首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tereshina  V. M. 《Microbiology》2005,74(3):247-257
The parallel synthesis of heat shock proteins and trehalose in response to heat shock did not allow the role of these compounds in the acquisition of thermotolerance by fungal cells to be established for a long time. This review analyses experimental data obtained with the use of mutant fungal strains and shows differences in the thermoprotective functions of trehalose and heat shock proteins in relation to cell membranes and macromolecules. The main emphasis has been placed on data demonstrating the thermoprotective role of trehalose in fungi, the present-day understanding of its biological functions, and mechanisms of trehalose interaction with subcellular structures and cell macromolecules.__________Translated from Mikrobiologiya, Vol. 74, No. 3, 2005, pp. 293–304. p ]Original Russian Text Copyright © 2005 by Tereshina.  相似文献   

2.
The role of ergosterol in yeast stress tolerance, together with heat shock proteins (hsps) and trehalose, was examined in a sterol auxotrophic mutant of Saccharomyces cerevisiae. Ergosterol levels paralleled viability data, with cells containing higher levels of the sterol exhibiting greater tolerances to heat and ethanol. Although the mutant synthesised hsps and accumulated trehalose upon heat shock to the same levels as the wild-type cells, these parameters did not relate to stress tolerance. These results indicate that the role of ergosterol in stress tolerance is independent of hsps or trehalose.  相似文献   

3.
4.
The cellular response to heat stress includes the induction of a group of proteins called the Heat Shock Proteins, whose functions include the synthesis of the thermoprotectant trehalose, refolding of denatured proteins, and ubiquitin- and proteasome-dependent degradation. Recent studies show that simply increasing the activity of ubiquitin- and proteasome-dependent degradation can replace the essential functions played by the induction of heat shock proteins during a heat stress. These results suggest that accumulation of denatured or aggregated proteins is the reason for the loss of cell viability due to heat stress.  相似文献   

5.
The cellular response to heat stress includes the induction of a group of proteins called the Heat Shock Proteins, whose functions include the synthesis of the thermoprotectant trehalose, refolding of denatured proteins, and ubiquitin- and proteasome-dependent degradation. Recent studies show that simply increasing the activity of ubiquitin- and proteasome-dependent degradation can replace the essential functions played by the induction of heat shock proteins during a heat stress. These results suggest that accumulation of denatured or aggregated proteins is the reason for the loss of cell viability due to heat stress.  相似文献   

6.
Genetically related diploid strains of Saccharomyces cerevisiae that accumulate varied amounts of trehalose during starvation for nitrogen have been constructed. Strains that produced greater than 5% trehalose (dry cell weight) were more tolerant of thermal, or freeze-thaw stresses than strains that produced less than 4% trehalose. Thus trehalose appears to play a role in stress tolerance of yeast. The significance of these results is that, for the first time, a series of related, unmutated strains have been used to test the effect of trehalose on thermotolerance. Previous studies employed either heat shock treatment, or mutated strains to provide trehalose variations, and as such the contribution of the disaccharide to stress tolerance could not necessarily be separated from other factors such as heat shock proteins.  相似文献   

7.
Trehalose turnover during abiotic stress in arbuscular mycorrhizal fungi   总被引:1,自引:0,他引:1  
  相似文献   

8.
The response of a yeast unsaturated fatty acid auxotroph, defective in delta 9-desaturase activity, to heat and ethanol stresses was examined. The most heat- and ethanol-tolerant cells had membranes enriched with oleic acid (C18:1), followed in order by cells enriched with linoleic (C18:2) and linolenic (C18:3) acids. Cells subjected to a heat shock (25-37 degrees C for 30 min) accumulated trehalose and synthesized typical heat shock proteins. Although there were no obvious differences in protein profiles attributable to lipid supplementation of the mutant, relative protein synthesis as determined by densitometric analysis of autoradiograms suggested that hsp expression was different. However, there was no consistent relationship between the synthesis of heat shock proteins and the acquisition of thermotolerance in the lipid supplemented auxotroph or related wild type. Furthermore, trehalose accumulation was also not closely related to stress tolerance. On the other hand, the data presented indicated a more consistent role for membrane lipid composition in stress tolerance than trehalose, heat shock proteins, or ergosterol. We suggest that the sensitivity of C18:3-enriched cells to heat and ethanol may be attributable to membrane damage associated with increases in membrane fluidity and oxygen-derived free radical attack of membrane lipids.  相似文献   

9.
Changes in the levels of three structurally and functionally different important thermoprotectant molecules, namely small heat shock proteins (sHsps), trehalose, and lipids, have been investigated upon heat shock in Schizosaccharomyces pombe. Both α-crystallin-type sHsps (Hsp15.8 and Hsp16) were induced after prolonged high-temperature treatment but with different kinetic profiles. The shsp null mutants display a weak, but significant, heat sensitivity indicating their importance in the thermal stress management. The heat induction of sHsps is different in wild type and in highly heat-sensitive trehalose-deficient (tps1Δ) cells; however, trehalose level did not show significant alteration in shsp mutants. The altered timing of trehalose accumulation and induction of sHsps suggest that the disaccharide might provide protection at the early stage of the heat stress while elevated amount of sHsps are required at the later phase. The cellular lipid compositions of two different temperature-adapted wild-type S. pombe cells are also altered according to the rule of homeoviscous adaptation, indicating their crucial role in adapting to the environmental temperature changes. Both Hsp15.8 and Hsp16 are able to bind to different lipids isolated from S. pombe, whose interaction might provide a powerful protection against heat-induced damages of the membranes. Our data suggest that all the three investigated thermoprotectant macromolecules play a pivotal role during the thermal stress management in the fission yeast.  相似文献   

10.
11.
Nuclear localization and the heat shock proteins   总被引:1,自引:0,他引:1  
The highly conserved heat shock proteins (HSP) belong to a subset of cellular proteins that localize to the nucleus. HSPs are atypical nuclear proteins in that they localize to the nucleus selectively, rather than invariably. Nuclear localization of HSPs is associated with cell stress and cell growth. This aspect of HSPs is highly conserved with nuclear localization occurring in response to a wide variety of cell stresses. Nuclear localization is likely important for at least some of the heat shock proteins’ protective functions; little is known about the function of the heat shock proteins in the nucleus. Nuclear localization is signalled by the presence of a basic nuclear localization sequence (NLS) within a protein. Though most is known about HSP 72’s nuclear localization, the NLS(s) has not been definitively identified for any of the heat shock proteins. Likely more is involved than presence of a NLS; since the heat shock proteins only localize to the nucleus under selective conditions, nuclear localization must be regulated. HSPs also function as chaperons of nuclear transport, facilitating the movement of other macromolecules across the nuclear membrane. The mechanisms involved in chaperoning of proteins by HSPs into the nucleus are still being identified.  相似文献   

12.
Nine indigenous cachaça Saccharomyces cerevisiae strains and one wine strain were compared for their trehalose metabolism characteristics under non-lethal (40°C) and lethal (52°C) heat shock, ethanol shock and combined heat and ethanol stresses. The yeast protection mechanism was studied through trehalose concentration, neutral trehalase activity and expression of heat shock proteins Hsp70 and Hsp104. All isolates were able to accumulate trehalose and activate neutral trehalase under stress conditions. No correlation was found between trehalose levels and neutral trehalase activity under heat or ethanol shock. However, when these stresses were combined, a positive relationship was found. After pre-treatment at 40°C for 60 min, and heat shock at 52°C for 8 min, eight strains maintained their trehalose levels and nine strains improved their resistance against lethal heat shock. Among the investigated stresses, heat treatment induced the highest level of trehalose and combined heat and ethanol stresses activated the neutral trehalase most effectively. Hsp70 and Hsp104 were expressed by all strains at 40°C and all of them survived this temperature although a decrease in cell viability was observed at 52°C. The stress imposed by more than 5% ethanol (v/v) represented the best condition to differentiate strains based on trehalose levels and neutral trehalase activity. The investigated S. cerevisiae strains exhibited different characteristics of trehalose metabolism, which could be an important tool to select strains for the cachaça fermentation process.  相似文献   

13.
Although the microcrustacean Daphnia is becoming an organism of choice for proteomic studies, protein expression across its life cycle have not been fully characterized. Proteomes of adult females, juveniles, asexually produced embryos, and the ephippia‐resting stages containing sexually produced diapausing freezing‐ and desiccation‐resistant embryos are analyzed. Overall, proteins with known molecular functions are more likely to be detected than proteins with no detectable orthology. Similarly, proteins with stronger gene model support in two independent genome assemblies can be detected, than those without such support. This suggests that the proteomics pipeline can be applied to verify hypothesized proteins, even given questionable reference gene models. In particular, upregulation of vitellogenins and downregulation of actins and myosins in embryos of both types, relative to juveniles and adults, and overrepresentation of cell‐cycle related proteins in the developing embryos, relative to diapausing embryos and adults, are observed. Upregulation of small heat‐shock proteins and peroxidases, as well as overrepresentation of stress‐response proteins in the ephippium relative to the asexually produced non‐diapausing embryos, is found. The ephippium also shows upregulation of three trehalose‐synthesis proteins and downregulation of a trehalose hydrolase, consistent with the role of trehalose in protection against freezing and desiccation.  相似文献   

14.
In this study, we attempted to characterize the physiological response to oxidative stress by heat shock in Saccharomyces cerevisiae KNU5377 (KNU5377) that ferments at a temperature of 40 degrees C. The KNU5377 strain evidenced a very similar growth rate at 40 degrees C as was recorded under normal conditions. Unlike the laboratory strains of S. cerevisiae, the cell viability of KNU5377 was affected slightly under 2 hours of heat stress conditions at 43 degrees C. KNU5377 evidenced a time-dependent increase in hydroperoxide levels, carbonyl contents, and malondialdehyde (MDA), which increased in the expression of a variety of cell rescue proteins containing Hsp104p, Ssap, Hsp30p, Sod1p, catalase, glutathione reductase, G6PDH, thioredoxin, thioredoxin peroxidase (Tsa1p), Adhp, Aldp, trehalose and glycogen at high temperature. Pma1/2p, Hsp90p and H+-ATPase expression levels were reduced as the result of exposure to heat shock. With regard to cellular fatty acid composition, levels of unsaturated fatty acids (USFAs) were increased significantly at high temperatures (43 degrees C), and this was particularly true of oleic acid (C18:1). The results of this study indicated that oxidative stress as the result of heat shock may induce a more profound stimulation of trehalose, antioxidant enzymes, and heat shock proteins, as well as an increase in the USFAs ratios. This might contribute to cellular protective functions for the maintenance of cellular homeostasis, and may also contribute to membrane fluidity.  相似文献   

15.
The disaccharide trehalose, which accumulates dramatically during heat shock and stationary phase in many organisms, enhances thermotolerance and reduces aggregation of denatured proteins. Here we report a new role for trehalose in protecting cells against oxygen radicals. Exposure of Saccharomyces cerevisiae to a mild heat shock (38 degrees C) or to a proteasome inhibitor (MG132) induced trehalose accumulation and markedly increased the viability of the cells upon exposure to a free radical-generating system (H(2)O(2)/iron). When cells were returned to normal growth temperature (28 degrees C) or MG132 was removed from the medium, the trehalose content and resistance to oxygen radicals decreased rapidly. Furthermore, a mutant unable to synthesize trehalose was much more sensitive to killing by oxygen radicals than wild-type cells. Providing trehalose exogenously enhanced the resistance of mutant cells to H(2)O(2). Exposure of cells to H(2)O(2) caused oxidative damage to amino acids in cellular proteins, and trehalose accumulation was found to reduce such damage. After even brief exposure to H(2)O(2), the trehalose-deficient mutant exhibited a much higher content of oxidatively damaged proteins than wild-type cells. Trehalose accumulation decreased the initial appearance of damaged proteins, presumably by acting as a free radical scavenger. Therefore, trehalose accumulation in stressed cells plays a major role in protecting cellular constituents from oxidative damage.  相似文献   

16.
Three features of the heat shock response, reorganization of protein expression, intracellular accumulation of trehalose, and alteration in unsaturation degree of fatty acids were investigated in the thermophilic fungus Chaetomium thermophile and compared to the response displayed by a closely related mesophilic species, C. brasiliense. Thermophilic heat shock response paralleled the mesophilic response in many respects like (i) the temperature difference observed between normothermia and the upper limit of translational activity, (ii) the transient nature of the heat shock response at the level of protein expression including both the induction of heat shock proteins (HSPs) as well as the repression of housekeeping proteins, (iii) the presence of representatives of high-molecular-weight HSPs families, (iv) intracellular accumulation of trehalose, and finally (v) modifications in fatty acid composition. On the other hand, a great variability between the two organisms was observed for the proteins expressed during stress, in particular a protein of the HSP60 family that was only observed in C. thermophile. This peptide was also present constitutively at normal temperature and may thus fulfil thermophilic functions. It is shown that accumulation of trehalose does not play a part in thermophily but is only a stress response. C. thermophile contains less polyunsaturated fatty acids at normal temperature than C. brasiliense, a fact that can be directly related to thermophily. When subjected to heat stress, both organisms tended to accumulate shorter and less unsaturated fatty acids.  相似文献   

17.
Sensing a sudden change of the growth temperature, all living organisms produce heat shock proteins or cold shock proteins to adapt to a given temperature. In a heat shock response, the heat shock sigma factor plays a major role in the induction of heat shock proteins including molecular chaperones and proteases, which are well-conserved from bacteria to human. In contrast, no such a sigma factor has been identified for the cold shock response. Instead, RNAs and RNA-binding proteins play a major role in cold shock response. This review describes what happens in the cell upon cold shock, how E. coli responds to cold shock, how the expression of cold shock proteins is regulated, and what their functions are.  相似文献   

18.
Abstract: The heat shock response is an inducible protective system of all living cells. It simultaneously induces both heat shock proteins and an increased capacity for the cell to wisthstand potentially lethal temperatures (an increased thermotolerance). This has lead to the suspicion that these two phenomena must be inexorably linked. However, analysis of heat shock protein function in Saccharomyces cerevisiae by molecular genetic techniques has revealed only a minority of the heat shock proteins of this organism having appreciable influences on thermotolerance. Instead, physiological perturbations and the accumulation of trehalose with heat stress may be more important in the development of thermotolerance during a preconditioning heat shock. Vegetative S. cerevisiae also acquires thermotolerance through osmotic dehydration, through treatment with certain chemical agents and when, due to nutrient limitation, it arrests growth in the GI phase of the cell cycle. There is evidence for the activities of the cAMP-dependent protein kinase and plasma membrane ATPase being very important in thermotolerance determination. Also, intracellular water activity and trehalose probably exert a strong influence over thermotolerance through their effects on stabilisation of membranes and intracellular assemblies. Future investigations should address the unresolved issue of whether the different routes to thermotolerance induction cause a common change to the physical state of the intracellular environment, a change that may result in an increased stabilisation of cellular structures through more stable hydrogen bonding and hydrophobic interactions.  相似文献   

19.
Encysted embryos (cysts) of the brine shrimp, Artemia franciscana, contain large amounts of trehalose which they use as a major substrate for energy metabolism and biosynthesis for development under aerobic conditions at 25 degrees C. When cysts are placed at 42 degrees C (heat shock) these pathways stop, and the cysts re-synthesize the trehalose that was utilized during the previous incubation at 25 degrees C. Glycogen and glycerol, produced from trehalose at 25 degrees C, appear to be substrates for trehalose synthesis during heat shock. Anoxia prevents trehalose synthesis in cysts undergoing heat shock. These results are consistent with the view that trehalose may play a protective role in cells exposed to heat shock, and other environmental insults, in addition to being a storage form of energy and organic carbon for development.  相似文献   

20.
植物热激蛋白的功能及其基因表达的调控   总被引:23,自引:0,他引:23  
本文介绍了植物热激蛋白的产生、分布和分类。着重论述了热激反应的特点、植物热激蛋白的功能、热激基因表达与调控的研究进展  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号