首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
mRNA decay was studied during spore germination in Dictyoselium discoideum by the use of three previously isolated cDNA clones, pLK109, pLK229, and pRK270, which are specific for mRNAs developmentally regulated during spore germination. The half-life of a constitutive mRNA, pLK125, which is present throughout germination, growth, and development, as also determined. Nogalamycin, a DNA-intercalating compound, was used to inhibit RNA synthesis. Total RNA was isolated at intervals after addition of the drug, and the decay of mRNAs specific for the cDNA clones was determined by both Northern blot and RNA dot hybridization. If nogalamycin was added immediately after activation of dormant spores, neither pLK229 nor pLK109 mRNA decayed, but pLK125 mRNA did decay. Although pLK109 mRNA did not decay under these conditions, the RNA was smaller 1 h after activation than in dormant spores, indicating that it was processed normally. At 1 h after activation, pLK229-, pLK125-specific mRNAs decayed exponentially, with half-lives of 24, 39, and 165 min, respectively. Under the same conditions, decay of pLK109-specific mRNA was biphasic. Thirty-eight percent of the mRNA decayed with a half-life of 5.5 min, and the remainder decayed with a half-life of 115 min. It seems likely that nogalamycin inhibits the synthesis of an unstable component of the mRNA degradative pathway which is needed continuously for the decay of pLK109 mRNA. By extrapolating the curve representing the rapidly decaying component, a half-life of 18 min was calculated for pLK109-specific mRNA. The mRNAs developmentally regulated during spore germination have half-lives shorter than that of the constitutive messenger and shorter than the average half-life of 3 to 4 h previously determined for total Dicyostelium polyadenylated mRNA.  相似文献   

2.
Spore germination in Dictyostelium discoideum is a particularly suitable model for studying the regulation of gene expression, since developmentally regulated changes in both protein and mRNA synthesis occur during the transition from dormant spore to amoeba. The previous isolation of three cDNA clones specific for mRNA developmentally regulated during spore germination allowed for the quantitation of the specific mRNAs during this process. The three mRNAs specific to clones pLK109, pLK229, and pRK270 have half-lives much shorter (minutes) than those of constitutive mRNAs (hours). Using spore germination as a model, we studied the roles of ribosome-mRNA interactions and protein synthesis in mRNA degradation by using antibiotics that inhibit specific reactions in protein biosynthesis. Cycloheximide inhibits the elongation step of protein synthesis. Polysomes accumulate in inhibited cells because ribosomes do not terminate normally and new ribosomes enter the polysome, eventually saturating the mRNA. Pactamycin inhibits initiation, and consequently polysomes break down in the presence of this drug. Under this condition, the mRNA is essentially free of ribosomes. pLK109, pLK229, and pRK270 mRNAs were stabilized in the presence of cycloheximide, but pactamycin had no effect on their normal decay. Since it seems likely that stability of mRNA reflects the availability of sites for inactivation by nucleases, it follows that in the presence of cycloheximide, these sites are protected, presumably by occupancy by ribosomes. No ribosomes are bound to mRNA in the presence of pactamycin, and therefore mRNA degrades at about the normal rate. The data further indicate that a labile protein is probably not involved in mRNA decay or stabilization, since protein synthesis is inhibited equally by both antibiotics. We conclude that it may be important to use more than one type of protein synthesis inhibitor to evaluate whether protein synthesis is required for mRNA decay. The effect of protein synthesis inhibition on mRNA synthesis and accumulation was also studied. mRNA synthesis continues in the presence of inhibitors, albeit at a diminished rate relative to that of the uninhibited control.  相似文献   

3.
mRNA specific to cDNA clone pLK109 is present in Dictyostelium discoideum spores, increases about two- to threefold at 0.5 to 1 h during spore germination, and then rapidly decreases. The mRNA is not detectable in vegetative cells or in early multicellular development on filters, but is present late during development, approximately at the time of sporulation. 109 mRNA in spores is 700 nucleotides in length but this is processed during germination by shortening of the poly(A) tail to about 600 nucleotides at 1 to 1.5 hours. pLK109 is a member of a multigene family containing three separate genes, and we have isolated and sequenced all of them. All three sequences code for deduced proteins of 127 amino acid residues, with only a few amino acid differences among them. Gene 1 represents the "transcribed" gene, since all 33 cDNAs we isolated are identical with the cDNA pLK109 and the coding region of this gene. Other open reading frames are in close proximity to each of the 109 sequences. About 200 base-pairs 3' to the gene 1 109 sequence is an open reading frame in the opposite orientation. Gene 2 fragment contains a sequence that codes for a protein similar to trypanosome alpha-tubulin 728 base-pairs 5' to the 109 sequence. Gene 3 fragment possesses two additional putative coding regions, one 5' and another 3' to the 109 gene. There is a remarkable similarity between the 5' upstream regions of all three genes. Each possesses a normal Dictyostelium TATA box and the usual T stretch. In addition, there are many other portions of about 400 to 500 base-pairs of the 5' regions that are either identical for long stretches or very similar.  相似文献   

4.
A previously isolated cDNA clone, pLK229, that is specific for mRNA developmentally expressed during Dictyostelium discoideum spore germination and multicellular development, was used to screen two genomic libraries. Two genomic sequences homologous to pLK229 were isolated and sequenced. Genomic clone p229 is identical to the cDNA clone pLK229 and codes for a polypeptide of 381 amino acids. This polypeptide is composed of five tandem repeats of the same 76-amino-acid sequence. Clone lambda 229 codes for a protein of 229 amino acids, containing three tandem repeats of the identical 76-amino-acid sequence. A computer search for homology to known proteins revealed that the 76-amino-acid repeat was identical to human and bovine ubiquitin except for two amino acid differences.  相似文献   

5.
《Developmental biology》1986,117(2):636-643
During spore germination in the cellular slime mold Dictyostelium discoideum, spores swell and then release single amoebae in a highly synchronous manner. A mutant, named HE 1, is unable to complete the sequence. It swells normally but amoebae are not released from the swollen spore. The mutant was used to investigate whether this defect in spore germination affected the orderly progression of appearance and disappearance of mRNAs developmentally regulated during germination. Three previously characterized cDNA clones representing D. discoideum sequences that are modulated during spore germination, and are not present in growing cells, were used as probes. In the wild type, the levels of the respective mRNAs reach a peak early during spore germination (1-1.5 hr) but fall at later times, indicating that their synthesis has stopped and they are rapidly degraded. However, in the mutant, after reaching their maximum levels during germination (also at 1-1.5 hr), the mRNA levels remain high. This is apparently at least partly due to the increased stability of these mRNAs in the mutant compared to the wild type. It is concluded that the time of the onset of synthesis of the mRNAs and the time when their maximum levels is reached are normal in HE 1. However, the later events, the level of mRNA attained, and the subsequent disappearance of these mRNAs are abnormal.  相似文献   

6.
7.
Ribosome synthesis was studied in spores at the swelling stage and compared with freshly emerged and logarithmically growing vegetative amoebae. During the swelling stage of spore germination, ribosome synthesis was abnormal. Newly made ribosomes accumulated unequal amounts of 26S and 17S rRNAs. The stoichiometric ratio 26S:17S was 0.5 in swelling spores, compared with 0.9 in amoebae. The relative level of pre-rRNA persisting in the nucleus was apparently 2- to 3-fold higher in swelling spores than in amoebae. All of the known ribosomal proteins, except for a few, were made during the swelling stage and were associated with the newly made ribosomes in expected amounts. Analysis of the 2'-O-methyl ribose content in the newly made rRNAs suggest that methylation was defective in swelling spores. Compared with growing amoebae, the methyl content was 30 and 64% less in 26S and 17S RNAs from the swelling stage, respectively. It is suggested that undermethylation could be partly responsible for the differential accumulation of newly made 26S and 17S RNAs during the early stages of spore germination in Dictyostelium discoideum.  相似文献   

8.
Isolation of germination mutants of Dictyostelium discoideum   总被引:2,自引:1,他引:1  
A simple method to separate spores from amoebae of Dictyostelium discoideum has been devized and used to isolate spore germination mutants. A subclass of these mutants is temperature sensitive for germination and growth.  相似文献   

9.
The drug 4-nitroquinoline 1-oxide (4NQO) is a potent inhibitor of Dictyostelium discoideum spore germination. This inexpensive, water soluble drug is active at a concentration of 5 micrograms/ml (26 microM) and permeates the spore at all stages in germination. Spores subjected to 4NQO treatment exhibit an irreversible blockage of myxamoebae emergence, but spore activation, post-activation lag, and swelling are not affected. Swollen 4NQO-treated spores lose the outer two spore walls but lack the ability to degrade the innermost wall. The drug does not affect oxygen uptake during post-activation lag or swelling, and only a stage specific depression in O2 uptake is observed when control spores begin to release myxamoebae. When added early in germination, 4NQO blocks the incorporation of [3H] uracil into a cold trichloroacetic acid (TCA) insoluble fraction by 98%. However, when the drug is added midway through germination and followed by a pulse labelling period of 1 h, only 65% inhibition of RNA synthesis is observed. This lack of complete inhibition may occur because the drug requires metabolic activation; thus, new rounds of RNA synthesis may have initiated before the drug became fully activated. 4NQO also blocks the de novo expression of beta-glucosidase activity when added early in germination. Additionally, we observe that vegetative cellular slime mold cells are 100 times more resistant than spores to 4NQO-induced damage. Taken together, our results support the observation that RNA synthesis is only required for the emergence stage of germination and that dormant D. discoideum spores may lack efficient excision repair mechanisms.  相似文献   

10.
Analysis of the respiratory chain of spores of Dictyostelium discoideum, which lack a cyanide-sensitive respiration, indicated that cytochromes a-a3, b, and c-c1 are present at levels identical to those found in the vegetative amoebae. The specific activities of enzymes of both the respiratory chain and the citric acid cycle in the 600 x g supernatant fraction of sonically treated spores were at least as high as in similar preparations of amoebae. The activities of glutamic dehydrogenase and oligomycin-sensitive adenosine triphosphatase were reduced in the spores 30 and 56%, respectively. Intact spores appeared to lack a cyanide-sensitive respiration as a result of inadequate quantities of respiratory substrate and, more importantly, as a result of a lack of the cofactor nicotinamide adenine dinucleotide. The emergence phase of spore germination was sensitive to the antibiotic chloramphenicol, which is a specific inhibitor of mitochondrial protein synthesis. It is concluded that germination requires the early synthesis of oxidized nicotinamide adenine dinucleotide and generation of respiratory substrates and one or more mitochondrially synthesized proteins.  相似文献   

11.
The three major spore coat proteins of Dictyostelium discoideum are developmentally regulated, cell-type-specific proteins. They are packaged in prespore vesicles and then secreted to form the outer layer of spore coats. We have isolated a cDNA clone from the gene coding for one of these proteins, SP96, a glycoprotein of 96,000 daltons. We screened the cDNA bank by the method of hybrid select translation followed by immunoprecipitation of the translation products with SP96-specific polyclonal antiserum. We found that the gene was first transcribed into stable mRNA a few hours before the time of detection of SP96 synthesis and that the mRNA, like the protein, accumulated specifically in prespore cells and spores. SP96 constituted the same proportion of newly synthesized protein as the proportion of its message in polyadenylated RNA. SP96 appeared to be encoded by a single gene as judged by Southern blot analysis of digested genomic DNA hybridized to the cDNA clone.  相似文献   

12.
Pattern of 3H-uridine incorporation into RNA of spores of Onocleasensibilis imbibed in complete darkness (non-germinating conditions)and induced to germinate in red light was followed by oligo-dTcellulose chromatography, gel electrophoresis coupled with fluorographyand autoradiography. In dark-imbibed spores, RNA synthesis wasinitiated about 24 h after sowing, with most of the label accumulatingin the high mol. wt. poly(A)RNA fraction. There was noincorporation of the label into poly(A) + RNA until 48 h aftersowing. In contrast, photo-induced spores began to synthesizeall fractions of RNA within 12 h after sowing and by 24 h, incorporationof 3H-uridine into RNA of irradiated spores was nearly 70-foldhigher than that into dark-imbibed spores. Protein synthesis,as monitored by 3H-arginine incorporation into the acid-insolublefraction and by autoradiography, was initiated in spores within1–2 h after sowing under both conditions. Autoradiographicexperiments also showed that the onset of protein synthesisin the cytoplasm of the germinating spore is independent ofthe transport of newly synthesized nuclear RNA. One-dimensionalsodium dodecyl sulphate-polyacrylamide gel electrophoresis of35S-methionine-labelled proteins revealed a good correspondencebetween proteins synthesized in a cell-free translation systemdirected by poly(A) +RNA of dormant spores and those synthesizedin vivo by dark-imbibed and photo-induced spores. These resultsindicate that stored mRNAs of O. sensibilis spores are functionallycompetent and provide templates for the synthesis of proteinsduring dark-imbibition and germination. Key words: Onoclea sensibilis, fern spore germination, gene expression, protein synthesis, sensitive fern, stored mRNA  相似文献   

13.
In the presence of germination signals, dormant spores of Dictyostelium discoideum rapidly germinate to start a new life cycle. Previously we have shown that half of the actin molecules in spores are maintained in a tyrosine-phosphorylated state, and a decline of the actin phosphorylation levels is a prerequisite for spore swelling. In this study, we have established d-glucose as a trigger molecule for the actin dephosphorylation. Present in a nutrient germination medium, d-glucose both may act as a trigger molecule and/or may serve as a substrate within a pathway for actin dephosphorylation depending upon spore age. However, the glucose-induced actin dephosphorylation was insufficient for spores to swell. Other factors in the nutrient medium were required for complete germination of young spores aged 1 to 5 days. In contrast, dispersion in nonnutrient buffer was necessary and sufficient for a decline of actin phosphorylation levels and even the emergence of amoebae in older spores (6 days and beyond). Moreover, the dephosphorylation pathway in the older spores was independent of energy production. We propose that the diversification of the actin dephosphorylation pathway may enable spores to increase their probability of germination upon spore aging.  相似文献   

14.
15.
Abstract Spore swelling is a necessary prelude to the emergence of amoebae during spore germination in Dictyostelium discoideum . Previous work has shown that the initiation of this event requires the activity of the calcium-dependent regulatory protein calmodulin. In this study, the use of trifluoperazine, an inhibitor of calmodulin function, has shown that calmodulin activity is required throughout the swelling phase. When fully swollen spores were treated with trifluoperazine they rapidly returned to the same size and shape observed prior to swelling. These data suggest that spore swelling in D. discoideum is a dynamic process which is mediated by calmodulin.  相似文献   

16.
Messenger Ribonucleic Acid of Dormant Spores of Bacillus subtilis   总被引:4,自引:3,他引:1       下载免费PDF全文
Evidence of the presence of messenger ribonucleic acid (mRNA) in dormant spores of Bacillus subtilis has been obtained. The bulk RNA from spores was isolated and labeled in vitro with tritiated dimethyl sulfate. The spore RNA hybridized to 2.4 to 3.2% of the B. subtilis genome. The RNA hybridized to both the complementary heavy and light fractions of deoxyribonucleic acid (DNA). Bulk RNA from log-phase cells competed with virtually all the spore RNA for the heavy DNA fraction and with part of the spore RNA for the light DNA fraction. Bulk RNA from stage IV cells in sporulation also competed with all of the spore RNA for the heavy DNA fraction and with essentially all the spore RNA for the light DNA fraction. These results indicate that dormant spores contain mRNA species present in both log-phase cells and stage IV cells of sporulation. The RNA polymerase in the developing forespore must be able to recognize promotor sites for both log-phase and sporulation genes.  相似文献   

17.
18.
As an approach to understanding the structures and mechanisms which determine mRNA decay rates, we have cloned and begun to characterize cDNAs which encode mRNAs representative of the stability extremes in the poly(A)+ RNA population of Dictyostelium discoideum amoebae. The cDNA clones were identified in a screening procedure which was based on the occurrence of poly(A) shortening during mRNA aging. mRNA half-lives were determined by hybridization of poly(A)+ RNA, isolated from cells labeled in a 32PO4 pulse-chase, to dots of excess cloned DNA. Individual mRNAs decayed with unique first-order decay rates ranging from 0.9 to 9.6 h, indicating that the complex decay kinetics of total poly(A)+ RNA in D. discoideum amoebae reflect the sum of the decay rates of individual mRNAs. Using specific probes derived from these cDNA clones, we have compared the sizes, extents of ribosome loading, and poly(A) tail lengths of stable, moderately stable, and unstable mRNAs. We found (i) no correlation between mRNA size and decay rate; (ii) no significant difference in the number of ribosomes per unit length of stable versus unstable mRNAs, and (iii) a general inverse relationship between mRNA decay rates and poly(A) tail lengths. Collectively, these observations indicate that mRNA decay in D. discoideum amoebae cannot be explained in terms of random nucleolytic events. The possibility that specific 3'-structural determinants can confer mRNA instability is suggested by a comparison of the labeling and turnover kinetics of different actin mRNAs. A correlation was observed between the steady-state percentage of a given mRNA found in polysomes and its degree of instability; i.e., unstable mRNAs were more efficiently recruited into polysomes than stable mRNAs. Since stable mRNAs are, on average, "older" than unstable mRNAs, this correlation may reflect a translational role for mRNA modifications that change in a time-dependent manner. Our previous studies have demonstrated both a time-dependent shortening and a possible translational role for the 3' poly(A) tracts of mRNA. We suggest, therefore, that the observed differences in the translational efficiency of stable and unstable mRNAs may, in part, be attributable to differences in steady-state poly(A) tail lengths.  相似文献   

19.
Poly(A)-RNA fractions of dormant, dark-imbibed (non-germinating) and photoinduced (germinating) spores of Onoclea sensibilis were poor templates in the rabbit reticulocyte lysate protein synthesizing system, but the translational efficiency of poly(A)+RNA was considerably higher than that of unfractionated RNA. Poly(A)+RNA isolated from photoinduced spores had a consistently higher translational efficiency than poly(A)+RNA from dark-imbibed spores. Analysis of the translation products by one-dimensional polyacrylamide gel electrophoresis showed no qualitative differences in the mRNA populations of dormant, dark-imbibed, and photoinduced spores. However, poly(A)+RNA from dark-imbibed spores appeared to encode in vitro fewer detectable polypeptides at a reduced intensity than photoinduced spores. A DNA clone encoding the large subunit of maize ribulose bisphosphate carboxylase hybridized at strong to moderate intensity to RNA isolated from dark-imbibed spores, indicating the absence of mRNA degradation. Although alpha-amanitin did not inhibit the germination of spores, the drug prevented the elongation of the rhizoid and protonemal initial with a concomitant effect on the synthesis of poly(A)+RNA. These results are consistent with the view that some form of translational control involving stored mRNA operates during dark-imbibition and photoinduced germination of spores.  相似文献   

20.
Pattern of 3H-uridine incorporation into RNA of spores of Onoclea sensibilis imbibed in complete darkness (non-germinating conditions) and induced to germinate in red light was followed by oligo-dT cellulose chromatography, gel electrophoresis coupled with fluorography and autoradiography. In dark-imbibed spores, RNA synthesis was initiated about 24 h after sowing, with most of the label accumulating in the high mol. wt. poly(A) -RNA fraction. There was no incorporation of the label into poly(A) +RNA until 48 h after sowing. In contrast, photo-induced spores began to synthesize all fractions of RNA within 12 h after sowing and by 24 h, incorporation of 3H-uridine into RNA of irradiated spores was nearly 70-fold higher than that into dark-imbibed spores. Protein synthesis, as monitored by 3H-arginine incorporation into the acid-insoluble fraction and by autoradiography, was initiated in spores within 1-2 h after sowing under both conditions. Autoradiographic experiments also showed that onset of protein synthesis in the cytoplasm of the germinating spore is independent of the transport of newly synthesized nuclear RNA. One-dimensional sodium dodecyl sulphate-polyacrylamide gel electrophoresis of 35S-methionine-labelled proteins revealed a good correspondence between proteins synthesized in a cell-free translation system directed by poly(A) +RNA of dormant spores and those synthesized in vivo by dark-imbibed and photo-induced spores. These results indicate that stored mRNAs of O. sensibilis spores are functionally competent and provide templates for the synthesis of proteins during dark-imbibition and germination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号