首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The organic mercurial p-chloromercuribenzensulfonic acid (PCMBS) reversibly increases fluxes of sodium and potassium across the human red blood cell membrane. We examined the effect of different monovalent anions on cation fluxes stimulated by PCMBS. A substantial portion of the fluxes of both cations was found to have a specific anion requirement for chloride or bromide, and was not observed when chloride was replaced by nitrate, acetate or methylsulfate. The chloride-dependent component of the cation fluxes was only observed when the cells were exposed to PCMBS concentrations of 0.5 mM or greater. Furosemide (1 mM) did not inhibit the PCMBS-stimulated cation fluxes. The observed anion specificity is directly associated with the transport process rather than PCMBS binding to the membrane. A portion of the potassium transport stimulated by PCMBS appears to involve K+-K+ exchange; however, Na+ + K+ cotransport is not stimulated by this sulfhydryl reagent.  相似文献   

2.
The effects of a number of growth substances on the absorption and translocation of iron were studied in bean plants. Gibberellic acid application to the trifoliate leaf enhanced absorption of Fe applied to the primary leaf. 2-Chloroethyltrimethylammonium chloride increased absorption by the primary leaf while 6-furfurylaminopurine (kinetin) increased the transport of Fe from the primary leaf to other parts. When the roots were pretreated with gibberellic acid, the absorption of Fe by the primary leaf and subsequent transport to the trifoliate leaves were increased. Triiodobenzoic acid reduced the absorption and transport of Fe.  相似文献   

3.
The effect of several monovalent cations on the Ca2+-induced aggregation and fusion of sonicated phosphatidylserine (PS) vesicles is studied by monitoring the mixing of internal compartments of the fusing vesicles using the Tb/dipicolinic acid assay. The dissociation of the fluorescent Tb-dipicolinate complex which accompanies Ca2+-induced vesicle fusion is determined directly and is due to leakage of contents and entry of medium into vesicles. PS vesicles do not fuse when the medium contains only monovalent cations (at pH 7.4), regardless of the cation concentration or whether there is aggregation of the vesicles. A mass-action kinetic analysis of the data provides estimates for the rate of aggregation, C11, and for the rate of fusion per se, f11. Values of f11 increase dramatically with reduction in monovalent cation concentration and are primarily determined by binding ratios of Ca2+ or Mg2+ per PS. With 300 mM of monovalent cations, the fusion per se is essentially rate-limiting to the overall fusion process and values of f11 are significantly larger with the monovalent cations which bind the least, i.e., according to the sequence tetramethylammonium greater than K+ greater than Na+ greater than Li+. With monovalent cations in concentrations of 100 mM or less, the aggregation is rate-limiting to the fusion and the overall initial fusion rates are determined by an interplay between aggregation and fusion rates. Under conditions of fast aggregation, the Ca2+-induced fusion of small PS vesicles can occur within milliseconds or less.  相似文献   

4.
Spectroscopic properties of chicken iodopsin were investigated in correlation with the concentration of chloride in digitonin extracts. When chloride in the extract was depleted by extensive dialysis, chloride-depleted iodopsin (absorption maximum, 512 nm) was formed. It was converted to chloride-bound iodopsin (absorption maximum, 562 nm) by the addition of chloride in the extract. There existed an equilibrium between two forms of iodopsin with a dissociation constant of 0.8 mM chloride. The chromophore-transfer reaction from iodopsin to scotopsin or B-photopsin, the protein moiety of chicken rhodopsin or chicken blue-sensitive cone pigment, respectively, in digitonin extract was also investigated in correlation with the concentrations of chloride, other monovalent and divalent anions, and detergent. The chromophore of chloride-depleted iodopsin was easily transferred to scotopsin in the extract, resulting in formation of rhodopsin. On the other hand, chloride-bound iodopsin was fairly stable even in the presence of scotopsin, indicating that the reaction is inhibited by binding of chloride to iodopsin. The chromophore-transfer reaction to B-photopsin was also observed from chloride-depleted iodopsin but not from chloride-bound iodopsin. The reaction was observable in the 10% digitonin extract as well as in the 2% digitonin extract. The reaction was also observed when 25 mM Na2SO4 was present in the mixture instead of NaCl, but was not when 67 mM NaNO3 was present. All these facts suggest that the chloride binding site of iodopsin does not accept a divalent anion such as SO4(2+), but does accept a monovalent anion such as Cl- or NO3-, which causes inhibition of the chromophore transfer.  相似文献   

5.
Sodium and other monovalent cations (added as chloride salts) inhibited adenylate cyclase of luteinized rat ovary. Sodium chloride (150 mM) inhibited basal enzyme activity by 20%. Sodium chloride inhibition was enhanced to 34-54% under conditions of enzyme stimulation by guanine nucleotides (GTP and its nonhydrolyzable analog 5'-guanylyl imidodiphosphate), fluoride anion, and agonists (ovine luteinizing hormone (oLH) and the beta-adrenergic catecholamine isoproterenol) acting at stimulatory receptors linked to adenylate cyclase. Sodium chloride inhibition was dependent on salt concentration over a wide range (25-800 mM) as well as the concentrations of GTP and oLH. Inhibition by NaCl was of rapid onset and appeared to be reversible. The order of inhibitory potency of monovalent cations was Li+ greater than Na+ greater than K+. The role of individual components of adenylate cyclase in the inhibitory action of monovalent cations was examined. Exotoxins of Vibrio cholerae and Bordetella pertussis were used to determine respectively the involvement of the stimulatory and inhibitory guanine nucleotide-binding regulatory components (Ns and Ni) in NaCl inhibition. Sodium chloride inhibited cholera toxin-activated adenylate cyclase activity by 29%. Ni did not appear to mediate cation inhibition of adenylate cyclase because pertussis toxin did not attenuate inhibition by NaCl. Enzyme stimulation by agents (forskolin and Mn2+) thought to activate the catalytic component directly was not inhibited by NaCl but was instead significantly enhanced. Sodium chloride (150 mM) increased both the Kd for high-affinity binding of oLH to 125I-human chorionic gonadotropin binding sites and the Kact for oLH stimulation of adenylate cyclase by sevenfold. In contrast, NaCl had no appreciable effect on either isoproterenol binding to (-)-[125I]iodopindolol binding sites or the Kact for isoproterenol stimulation of adenylate cyclase. The results suggest that in luteinized rat ovary monovalent cations uncouple, or dissociate, Ns from the catalytic component and, in a distinct action, reduce gonadotropin receptor affinity for hormone. Dissociation of the inhibitory influence of Ni from direct catalytic activation could account for NaCl enhancement of forskolin- and Mn2+-associated activities. On the basis of these results, the spectrum of divergent stimulatory and inhibitory effects of monovalent cations on adenylate cyclase activities in a variety of tissues may be interpreted in terms of differential enzyme susceptibilities to cation-induced uncoupling of N and catalytic component functions.  相似文献   

6.
The interaction of monovalent cations with holotryptophanase has been examined by spectral and kinetic methods. Using S-orthonitrophenyl-L-cysteine as a substrate, activation by the following monovalent cations was demonstrated; values of KA (mM, in italics) and Vmax (mumol min-1 mg) aare given in parentheses: Li+ (54 +/- 11.6, 4.3 +/- 0.28), Na+ (40 +/- 0.03, 18) K+ (1.44 +/- 0.06, 41.1 +/- 3.5), Tl+ (0.95 +/- 0.1, 39 +/- 4.4), NH4+ (0.23 +/- 0.01, 57.9 +/- 2.6), Rb+ (3.5 +/- 0.3, 33.5 +/- 1.8), Cs+ (14.6 +/- 2.6, 21 +/- 2.3). It was demonstrated by circular dichroic spectra that the competitive inhibitor, ethionine, interacts with the holoenzyme in the absence of activating monovalent cations, although it does not undergo labilization of the alpha proton. On addition of monovalent cation to the holoenzyme-ethionine complex, a marked increase occurs in absorption of 508 nm resulting from labilization of the alpha proton with formation of the quinoid form of the pyridoxal phosphate moiety of the enzyme-substrate complex at the catalytic center (Morino, Y., and Snell, E.E. (1967) J. Biol. Chem; 242, 2800-2809. The extent of formation of this quinoid intermediate was linearly related to the maximum velocity observed with each cation except NH4+, which was anomalously active. When measured at 500 nm, the change in absorption ranged from deltaA = 0.45 mg-1 of tryptophanase for NH4+ to 0.06 mg-1 for Li+. Two moles of thallium (I) were bound per mole of subunit. The data are most consistent with the interaction of monovalent cation at or near the catalytic center in such a way that it either participates directly in the reaction or is required for the critical alignment of one or more functional groups necessary for catalysis.  相似文献   

7.
To better understand the significance of 22Na+ accumulation by poliovirus-infected HeLa cells (C. N. Nair, J. W. Stowers, and B. Singfield, J. Virol. 31:184, 1979), measurements of cellular Na+, K+, and Cl- contents, volume, and density were carried out at intervals after infection. In addition, the rates of 22Na+ washout from infected and control cells were determined. Starting at around 3 h postinfection, the Na+ content of infected cells increased, whereas the K+ content decreased progressively, resulting in a net loss in the monovalent cation content decreased progressively, resulting in a net loss in the monovalent cation content per cell. The loss in cellular chloride content exceeded that in monovalent cation content. The kinetics of 22Na+ washout from infected and control cells revealed the presence of an extra Na+ compartment in infected cells. A net loss in the monovalent cation activity of infected cells was indicated by the loss of cell water as reflected in a decrease in cell volume and an increase in cell density. In spite of a net loss in monovalent cation content per cell, Na+ accumulation coupled with cell shrinkage resulted in substantial increases in the concentrations of not only Na+ but also K+. The results suggested a possible role for tonicity change in the morphological lesions of poliovirus cytotoxicity.  相似文献   

8.
The apparent specificity of activation of lysine-sensitive aspartokinase (E.C.2.7.2.4) from E. coli by monovalent cations differs depending on the assay used and on the Mg2+ concentration. Activity is nearly absolutely dependent on and is highly specific for a monovalent cation in the aspartate semialdehyde dehydrogenase coupled assay or the adenosine triphosphate-adenosine diphosphate exchange assay. Little specificity for monovalent cations is observed using the aspartyl hydroxamate assay. Activation and specificity are also altered by Mg2+ concentrations at a constant 5 mM nucleotide concentration. At a low (1.25 or 1.6 mM)Mg2+ concentration, monovalent cation activation and specificity are nearly absolute. Less dependence on monovalent cations and less specificity are observed at a higher Mg2+ concentration (6 mM). Li+ inhibits aspartokinase competitively with respect to either K+ or NH4+. Monovalent cations are also thermoprotective and differential thermal inactivation experiments at 56 degrees C reveal that NH4+ and K+, either of which will produce maximum catalytic activity, interact differently with aspartokinase. K+ interacts with positive cooperativity, whereas NH4+ does not. K+, NH4+, and Na+ are about equally effective in enhancing the dissociation of the aspartokinase-aspartylphosphate complex. Li+ is less effective.  相似文献   

9.
NASSERY  H.; BAKER  D. A. 《Annals of botany》1975,39(3):621-625
Preferential absorption of potassium over sodium has been observedwith excised radish roots using a wide range of concentrationsin the bathing medium. This result is contrary to the situationobserved in most other plants which have been investigated,where it is found that at high external concentrations (>1·0mM) the uptake of potassium is less specific and the rate ofsodium absorption exceeds that of potassium. In radish rootscalcium does not interact with the monovalent cation absorptionin the higher range of concentration and the sodium absorptionis not sensitive to chloride-sulphate substitution. These resultsare discussed in relation to salinity-tolerance and potassium:sodiuminteractions.  相似文献   

10.
The influence of membrane surface charge on cation uptake was investigated in protoplasts prepared from roots of mung bean (Vigna radiata L.). Confocal laser scanning microscopy showed that a fluorescent trivalent cation accumulated to very high concentrations at the surface of the protoplasts when they were incubated in medium containing low concentrations of Ca or other cations, but that this accumulation could be completely reversed by suppression of membrane surface negativity by high cation concentrations. Influx of 63Ni was strongly reduced by a range of divalent cations. Increasing the Ca concentration in the medium from 25 microM to 10 mM inhibited 63Ni influx by more than 85%. 63Ni influx was also inhibited by 85% by reducing the pH from 7 to 4. Computation of the activity of Ni at the membrane surface under the various treatment conditions showed that Ni uptake was closely correlated with its activity at the membrane surface but not with its concentration in the bulk medium. It was concluded that the effects on Ni uptake of addition of monovalent, divalent and trivalent cations, and of variations in pH are all consistent with the proposition that the activity of Ni at the membrane surface is the major determinant of the rate of Ni influx into mung bean protoplasts. It is proposed that the surface charge on the plasma membrane will influence the membrane transport of most charged molecules into cells.  相似文献   

11.
Nitric oxide (NO) is an important signaling molecule in plants. The present study aims to investigate the downstream signaling pathways of NO in plants using a proteomic approach. Phaseolus aureus (mung bean) leaf was treated with sodium nitroprusside (SNP), which releases nitric oxide in the form of nitrosonium cation (NO+) upon light irradiation. Changes in protein expression profiles of the SNP treated mung bean leaf were analyzed by two-dimensional gel electrophoresis (2-DE). Comparison of 2-DE electropherograms revealed seven down-regulated and two up-regulated proteins after treatment with 0.5 mM SNP for 6 h. The identities of these proteins were analyzed by a combination of peptide mass fingerprinting and post-source decay using a matrix-assisted-laser-desorption-ionisation-time-of-flight (MALDI-TOF) mass spectrometer. Six out of these nine proteins found are involved in either photosynthesis or cellular metabolism. We have taken our investigation further by studying the effect of NO+ on glucose contents in mung bean leaves. Our results clearly demonstrated that NO+ rapidly and drastically decrease the amount of glucose in mung bean leaves. Moreover, four out of nine of these proteins are chloroplastic isoforms. These results suggested that chloroplasts might be one of the main sub-cellular targets of NO in plants.  相似文献   

12.
Potassium transport system of Rhodopseudomonas capsulata   总被引:6,自引:5,他引:1       下载免费PDF全文
Rhodopseudomonas capsulata required potassium (or rubidium or cesium as analogs of potassium) for growth. These cations were actively accumulated by the cells by a process following Michaelis-Menten saturation kinetics. The monovalent cation transport system had Km's of 0.2 mM K+, 0.5 mM Rb+, and 2.6 mM Cs+. The rates of uptake of substrates by the potassium transport system varied with the age of the culture, although the affinity constant for the substrates remained constant. The maximal velocity of uptake of K+ was lower in aerobically grown cells than in photosynthetically grown cells, although the Km's for K+ and for Rb+ were about the same.  相似文献   

13.
Tyrosine phenol-lyase (TPL) from Citrobacter freundii is activated about 30-fold by monovalent cations, the most effective being K(+), NH(4)(+), and Rb(+). Previous X-ray crystal structure analysis has demonstrated that the monovalent cation binding site is located at the interface between subunits, with ligands contributed by the carbonyl oxygens of Gly52 and Asn262 from one chain and monodentate ligation by one of the epsilon-oxygens of Glu69 from another chain [Antson, A. A., Demidkina, T. V., Gollnick, P., Dauter, Z., Von Tersch, R. L., Long, J., Berezhnoy, S. N., Phillips, R. S., Harutyunyan, E. H., and Wilson, K. S. (1993) Biochemistry 32, 4195]. We have studied the effect of mutation of Glu69 to glutamine (E69Q) and aspartate (E69D) to determine the role of Glu69 in the activation of TPL. E69Q TPL is activated by K(+), NH(4)(+), and Rb(+), with K(D) values similar to wild-type TPL, indicating that the negative charge on Glu69 is not necessary for cation binding and activation. In contrast, E69D TPL exhibits very low basal activity and only weak activation by monovalent cations, even though monovalent cations are capable of binding, indicating that the geometry of the monovalent cation binding site is critical for activation. Rapid-scanning stopped-flow kinetic studies of wild-type TPL show that the activating effect of the cation is seen in an acceleration of rates of quinonoid intermediate formation (30-50-fold) and of phenol elimination. Similar rapid-scanning stopped-flow results were obtained with E69Q TPL; however, E69D TPL shows only a 4-fold increase in the rate of quinonoid intermediate formation with K(+). Preincubation of TPL with monovalent cations is necessary to observe the rate acceleration in stopped flow kinetic experiments, suggesting that the activation of TPL by monovalent cations is a slow process. In agreement with this conclusion, a slow increase (k < 0.5 s(-)(1)) in fluorescence intensity (lambda(ex) = 420 nm, lambda(em) = 505 nm) is observed when wild-type and E69Q TPL are mixed with K(+), Rb(+), and NH(4)(+) but not Li(+) or Na(+). E69D TPL shows no change in fluorescence under these conditions. High concentrations (>100 mM) of all monovalent cations result in inhibition of wild-type TPL. This inhibition is probably due to cation binding to the ES complex to form a complex that releases pyruvate slowly.  相似文献   

14.
A previously undescribed plasma membrane cation channel from Phaseolus vulgaris bean roots was studied after its incorporation into planar lipid bilayers. The channel allows the passage of monovalent cations excluding the flux of both anions (Cl-) and divalent cations (Ca2+). The channel presents a high ( approximately 213 pS) conductance in (300 mM Kcis+)/ (150 mMKtrans+) conditions. The probability of opening (Po) is low at all the tested voltages, but it increases significantly at trans-negative potentials. Permeability ratios (Pcation/PK+) under bi-ionic conditions follow the sequence: K+ (1.0)>NH4+ (0.86)>Na+ (0.78). Under the same conditions, the conductance ratios (gamma cation/gamma K+) follow the sequence: NH4+ (1.1) > or = K+ (1.0)>Na+ (0.80). The low probability of opening exhibited by the channel upon its incorporation into a lipid bilayer makes it a candidate to regulation by (and therefore participation in) cellular signalling networks.  相似文献   

15.
The interactions of monovalent cations and of the K+-specific ionophore, valinomycin, with the Ca2+-ATPase of skeletal muscle of sarcoplasmic reticulum have been studied in the absence of cation gradients by their effects on enzyme turnover and on the ATP plus Ca2+-dependent enhanced fluorescence of the ATP analogue, 2',3'-O-(2,4,6-trinitrocyclohexyldienylidine)-adenosine 5'-triphosphate (TNP-ATP) (Watanabe, T., and Inesi, G. (1982) J. Biol. Chem. 257, 11510-11516). Monovalent cations decreased turnover-dependent TNP-ATP fluorescence in the series K+ greater than Rb+ approximately equal to Cs+ greater than Na+ greater than Li+ (K0.5 = 49, 73, 75, 94, and 246 mM, respectively), consistent with the known specificity of the monovalent cation binding site that stimulates turnover and E-P hydrolysis. Valinomycin (200 nmol/mg), in the absence of monovalent cations, decreased ATPase activity by 30% and abolished the stimulatory effects of 150 mM KCl or NaCl on turnover. The ionophore alone enhanced TNP-ATP fluorescence by 20% and altered the specificity and affinity of the site that inhibited TNP-ATP fluorescence to Cs+ greater than Rb+ greater than K+ approximately equal to Na+ greater than Li+ (K0.5 = 79, 111, 134, 136, and 270 mM, respectively), which follows the Hofmeister series for effectiveness of monovalent lyotropic cations. TNP-ATP binding was not affected by either monovalent cations or valinomycin. Inhibition of turnover-dependent TNP-ATP fluorescence appears to be a useful parameter for monitoring monovalent cation binding to the Ca2+-ATPase. It is concluded that the ionophore interacts directly with the Ca2+-ATPase, independent of its K+ conductance effects on the lipid bilayer, and modifies the affinity and specificity of the monovalent cation site, either by direct interaction or by the formation of a valinomycin-monovalent cation-enzyme complex.  相似文献   

16.
Phosphate uptake by yeast at pH 7.2 is mediated by two mechanisms, one of which has a Km of 30 micronM and is independent of sodium, and a sodium-dependent mechanism with a Km of 0.6 micronM, both Km values with respect to monovalent phosphate. The sodium-dependent mechanism has two sites with affinity for Na+, with affinity constants of 0.04 and 29 mM. Also lithium enhances phosphate uptake; the affinity constants for lithium are 0.3 and 36 mM. Other alkali ions do not stimulate phosphate uptake at pH 7.2. Ribidium has no effect on the stimulation of phosphate uptake by sodium. Phosphate and arsenate enhance sodium uptake at pH 7.2. The Km of this stimulation with regard to monovalent orthophosphate is about equal to that of the sodium-dependent phosphate uptake. The properties of the cation binding sites of the phosphate uptake mechanism and those of the phosphate-dependent cation transport mechanism have been compared. The existence of a separate sodium-phosphate cotransport system is proposed.  相似文献   

17.
Absorption and translocation of Cd in bush beans (Phaseolus vulgaris)   总被引:4,自引:0,他引:4  
A series of experiments was conducted to examine some factors affecting the absorption and translocation of Cd in young bean plants ( Phaseolus vulgaris L. cv. Bulgarian). Absorption of Cd by roots was reduced in the presence of other cations of increasing valency or ionic radii. Reduced absorption was also found in the presence of EDTA. Concentration of Cd in exudates from excised stems increased with increased passage of Cd solutions and approached the concentration in the external medium (4.5 μ M Cd). This was apparently associated with saturation of adsorption sites in the stems. The stem behaved as a cation exchange column resulting in a chromatographic distribution of Cd towards the top of the plant. These experiments indicate that Cd existed in the xylem fluid as a free or weakly complexed cation. Additional experiments showed that the total amount of Cd absorbed by bean plants was elevated by inducing higher transpiration rates. The effect of water flux on Cd transport indicated apoplastic flow to the stele.  相似文献   

18.
In rat liver mitochondria, the macrocyclic polyether, dibenzo-18-crown-6 (polyether XXVIII) inhibits the oxidation of NAD-dependent substrates, as stimulated by ADP, uncouplers and valinomycin plus K+. It does not inhibit the oxidation of succinate. It is concluded that polyether XXVIII inhibits electron transfer in the NADH-CoQ span of the respiratory chain. This is a process that is reversed by menadione. Inhibition of oxidation of NAD-dependent substrates in K+-depleted mitochondria induced by the polyether is reversed by concentrations of K+ higher than 60 mM, and also by Li+, a cation that does not complex with polyether XXVIII. As assayed by swelling mitochondria, reversal of the inhibition of electron transfer is accompanied by influx of monovalent cations. Polyether XXVIII also inhibits in submitochondrial particles the aerobic oxidation of NADH, but not that of succinate; this inhibition is also reversed by K+ at high concentrations, and Li+. The data are consistent with the hypothesis that a monovalent cation is required for maximal rates of electron transport in the NADH-CoQ span of the respiratory chain.  相似文献   

19.
Summary The apical membrane of the intestinal epithelium of the freshwater prawn,Macrobrachium rosenbergii, has been found to possess an apparently unique allosteric carrier mechanism for the simultaneous cotransport of sodium, chloride, and calcium from mucosal solution to cytosol. Influxes of the two monovalent ions individually were sigmoidal functions of their respective luminal concentrations, and their kinetics followed the Hill equation for homotropic cooperativity between identical binding ligands. Increased influx of chloride sigmoidally stimulated enhanced influx of sodium, suggesting the occurrence of heterotropic cooperativity between the dissimilar ligands. Calcium entry displayed hyperbolic (Michaelis-Menten) kinetics, and this cation was found to act both as an allosteric activator of sodium entry on the shared carrier system by associating with a discrete divalent cation binding site, as well as functioning as a possible competitive inhibitor of the monovalent cation binding process. Chloride was neither an allosteric activator nor inhibitor, but appeared to function mainly as an affinity modifier of the allosteric protein for sodium.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号