P3 and related inositol phosphates on human red cell membrane Ca(2+)-ATPase (EC 3.6.1.3) activity in vitro. At 10(-6) M, Ins(1,4,5)P3 and D-myo-inositol 4,5-bisphosphate (Ins[4,5]P2) inhibited human erythrocyte membrane Ca(2+)-ATPase activity in vitro by 42 and 31%, respectively. D-Myo-inositol 1,3,4,5-tetrakisphosphate, D-myo-inositol 1,4-bisphosphate, and D-myo-inositol 1-phosphate were not inhibitory. Enzyme inhibition by Ins(1,4,5)P3 was blocked by heparin. Exogenous purified calmodulin also stimulated red cell membrane Ca(2+)-ATPase activity; this stimulation was inhibited by Ins(1,4,5)P3. Ins(4,5)P2 and Ins(1,4,5)P3, but not Ins(1,4)P2, inhibited the binding of [125I]calmodulin to red cell membranes. Thus, specific inositol phosphates reduce plasma membrane Ca(2+)-ATPase activity and enhancement of the latter in vitro by purified calmodulin. The mechanism of these effects may in part relate to inhibition by inositol phosphates of binding of calmodulin to erythrocyte membranes.  相似文献   

14.
The functions of ryanodine receptors (RyRs) and inositol (1,4,5)-trisphosphate receptors [Ins(1,4,5)P(3)Rs] in adrenergically activated contractions of pressurized rat mesenteric small arteries were investigated. Caffeine (20 mM) but not phenylephrine (PE; 10 microM) facilitated the depletion of smooth muscle sarcoplasmic reticulum (SR) Ca(2+) stores by ryanodine (40 microM). In ryanodine-treated SR-depleted arteries, 1) Ca(2+) sparks were absent, 2) low concentrations of PE failed to elicit either vasoconstriction or normal asynchronous propagating Ca(2+) waves, and 3) high [PE] induced abnormally slow oscillatory contractions (vasomotion) and synchronous Ca(2+) oscillations. In ryanodine-treated SR-depleted arteries denuded of endothelium, high [PE] induced steady contraction and steady elevation of intracellular [Ca(2+)]. In contrast, 2-aminoethyl diphenylborate (2-APB), a putative blocker of Ins(1,4,5)P(3)Rs, produced opposite effects to ryanodine: 1) Ca(2+) sparks were present; 2) Ca(2+) waves were absent; 3) caffeine-releasable Ca(2+) stores were intact; and 4) PE, even at high concentrations on endothelial-denuded arteries, failed to elicit contraction, asynchronous Ca(2+) waves, or synchronous Ca(2+) oscillations or maintained elevated [Ca(2+)]. We conclude that 1) Ins(1,4,5)P(3)Rs are essential for adrenergically induced asynchronous Ca(2+) waves and the associated steady vasoconstriction, 2) RyRs are not appreciably opened during adrenergic activation (because PE did not facilitate the development of the effects of ryanodine), and 3) Ins(1,4,5)P(3)Rs are not essential for Ca(2+) sparks. This provides an explanation of the fact that adrenergic stimulation decreases the frequency of Ca(2+) sparks (previously reported) while simultaneously increasing the frequency of asynchronous propagating Ca(2+) waves; different SR Ca(2+)-release channels are involved.  相似文献   

15.
The proposed Ca(2+)-signaling actions of inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4), formed by phosphorylation of the primary Ca(2+)-mobilizing messenger, inositol 1,4,5-trisphosphate (Ins(1,4,5)P3), were analyzed in NIH 3T3 and CCL39 fibroblasts transfected with rat brain Ins(1,4,5)P3 3-kinase. In such kinase-transfected cells, the conversion of Ins(1,4,5)P3 to Ins(1,3,4,5)P4 during agonist stimulation was greatly increased, with a concomitant reduction in Ins(1,4,5)P3 levels and attenuation of both the cytoplasmic Ca2+ increase and the Ca2+ influx response. This reduction in Ca2+ signaling was observed during activation of receptors coupled to guanine nucleotide-binding proteins (thrombin and bradykinin), as well as with those possessing tyrosine kinase activity. Single-cell Ca2+ measurements in CCL39 cells revealed that the smaller averaged Ca2+ response of enzyme-transfected cells was due to a marked increase in the number of cells expressing small and slow Ca2+ increases, in contrast to the predominantly large and rapid Ca2+ responses of vector-transfected controls. There was no evidence that high Ins(1,3,4,5)P4 levels promote Ca2+ mobilization, Ca2+ entry, or Ca2+ sequestration. These data indicate that Ins(1,4,5)P3 is the major determinant of the agonist-induced Ca2+ signal in fibroblasts and that Ins(1,3,4,5)P4 does not appear to contribute significantly to this process. Instead, Ins(1,4,5)P3 3-kinase may serve as a negative regulator of the Ca(2+)-phosphoinositide signal transduction mechanism.  相似文献   

16.
Saponin-treated liver cells and a microsomal fraction were used to characterize the mechanism of the Ca2+ release induced by different bile acids. The saponin-treated cells accumulated 0.8-1 nmol/mg of protein of the medium Ca2+ in a nonmitochondrial, high affinity, and inositol (1,4,5)-trisphosphate (Ins(1,4,5)P3)-sensitive Ca2+ pool. Three of five bile acids tested, lithocholate and the conjugates taurolithocholate and taurolithocholate sulfate, released 85% of the Ca2+ pool within 45-60 s and with ED50 from 16 to 28 microM. Ins(1,4,5)P3 released 80% from the same Ca2+ pool with an ED50 of 0.3 microM. The Ca2+-Mg2+-ATPase inhibitor vanadate (1 mM) had no effect on the Ca2+ released by the bile acids and Ins(1,4,5)P3. The Ins(1,4,5)P3-binding antibiotic neomycin (1 mM) and the receptor competitor heparin (16 micrograms/ml) abolished the releasing effect of Ins(1,4,5)P3 but had no effect on the bile acid-mediated Ca2+ release. The 45Ca2+ accumulated by the microsomal fraction (8 nmol of 45Ca2+/mg of protein) was released by the bile acids within 45-90 s and with an ED50 of 17 microM. In contrast, the bile acids had no effect on the Ca2+ permeability of other natural and artificial membranes. The resting 45Ca2+ influx of intact cells (0.45 nmol/mg of protein/min), the 45Ca2+ accumulated by mitochondria (2-13 nmol of 45Ca2+/mg of protein), and the 45Ca2+ trapped in sonicated phosphatidylcholine vesicles (5 mM 45Ca2+) were not altered by the different bile acids. These results suggest that the Ca2+ release initiated by lithocholate and its conjugates results from a direct action on the Ca2+ permeability of the Ins(1,4,5)P3-sensitive pool. It is not mediated by Ins(1,4,5)P3 or via activation of the Ins(1,4,5)P3 receptor, and it is specific for the membrane of the internal pool.  相似文献   

17.
Abrupt developmental changes occur in structural form and function of connexin (Cx) channels in the mouse mammary gland. Microarray study shows that the principal connexin isoform in epithelial cells during pregnancy is Cx26, up-regulated and persisting from the virgin. After parturition, there is rapid induction of Cx32. In epithelial plasma membranes, size exclusion chromatography reveals that Cx32 organizes initially with Cx26 as heteromeric (Cx26-Cx32) hemichannels and later in heteromeric and homomeric Cx32 channels. Dramatic alterations of connexin channel function following these developmental changes in channel composition are characterized using native channels reconstituted into liposomes. Changes to channel stoichiometry increase the allowable physical size limits of permeant after parturition; the new Cx32 channels are wider than channels containing Cx26. Most remarkably, heteromeric Cx26-Cx32 channels are selectively permeability to adenosine 3',5' cyclic phosphate (cAMP), guanosine 3',5' cyclic phosphate (cGMP), and inositol 1,4,5-triphosphate (IP(3)), whereas homomeric channels are not. Homomeric Cx26 and heteromeric channels with high Cx26/Cx32 stoichiometry are also inhibited by taurine, an osmolyte playing a key role in milk protein synthesis. Taurine effect is reduced where heteromeric channels contain Cx32 > Cx26 and eliminated when channels contain only Cx32. Connexin channel stoichiometry, permeability, and chemical gating character change in precisely the desired fashion after parturition to maximize molecular and electrical coupling to support coordinated milk secretion.  相似文献   

18.
Fertilization increases both cytosolic Ca(2+) concentration and oxygen consumption in the egg but the relationship between these two phenomena remains largely obscure. We have measured mitochondrial oxygen consumption and the mitochondrial NADH concentration on single ascidian eggs and found that they increase in phase with each series of meiotic Ca(2+) waves emitted by two pacemakers (PM1 and PM2). Oxygen consumption also increases in response to Ins(1,4,5)P(3)-induced Ca(2+) transients. Using mitochondrial inhibitors we show that active mitochondria sequester cytosolic Ca(2+) during sperm-triggered Ca(2+) waves and that they are strictly necessary for triggering and sustaining the activity of the meiotic Ca(2+) wave pacemaker PM2. Strikingly, the activity of the Ca(2+) wave pacemaker PM2 can be restored or stimulated by flash photolysis of caged ATP. Taken together our observations provide the first evidence that, in addition to buffering cytosolic Ca(2+), the egg's mitochondria are stimulated by Ins(1,4,5)P(3)-mediated Ca(2+) signals. In turn, mitochondrial ATP production is required to sustain the activity of the meiotic Ca(2+) wave pacemaker PM2.  相似文献   

19.
Although an axoplasmic Ca(2+) increase is associated with an exocytotic acetylcholine (ACh) release from the parasympathetic postganglionic nerve endings, the role of voltage-dependent Ca(2+) channels in ACh release in the mammalian cardiac parasympathetic nerve is not clearly understood. Using a cardiac microdialysis technique, we examined the effects of Ca(2+) channel antagonists on vagal nerve stimulation- and ischemia-induced myocardial interstitial ACh releases in anesthetized cats. The vagal stimulation-induced ACh release [22.4 nM (SD 10.6), n = 7] was significantly attenuated by local administration of an N-type Ca(2+) channel antagonist omega-conotoxin GVIA [11.7 nM (SD 5.8), n = 7, P = 0.0054], or a P/Q-type Ca(2+) channel antagonist omega-conotoxin MVIIC [3.8 nM (SD 2.3), n = 6, P = 0.0002] but not by local administration of an L-type Ca(2+) channel antagonist verapamil [23.5 nM (SD 6.0), n = 5, P = 0.758]. The ischemia-induced myocardial interstitial ACh release [15.0 nM (SD 8.3), n = 8] was not attenuated by local administration of the L-, N-, or P/Q-type Ca(2+) channel antagonists, by inhibition of Na(+)/Ca(2+) exchange, or by blockade of inositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)] receptor but was significantly suppressed by local administration of gadolinium [2.8 nM (SD 2.6), n = 6, P = 0.0283]. In conclusion, stimulation-induced ACh release from the cardiac postganglionic nerves depends on the N- and P/Q-type Ca(2+) channels (with a dominance of P/Q-type) but probably not on the L-type Ca(2+) channels in cats. In contrast, ischemia-induced ACh release depends on nonselective cation channels or cation-selective stretch activated channels but not on L-, N-, or P/Q type Ca(2+) channels, Na(+)/Ca(2+) exchange, or Ins(1,4,5)P(3) receptor-mediated pathway.  相似文献   

20.
Ca(2+) within intracellular stores (luminal Ca(2+)) is believed to play a role in regulating Ca(2+) release into the cytosol via the inositol (1,4,5)-trisphosphate (Ins(1,4,5)P(3))-gated Ca(2+) channel (or Ins(1,4,5)P(3) receptor). To investigate this, we incorporated purified Type 1 Ins(1,4,5)P(3) receptor from rat cerebellum into planar lipid bilayers and monitored effects at altered luminal [Ca(2+)] using K(+) as the current carrier. At a high luminal [Ca(2+)] and in the presence of optimal [Ins(1,4,5)P(3)] and cytosolic [Ca(2+)], a short burst of Ins(1,4,5)P(3) receptor channel activity was followed by complete inactivation. Lowering the luminal [Ca(2+)] caused the channel to reactivate indefinitely. At luminal [Ca(2+)], reflecting a partially empty store, channel activity did not inactivate. The addition of cytosolic ATP to a channel inactivated by high luminal [Ca(2+)] caused reactivation. We provide evidence that luminal Ca(2+) is exerting its effects via a direct interaction with the luminal face of the receptor. Activation of the receptor by ATP may act as a device by which cytosolic Ca(2+) overload is prevented when the energy state of the cell is compromised.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号