首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
High cytosolic concentrations of Na+ inhibit plant growth and development. To maintain low cytosolic concentrations of Na+ , higher plants use membrane-bound transporters that drive the efflux of Na+ or partition Na+ ions from the cytosol, either to the extracellular compartment or into the vacuole. Bryophytes also use an energy-dependent Na+ pumping ATPase, not found in higher plants, to efflux Na+ . To investigate whether this transporter can increase the salt tolerance of crop plants, Oryza sativa has been transformed with the Physcomitrella patens Na+ pumping ATPase (PpENA1). When grown in solutions containing 50 mm NaCl, plants constitutively expressing the PpENA1 gene are more salt tolerant and produce greater biomass than controls. Transgenics and controls accumulate similar amounts of Na+ in leaf and root tissues under stress, which indicates that the observed tolerance is not because of Na+ exclusion. Moreover, inductively coupled plasma analysis reveals that the concentration of other ions in the transformants and the controls is similar. The transgenic lines are developmentally normal and fertile, and the transgene expression levels remain stable in subsequent generations. GFP reporter fusions, which do not alter the ability of PpENA1 to complement a salt-sensitive yeast mutant, indicate that when it is expressed in plant tissues, the PpENA1 protein is located in the plasma membrane. PpENA1 peptides are found in plasma membrane fractions supporting the plasma membrane targeting. The results of this study demonstrate the utility of PpENA1 as a potential tool for engineering salinity tolerance in important crop species.  相似文献   

3.
Fungi have an absolute requirement for K+, but K+ may be partially replaced by Na+. Na+ uptake in Ustilago maydis and Pichia sorbitophila was found to exhibit a fast rate, low Km, and apparent independence of the membrane potential. Searches of sequences with similarity to P-type ATPases in databases allowed us to identify three genes in these species, Umacu1, Umacu2, and PsACU1, that could encode P-type ATPases of a novel type. Deletion of the acu1 and acu2 genes proved that they encoded the transporters that mediated the high-affinity Na+ uptake of U. maydis. Heterologous expressions of the Umacu2 gene in K+ transport mutants of Saccharomyces cerevisiae and transport studies in the single and double Deltaacu1 and Deltaacu2 mutants of U. maydis revealed that the acu1 and acu2 genes encode transporters that mediated high-affinity K+ uptake in addition to Na+ uptake. Other fungi also have genes or pseudogenes whose translated sequences show high similarity to the ACU proteins of U. maydis and P. sorbitophila. In the phylogenetic tree of P-type ATPases all the identified ACU ATPases define a new cluster, which shows the lowest divergence with type IIC, animal Na+,K(+)-ATPases. The fungal high-affinity Na+ uptake mediated by ACU ATPases is functionally identical to the uptake that is mediated by some plant HKT transporters.  相似文献   

4.
Lunde C  Drew DP  Jacobs AK  Tester M 《Plant physiology》2007,144(4):1786-1796
The bryophyte Physcomitrella patens is unlike any other plant identified to date in that it possesses a gene that encodes an ENA-type Na(+)-ATPase. To complement previous work in yeast (Saccharomyces cerevisiae), we determined the importance of having a Na(+)-ATPase in planta by conducting physiological analyses of PpENA1 in Physcomitrella. Expression studies showed that PpENA1 is up-regulated by NaCl and, to a lesser degree, by osmotic stress. Maximal induction is obtained after 8 h at 60 mm NaCl or above. No other abiotic stress tested led to significant increases in PpENA1 expression. In the gametophyte, strong expression was confined to the rhizoids, stem, and the basal part of the leaf. In the protonemata, expression was ubiquitous with a few filaments showing stronger expression. At 100 mm NaCl, wild-type plants were able to maintain a higher K(+)-to-Na(+) ratio than the PpENA1 (ena1) knockout gene, but at higher NaCl concentrations no difference was observed. Although no difference in chlorophyll content was observed between ena1 and wild type at 100 mm NaCl, the impaired Na(+) exclusion in ena1 plants led to an approximately 40% decrease in growth.  相似文献   

5.
PpENA1 is a membrane-spanning transporter from the moss Physcomitrella patens, and is the first type IID P-type ATPase to be reported in the plant kingdom. In Physcomitrella, PpENA1 is essential for normal growth under moderate salt stress, while in yeast, type IID ATPases provide a vital efflux mechanism for cells under high salt conditions by selectively transporting Na+ or K+ across the plasma membrane. To investigate the structural basis for cation-binding within the type IID ATPase subfamily, we used homology modeling to identify a highly conserved cation-binding pocket between membrane helix (MH) 4 and MH 6 of the membrane-spanning pore of PpENA1. Mutation of specific charged and polar residues on MHs 4-6 resulted in a decrease or loss of protein activity as measured by complementation assays in yeast. The E298S mutation on MH 4 of PpENA1 had the most significant effect on activity despite the presence of a serine at this position in fungal type IID ATPases. Activity was partially restored in an inactivated PpENA1 mutant by the insertion of two additional serine residues on MH 4 and one on MH 6 based on the presence of these residues in fungal type IID ATPases. Our results suggest that the residues responsible for cation-binding in PpENA1 are distinct from those in fungal type IID ATPases, and that a fungal-type cation binding site can be successfully engineered into the moss protein.  相似文献   

6.
7.
8.
Using a coupled transport assay which detects only those ATPase molecules functionally inserted into the platelet dense granule membrane, we have characterized the inhibitor sensitivity, substrate specificity, and divalent cation requirements of the granule H+ pump. Under identical assay conditions, the granule ATPase was insensitive to concentrations of NaN3, oligomycin, and efrapeptin which almost completely inhibit ATP hydrolysis by mitochondrial membranes. The granule ATPase was inhibited by dicyclohexylcarbodiimide but only at concentrations much higher than those needed to maximally inhibit mitochondrial ATPase. Vanadate (VO3-) ion and ouabain also failed to inhibit granule ATPase activity at concentrations which maximally inhibited purified Na+,K+-ATPase. Two alkylating agents, 7-chloro-4-nitrobenz-2-oxa-1,3-diazole and N-ethylmaleimide both completely inhibited H+ pumping by the granule ATPase under conditions where ATP hydrolysis by mitochondrial membranes or Na+,K+-ATPase was hardly affected. These results suggest that the H+-pumping ATPase of platelet granule membrane may belong to a class of ion-translocating ATPases distinct from both the phosphoenzyme-type ATPases present in plasma membrane and the F1F0-ATPases of energy-transducing membranes.  相似文献   

9.
Evidence is presented indicating that Escherichia coli requires the Na+/H+ antiporter and external sodium (or lithium) ion to grow at high pH. Cells were grown in plastic tubes containing medium with a very low Na+ content (5-15 microM). Normal cells grew at pH 7 or 8 with or without added Na+, but at pH 8.5 external Na was required for growth. A mutant with low antiporter activity failed to grow at pH 8.5 with or without Na+. On the other hand, another mutant with elevated antiporter activity grew at a higher pH than normal (pH 9) in the presence of added Na+ or Li+. Amiloride, an inhibitor of the antiporter, prevented cells from growing at pH 8.5 (plus Na+), although it had no effect on growth in media of lower pH values.  相似文献   

10.
1. Gilthead gill 10(-3) M ouabain-inhibited (Na+ + K+)-ATPase and 10(-2) M ouabain-insensitive Na+-ATPase require the optimal conditions of pH 7.0, 160 mM Na+, 20 mM K+, 5 mM MgATP and pH 4.8-5.2, 75 mM Na+, 2.5 mM Mg2+, 1.0 mM ATP, respectively. 2. The main distinctive features between the two activities are confirmed to be optimal pH, the ouabain-sensitivity and the monovalent cation requirement, Na+ plus another cationic species (K+, Rb+, Cs+, NH4+) in the (Na+ + K+)-ATPase and only one species (Na+, K+, Li+, Rb+, Cs+, NH4+ or choline+) in the Na+-ATPase. 3. The aspecific Na+-ATPase activation by monovalent cations, as well as by nucleotide triphosphates, opposed to the (Na+ + K+)-ATPase specificity for ATP and Na+, relates gilthead gill ATPases to lower organism ATPases and differentiates them from mammalian ones. 4. The discrimination between the two activities by the sensitivity to ethacrynic acid, vanadate, furosemide and Ca2+ only partially agrees with the literature. 5. Present findings are viewed on the basis of the ATPase's presumptive physiological role(s) and mutual relationship.  相似文献   

11.
Isolation of novel membrane-associated ATPases, presumably soluble parts of the H+-ATPases, from archaebacteria has been recently reported, and their properties were found to be significantly different from the usual F1-ATPase. In order to assess the relationship of the archaebacterial ATPases to the F1-ATPases and other known ATPases, the amino acid sequence of the alpha subunit of the ATPase from Sulfolobus acidocaldarius, an acidothermophilic archaebacterium, was compared with the sequences of other ATPases. The gene encoding its alpha subunit was cloned from the genomic library of S. acidocaldarius, and the nucleotide sequence was determined. The 591-amino acid sequence deduced from the nucleotide sequence contains a small number of short stretches that shows sequence similarity to the alpha and beta subunits of F1-ATPase. However, the overall similarity is too weak to consider it to be a typical member of the F1-ATPase family when the highly conserved sequences of the F1-ATPase subunits among various organisms are taken into account. Moreover, most of these stretches overlap the consensus sequences that are commonly found in some nucleotide-binding proteins. There is no significant sequence similarity to the ion-translocating ATPases, which form phosphorylated intermediates, such as animal Na+,K+-ATPases. Thus, the S. acidocaldarius ATPase and probably other archaebacterial ATPases also appear to belong to a new group of ion-translocating ATPases that has only a distant relationship to F1-ATPase.  相似文献   

12.
13.
New data are presented on the organization of H+-pumps in plasma membranes of cells of bacteria fungi, plants and animals. It is shown that H+-ATPase of bacteria differs in principle from H+-ATPases of plasma membranes of other organisms. The transport H+, K+-ATPase functioning in cells of mucous membrane of the animal stomach as an electroneutral H+-pump is similar by its properties to Na+, K+-ATPase of plasma membranes of animal cells. H+-ATPase of plasma membranes in cells of fungi and higher plants which functions as an electrogenic H+-pump differs essentially from H+-ATPases of F0 X F1-type. Distribution of H+-ATPases in cells of different organisms and their evolution are under discussion.  相似文献   

14.
Abu-Salah KM  Gambo AH 《Life sciences》2002,70(9):1003-1011
A study has been carried out into the effects of cetiedil on the activities of Na+, K+ and Ca2+, Mg2+-ATPases of the normal human erythrocyte membrane. In general, cetiedil inhibits both ATPases activities but with characteristic inhibition profiles and varying degrees of efficacy. The activities were inhibited non-competitively at the cetiedil concentration which caused 50% inhibition of each enzyme. In addition, the effects of cetiedil on the transport of K+ and phosphate ions across the membrane were monitored and compared. Cetiedil was found to stimulate K+ release and to inhibit phosphate uptake. At low concentrations, both processes were concentration dependent. Stimulation of K+ efflux reached a plateau at a concentration of 1.2 mM. The antisickling effect of cetiedil is explained mainly in the light of the changes it induces in the activities of membrane-bound ATPases and the permeability properties of the erythrocyte membrane to cations and anions.  相似文献   

15.
The L-form NC7, derived from Escherichia coli K12, grew in a complex medium containing 0.2 M-CaCl2 as osmotic stabilizer, but not at pH values above 7.8. The cessation of growth at alkaline pH was not due to cell death. In complex media containing K+ or Na+, the L-form grew ove a wide pH range. Growth at alkaline pH was inhibited by 1 mM-amiloride, indicating that Na+/H+ antiport activity was required for growth at alkaline pH. The internal pH (pHi) of the L-form in media containing K+, Na+ or Ca2+ was constant at about 7.8 to 8.0 at external pH (pHo) values of 7.2 and 8.2. The rates of O2 consumption by intact cells, lactate oxidation by membrane vesicles from cells grown in Ca(2+)-containing medium, and cell division were all strongly repressed under alkaline conditions.  相似文献   

16.
A cDNA that encodes a transporter from the NHAD family was identified in Physcomitrella patens. Computer-based searches using the amino acid sequence of PpNHAD1 revealed that, in addition to being expressed in flowering plants, highly conserved transporters of this family are expressed in red algae, green algae, mosses, liverworts, and photosynthetic stramenopiles, but not in heterotrophic stramenopiles. A chloroplast transit peptide was detected in PpNHAD1 and in most of the related sequences, indicating that PpNHAD1 is a chloroplast transporter. A PpNHAD1-GFP fusion localized to the chloroplast in Physcomitrella protoplasts, and truncation of the N-terminus of the protein dispersed the fluorescence signal outside the chloroplast. PpNHAD1 did not show functional expression in either yeast or bacterial mutants, but truncated proteins with shorter N-termini, PpNHAD1-1 and PpNHAD1-2, could be functionally expressed in bacteria. PpNHAD1-1 alleviated the Li(+) intolerance of a Na(+)-efflux Escherichia coli mutant at acidic pH values. Both PpNHAD1-1 and PpNHAD1-2 reduced the K(+) requirements of a K(+)-influx E. coli mutant more actively at high pH values. PpNHAD1 seems to be an important transporter that mediates ionic homeostasis in chloroplasts from red algae to flowering plants.  相似文献   

17.
Using differential centrifugation in sucrose density gradient, from muscles of the frog fractions were obtained which contain fragments of sarcolemma, as well as membranes of T-system tubules and sarcoplasmic reticulum. In isolated membrane fractions, studies were made on the activity of cation-stimulated ATPases (Na+, K+-, Ca2+, Mg2+- and Mg2+-ATPases). Enzymic and electrophoretic analyses showed that the highest content of Mg2+-ATPases is typical of the fractions which are located on the surface of 35% sucrose. The data obtained indicate that Mg2+-ATPase is the enzyme which is specific for the membranes of T-system tubules in skeletal muscles of not only birds but amphibians as well. From cardiac muscle of the frog, membrane fraction was isolated which is similar (with respect to its predominant content of Mg2+-ATPase) to the membranes of T-system tubules. It is suggested that the presence of Mg2+-ATPase in these membranes is a common property of phasic striated muscle fibers in all mature vertebrate animals.  相似文献   

18.
A study has been carried out into the effects of procaine on the activities (Na+,K+)- and (Ca2+,Mg2+)-ATPases of the human erythrocyte membrane. In general, procaine inhibited both types of ATPases activities but with characteristic inhibition profiles and varying degrees of efficacy. In addition, the effects of procaine on the transport of K+ and phosphate ions across the membrane of the human erythrocyte were monitored and compared. Procaine was found to stimulate K+ release and to inhibit phosphate uptake. At low concentrations, both processes were found to be concentration dependent. Stimulation of K+ release and inhibition of phosphate uptake reached plateaus at concentrations of 50 and 150 mM, respectively. The antisickling effect of procaine was explained mainly in the light of the changes it induces in the activities of membrane bound ATPases and the permeability properties of the erythrocyte membrane to cations and anions.  相似文献   

19.
The possibility that H+ might substitute for Na+ at Na+ sites of Na+,K+-ATPase was studied. Na+,K+-ATPase purified from pig kidney showed ouabain-sensitive K+-dependent ATPase activity in the absence of Na+ at acid pH (H+,K+-ATPase). The specific activity was 1.1 mumol Pi/mg/min at pH 5.7, whereas the specific activity of Na+,K+-ATPase was 14 mumol Pi/mg/min at pH 7.5. The enzyme was phosphorylated from ATP in the absence of Na+ at the acid pH. The initial rate of the phosphorylation was also accelerated at the acid pH in the absence of Na+, and the maximal rate obtained at pH 5.5 without Na+ was 9% of the rate at pH 7.0 with Na+. The phosphoenzyme was sensitive to K+ but almost insensitive to ADP. The phosphoenzyme was sensitive to hydroxylamine treatment and the alpha-subunit of the enzyme was found to be phosphorylated. H+,K+-ATPase was inhibited as effectively as Na+,K+-ATPase by N-ethylmaleimide but was less inhibited by oligomycin or dimethyl sulfoxide. These results indicate that protons have an Na+-like effect on the Na+ sites of Na+,K+-ATPase and suggest that protons can be transported by the sodium pump in place of Na+.  相似文献   

20.
Specific effects of spermine on Na+,K+-adenosine triphosphatase   总被引:2,自引:0,他引:2  
Specific effects of spermine on Na+,K+-ATPase were observed using an enzyme partially purified from rabbit kidney microsomes by extraction with deoxycholate. 1. Spermine competed with K+ for K+-dependent, ouabain-sensitive nitrophenylphosphatase. The K1 for spermine was 0.075 mm in the presence of 1 mM Mg2+ and 5 mM p-nitrophenylphosphate at pH 7.5. 2. spermine activated Na+,K+-ATPase over limited concentration ranges of K+ and Na+ in the presence of 0.05 mM ATP. The spermine concentration required for half maximal activation was 0.055 mM in the presence of 1 mM K+, 10 mM Na+, 1 mM Mg2+, and 0.05 mM ATP. 3. The activation of Na+,K4-ATPase was not due to substitution of spermine for K+, Na+, or Mg2+. 4. When the concentration of K+ or Na+ was extremely low, or in excess, spermine did not activate Na+,K+-ATPase, but inhibited it slightly. 5. Plots of 1/v vs. 1/[ATP] at various concentrations of spermine showed that spermine decreased the Km for ATP without changing the Vmax. 6. Plots of 1/v vs. 1/[ATP] at concentrations of K+ from 0.05 mM to 0.5 mM showed that K+ increased the Km for ATP with increase in the Vmax in the presence of 0.2 mM spermine similarly to that in the absence of spermine. The contradictory effects of spermine on this enzyme system suggest that the K+-dependent monophosphatase activity does not reflect the second half (the dephosphorylation step) of the Na+,K+-ATPase catalytic cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号