首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of intrathecal injections of dynorphin1-8 (DYN1-8), dynorphin1-13 (DYN1-13), and a putative kappa agonist, U50,488 was tested in the rat tail-flick test. DYN1-8 and DYN1-13 (5, 10, 20 micrograms) produced a dose-related biphasic antinociceptive response consisting of an initial and a delayed response. Injection of U50,488 (20, 40 60 micrograms) produced a monophasic response. The antinociceptive effect of DYN1-8 (5, 10, 20 micrograms) and DYN1-13 (20 micrograms), was present 24 h postintrathecal injection. Pretreatment with systemic naloxone (2 mg/kg s.c.) attenuated the delayed response, but not the initial response induced by DYN1-8 and DYN1-13. The initial response was attenuated by pretreatment with intrathecal naloxone at a dose of 0.5 and 2.0 micrograms. The antinociceptive effect of U50,488 (20, 60 micrograms) was not affected by pretreatment with 2.0 micrograms intrathecal naloxone, but was significantly reduced by 4 micrograms of the antagonist. Both DYN1-8 and DYN1-13 (5 micrograms) augmented the antinociceptive effect of intrathecally administered morphine (5, 10 micrograms). Intrathecal injection of DYN1-8 (5, 10, 20 micrograms), DYN1-13 (5 micrograms), and morphine (10 micrograms) reduced the spontaneous output of urine measured at 2 and 24 h postintrathecal injection. A similar injection of U50,488 (20 micrograms) had no significant action on the urinary output. The results show that long and short dynorphin fragments have a comparable activity and the spinal antinociceptive actions of dynorphin are sensitive to low doses of intrathecal naloxone. The activity profile of spinally administered dynorphins differs from that of the kappa agonist U50,488.  相似文献   

2.
The interaction of the U5-specific polypeptides with U5 snRNA was investigated by comparison of the differential accessibility towards nucleases and dimethylsulfate of defined regions of U5 snRNA in purified 20S and 10S U5 snRNPs. While 20S U5 snRNPs contain eight U5-specific proteins in addition to the common proteins, the 10S U5 snRNPs contain only the latter proteins. The results indicate that only the central part of stem/loop I of U5 snRNA including internal loops IL2 and IL2', contains binding sites for U5-specific proteins, suggesting that several U5-specific proteins may be bound to U5 snRNP via protein-protein interactions. Moreover, they show that the core polypeptides do not interact with stem/loop I.  相似文献   

3.
Nuclear pre-mRNA splicing requires ATP at several steps from spliceosome assembly to product release. Here, we demonstrate that an integral component of the 20S U5 snRNP is an RNA-dependent ATPase. The ATPase activity of 20S U5 and 25S [U4/U6.U5] snRNPs purified by glycerol gradient centrifugation is strongly stimulated by homopolymeric RNA but not ssDNA. Purified 12S Ul and U2 snRNPs do not exhibit ATPase activity. Moreover, the U5-associated NTPase specifically hydrolyzes ATP and dATP. The additional purification of 20S U5 snRNPs by Mono Q chromatography does not affect the efficiency of ATP hydrolysis. Both U5 and tri-snRNPs bind ATP stoichiometrically in an RNA-independent manner. A candidate ATPase was identified by UV-irradiation of purified snRNPs with radiolabeled ATP. In the presence of homopolymeric RNA, the 200 kDa U5-specific protein is the major crosslinked protein, even in Mono Q-purified U5 snRNPs. The correlation between RNA-dependent ATPase activity in the U5 snRNP and the RNA-dependent onset of this crosslink strongly suggests that the 200 kDa protein is an RNA-dependent ATPase. Furthermore, both the formation of the crosslink and ATPase activity appear with a similar substrate specificity for ATP.  相似文献   

4.
Cyclophilins (Cyps) catalyze the cis/trans isomerization of peptidyl-prolyl bonds, a rate-limiting step in protein folding. In some cases, cyclophilins have also been shown to form stable complexes with specific proteins in vivo and may thus also act as chaperone-like molecules. We have characterized the 20kD protein of the spliceosomal 25S [U4/U6.U5] tri-snRNP complex from HeLa cells and show that it is a novel human cyclophilin (denoted SnuCyp-20). Purified [U4/U6.U5] tri-snRNPs, but not U1, U2, or U5 snRNPs, exhibit peptidyl-prolyl cis/trans isomerase activity in vitro, which is cyclosporin A-sensitive, suggesting that SnuCyp-20 is an active isomerase. Consistent with its specific association with tri-snRNPs in vitro, immunofluorescence microscopy studies showed that SnuCyp-20 is predominantly located in the nucleus, where it colocalizes in situ with typical snRNP-containing structures referred to as nuclear speckles. As a first step toward the identification of possible targets of SnuCyp-20, we have investigated the interaction of SnuCyp-20 with other proteins of the tri-snRNP. Fractionation of RNA-free protein complexes dissociated from isolated tri-snRNPs by treatment with high salt revealed that SnuCyp-20 is part of a biochemically stable heteromer containing additionally the U4/U6-specific 60kD and 90kD proteins. By coimmunoprecipitation experiments performed with in vitro-translated proteins, we could further demonstrate a direct interaction between SnuCyp-20 and the 60kD protein, but failed to detect a protein complex containing the 90kD protein. The formation of a stable SnuCyp-20/60kD/90kD heteromer may thus require additional factors not present in our in vitro reconstitution system. We discuss possible roles of SnuCyp-20 in the assembly of [U4/U6.U5] tri-snRNPs and/or in conformational changes occurring during the splicing process.  相似文献   

5.
It is generally accepted that the most ancient European mitochondrial haplogroup, U5, has evolved essentially in Europe. To resolve the phylogeny of this haplogroup, we completely sequenced 113 mitochondrial genomes (79 U5a and 34 U5b) of central and eastern Europeans (Czechs, Slovaks, Poles, Russians and Belorussians), and reconstructed a detailed phylogenetic tree, that incorporates previously published data. Molecular dating suggests that the coalescence time estimate for the U5 is ∼25–30 thousand years (ky), and ∼16–20 and ∼20–24 ky for its subhaplogroups U5a and U5b, respectively. Phylogeographic analysis reveals that expansions of U5 subclusters started earlier in central and southern Europe, than in eastern Europe. In addition, during the Last Glacial Maximum central Europe (probably, the Carpathian Basin) apparently represented the area of intermingling between human flows from refugial zones in the Balkans, the Mediterranean coastline and the Pyrenees. Age estimations amounting for many U5 subclusters in eastern Europeans to ∼15 ky ago and less are consistent with the view that during the Ice Age eastern Europe was an inhospitable place for modern humans.  相似文献   

6.
J W Kulkosky  W M Wood  M Edmonds 《Biochemistry》1985,24(14):3678-3686
A significant fraction of the polyadenylated mRNAs of HeLa cells contain an oligo(uridylic acid) [oligo(U)] sequence of 15-30 nucleotides. Several different experimental approaches were used to determine if these oligo(U)'s occupied similar sites within all mRNAs. In one approach, poly(adenylic acid)-containing mRNAs [poly(A+) mRNAs] averaging 2800 nucleotides in length were reduced to an average size of 500 nucleotides by controlled alkaline hydrolysis. Over 20% of the oligo(U)-containing fragments isolated from the hydrolysate retained a poly(A) sequence, showing that oligo(U)'s were not exclusively located near 5' ends of mRNA although 20% were apparently close to 3' ends. To confirm these observations, oligo(U)-containing mRNA [oligo(U+) mRNA] was exposed to the 3'-exonucleolytic activity of polynucleotide phosphorylase to produce fragments containing the 5' regions of mRNA. Each of a set of fragments of decreasing length generated by increased times of exposure of the mRNAs to the enzyme was found to have about the same oligo(U) content, including the shortest that averaged 550 nucleotides. These data not only eliminated an exclusive location for oligo(U) in either 3' or 5' ends of mRNA but also suggested that oligo(U)'s might be close to the 5' ends of some mRNAs. To verify this last observation, periodate-oxidized poly(A+) mRNA was labeled at the 5' caps and at 3'-adenosine residues by sodium [3H]borohydride reduction before it was nicked 3-5 times with alkali to produce 5' and 3' end-labeled pieces that could be separated with oligo(thymidylic acid)-cellulose.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Highly conserved G runs, G1M2 and ISE, regulate the proteolipid protein (PLP)/DM20 ratio. We have investigated recruitment of U1 small nuclear ribonuclear protein (snRNP) by G1M2 and ISE and examined the effect of splice site strength, distance, and context on G run function. G1M2 is necessary for initial recruitment of U1snRNP to the DM20 5' splice site independent of the strength of the splice site. G1M2 regulates E complex formation and supports DM20 splicing when functional U1snRNP is reduced. By contrast, the ISE is not required for the initial recruitment of U1snRNP to the PLP 5' splice site. However, in close proximity to either the DM20 or the PLP 5' splice site, the ISE recruits U1snRNP to both splice sites. The ISE enhances DM20 splicing, whereas close to the PLP 5' splice site, it inhibits PLP splicing. Splicing enhancement and inhibition are mediated by heterogeneous nuclear ribonuclear protein (hnRNP)H/F. The data show that recognition of the DM20 5' splice site depends on G run-mediated recruitment of U1snRNA, whereas a complex interaction between the ISE G runs, context and position determines the functional outcome on splicing. The data suggest that different mechanisms underlie G run-mediated recognition of 5' splice sites and that context and position play a critical role.  相似文献   

8.
We describe the purification and characterization of a 16S U5 snRNP from the yeast Saccharomyces cerevisiae and the identification of its proteins. In contrast to the human 20S U5 snRNP, it has a comparatively simple protein composition. In addition to the Sm core proteins, it contains only two of the U5 snRNP specific proteins, Prp8p and Snu114p. Interestingly, the 16S U5 snRNP contains also Aar2p, a protein that was previously implicated in splicing of the two introns of the MATa1 pre-mRNA. Here, we demonstrate that Aar2p is essential and required for in vivo splicing of U3 precursors. However, it is not required for splicing in vitro. Aar2p is associated exclusively with this simple form of the U5 snRNP (Aar2-U5), but not with the [U4/U6.U5] tri-snRNP or spliceosomal complexes. Consistent with this, we show that depletion of Aar2p interferes with later rounds of splicing, suggesting that it has an effect when splicing depends on snRNP recycling. Remarkably, the Aar2-U5 snRNP is invariably coisolated with the U1 snRNP regardless of the purification protocol used. This is consistent with the previously suggested cooperation between the U1 and U5 snRNPs prior to the catalytic steps of splicing. Electron microscopy of the Aar2-U5 snRNP revealed that, despite the comparatively simple protein composition, the yeast Aar2-U5 snRNP appears structurally similar to the human 20S U5 snRNP. Thus, the basic structural scaffold of the Aar2-U5 snRNP seems to be essentially determined by Prp8p, Snu114p, and the Sm proteins.  相似文献   

9.
Human platelet lipids were enriched in vitro with different amounts of either docosahexaenoic acid (22:6n-3), eicosapentaenoic acid (20:5n-3) or linoleic acid (18:2n-6). Of the total fatty acid incorporated, between 82 and 95% was associated with the phospholipid (PL) fraction, with the remainder as either neutral lipid or hydroxy fatty acid. Within the PL fraction, the majority (64% of total) of each fatty acid was incorporated into phosphatidylcholine. It was found that platelet aggregation induced by the thromboxane A2/prostaglandin H2 mimetic (15S)-hydroxy-11,9-(epoxymethano)prosta-5Z,13E-dienoic acid (U46619) was inhibited after PL enrichment with 22:6n-3 or 20:5n-3, but not after 18:2n-6 enrichment. The specificity of 22:6n-3 and 20:5n-3 for U46619 activation was demonstrated by the finding that neither fatty acid significantly inhibited thromboxane A2/prostaglandin H2-independent aggregation induced by A23187 or thrombin. Furthermore, enrichment with 22:6n-3 or 20:5n-3 resulted in inhibition of [3H]U46619 specific binding, while enrichment with 18:2n-6 did not affect binding. Scatchard analysis revealed that thromboxane A2/prostaglandin H2 receptor affinity for [3H]U46619 decreased 4.8-fold following 22:6n-3 incorporation. These results demonstrate that platelet phospholipid enrichment with 22:6n-3 or 20:5n-3 results in a selective inhibition of thromboxane A2/prostaglandin H2 receptor function.  相似文献   

10.
11.
12.
13.
The bifunctional protein U5-52K is associated with the spliceosomal 20 S U5 snRNP, and it also plays a role in immune response as CD2 receptor binding protein 2 (CD2BP2). U5-52K binds to the CD2 receptor via its GYF-domain specifically recognizing a proline-rich motif on the cytoplasmic surface of the receptor. The GYF-domain is also mediating the interaction of the proteins U5-52K and U5-15K within the spliceosomal U5 snRNP. Here we report the crystal structure of the complex of GYF-domain and U5-15K protein revealing the structural basis for the bifunctionality of the U5-52K protein. The complex structure unveils novel interaction sites on both proteins, as neither the polyproline-binding site of the GYF-domain nor the common ligand-binding cleft of thioredoxin-like proteins, to which U5-15K belongs, are involved in the interaction of U5-15K and U5-52K.  相似文献   

14.
We have studied the assembly, composition and structure of splicing complexes using biotin-avidin affinity chromatography and RNase protection assays. We find that U1, U2, U4, U5 and U6 snRNPs associate with the pre-mRNA and are in the mature, functional complex. Association of U1 snRNP with the pre-mRNA is rapid and ATP independent; binding of all other snRNPs occurs subsequently and is ATP dependent. Efficient binding of U1 and U2 snRNPs requires a 5' splice site or a 3' splice site/branch point region, respectively. Both sequence elements are required for efficient U4, U5 and U6 snRNP binding. Mutant RNA substrates containing only a 5' splice site or a 3' splice site/branch point region are assembled into 'partial' splicing complexes, which contain a subset of these five snRNPs. RNase protection experiments indicate that in contrast to U1 and U2 snRNPs, U4, U5 and U6 snRNPs do not contact the pre-mRNA. Based upon the time course of snRNP binding and the composition of sucrose gradient fractionated splicing complexes we suggest an assembly pathway proceeding from a 20S (U1 snRNP only) through a 40S (U1 and U2 snRNPs) to the functional 60S splicing complex (U1, U2, U4, U5 and U6 snRNPs).  相似文献   

15.
During catalytic activation of the spliceosome, snRNP remodeling events occur, leading to the formation of a 35S U5 snRNP that contains a large group of proteins, including Prp19 and CDC5, not found in 20S U5 snRNPs. To investigate the function of 35S U5 proteins, we immunoaffinity purified human spliceosomes that had not yet undergone catalytic activation (designated BDeltaU1), which contained U2, U4, U5, and U6, but lacked U1 snRNA. Comparison of the protein compositions of BDeltaU1 and activated B* spliceosomes revealed that, whereas U4/U6 snRNP proteins are stably associated with BDeltaU1 spliceosomes, 35S U5-associated proteins (which are present in B*) are largely absent, suggesting that they are dispensable for complex B formation. Indeed, immunodepletion/complementation experiments demonstrated that a subset of 35S U5 proteins including Prp19, which form a stable heteromeric complex, are required prior to catalytic step 1 of splicing, but not for stable integration of U4/U6.U5 tri-snRNPs. Thus, comparison of the proteomes of spliceosomal complexes at defined stages can provide information as to which proteins function as a group at a particular step of splicing.  相似文献   

16.
The U5 snRNP plays an essential role in both U2- and U12-dependent splicing. Here, we have characterized a 52-kDa protein associated with the human U5 snRNP, designated U5-52K. Protein sequencing revealed that U5-52K is identical to the CD2BP2, which interacts with the cytoplasmic portion of the human T-cell surface protein CD2. Consistent with it associating with an snRNP, immunofluorescence studies demonstrated that the 52K protein is predominantly located in the nucleoplasm of HeLa cells, where it overlaps, at least in part, with splicing-factor compartments (or "speckles"). We further demonstrate that the 52K protein is a constituent of the 20S U5 snRNP, but is not found in U4/U6.U5 tri-snRNPs. Thus, it is the only 20S U5-specific protein that is not integrated into the tri-snRNP and resembles, in this respect, the U4/U6 di-snRNP assembly factor Prp24p/p110. Yeast two-hybrid screening and pulldown assays revealed that the 52K protein interacts with the U5-specific 102K and 15K proteins, suggesting that these interactions are responsible for its integration into the U5 particle. The N-terminal two-thirds of 52K interact with the 102K protein, whereas its C-terminal GYF-domain binds the 15K protein. As the latter lacks a proline-rich tract, our data indicate that a GYF-domain can also engage in specific protein-protein interactions in a polyproline-independent manner. Interestingly, the U5-102K protein has been shown previously to play an essential role in tri-snRNP formation, binding the U4/U6-61K protein. The interaction of 52K with a tri-snRNP bridging protein, coupled with its absence from the tri-snRNP, suggests it might function in tri-snRNP assembly.  相似文献   

17.
A hybrid plasmid from the Clarke and Carbon collection has been isolated. This plasmid carries the trmA gene of E. coli, which is necessary for the formation of 5-methyluridine (m5U,ribothymidine) present in all transfer ribonucleic acid (tRNA) chains of the organism so far sequenced. A restriction map of the argCBH-trmA regions is presented. By using cloning in vitro, the trmA gene was located on a 2.9-kilobase pair deoxyribonucleic acid (DNA) fragment. These results and comparison with lambda dargECBH transducing phages established the gene order: argECBH trmA bfe in the 88-min region of the E. coli chromosomal map. Plasmids carrying this 2.9-kilobase pair DNA fragment overproduce the enzyme tRNA(m5U)methyltransferase (EC 2.1.1.35) 20 to 40 times. When this 2.9-kilobase pair chromosomal DNA fragment was expressed in a minicell system, a polypeptide of a molecular weight of 42,000 was synthesized. This polypeptide was tentatively identified as the tRNA(m5U)methyltransferase. These results support the earlier suggestion that the trmA gene is the structural gene for the tRNA(m5U)methyltransferase.  相似文献   

18.
Yhc1 and U1-C are essential subunits of the yeast and human U1 snRNP, respectively, that stabilize the duplex formed by U1 snRNA at the pre-mRNA 5′ splice site (5′SS). Mutational analysis of Yhc1, guided by the human U1 snRNP crystal structure, highlighted the importance of Val20 and Ser19 at the RNA interface. Though benign on its own, V20A was lethal in the absence of branchpoint-binding complex subunit Mud2 and caused a severe growth defect in the absence of U1 subunit Nam8. S19A caused a severe defect with mud2▵. Essential DEAD-box ATPase Prp28 was bypassed by mutations of Yhc1 Val20 and Ser19, consistent with destabilization of U1•5′SS interaction. We extended the genetic analysis to SmD3, which interacts with U1-C/Yhc1 in U1 snRNP, and to SmB, its neighbor in the Sm ring. Whereas mutations of the interface of SmD3, SmB, and U1-C/Yhc1 with U1-70K/Snp1, or deletion of the interacting Snp1 N-terminal peptide, had no growth effect, they elicited synthetic defects in the absence of U1 subunit Mud1. Mutagenesis of the RNA-binding triad of SmD3 (Ser-Asn-Arg) and SmB (His-Asn-Arg) provided insights to built-in redundancies of the Sm ring, whereby no individual side-chain was essential, but simultaneous mutations of Asn or Arg residues in SmD3 and SmB were lethal. Asn-to-Ala mutations SmB and SmD3 caused synthetic defects in the absence of Mud1 or Mud2. All three RNA site mutations of SmD3 were lethal in cells lacking the U2 snRNP subunit Lea1. Benign C-terminal truncations of SmD3 were dead in the absence of Mud2 or Lea1 and barely viable in the absence of Nam8 or Mud1. In contrast, SMD3-E35A uniquely suppressed the temperature-sensitivity of lea1▵.  相似文献   

19.
Forty microbial strains isolated from raw milk samples and black and green olives were grown in MP5 (mineral pectin 5) medium containing 0.5% lemon pectin. All strains synthesized an extracellular polygalacturonase. Rhodotorula sp. ONRh9 (0.44 U x mL(-1)) and Leuconostoc sp. LLn1 (0.16 U x mL(-1)), which had a more active polygalacturonase in MP5 medium, were studied in MAPG5 medium containing polygalacturonic acid. Highest biomass and polygalacturonase production by these two strains were observed for polygalacturonic acid concentrations of 10 g x L(-1) (Rhodotorula sp. ONRh9) and 5 g x L(-1) (Leuconostoc sp. LLn1) and for initial pH values of 6 (Rhodotorula sp. ONRh9) and 5.5 (Leuconostoc sp. LLn1). The two strains grown in fermenters in MAPG5 medium generated the following results: with controlled initial pH, Rhodotorula sp. produced maximum biomass (DO) and polygalacturonase (PG) after 20 h (DO, 3.86; PG, 0.24 U x mL(-1)) of growth, and this level was sustained until the end of the culture; Leuconostoc sp. LLn1 synthesized more cells and polygalacturonase between 4 h (DO, 1.80; PG, 0.17 U x mL(-1)) and 24 h (DO, 3.90; PG, 0.27 U x mL(-1)) of culture. With uncontrolled initial pH, the cultures produced maximum biomass and polygalacturonase after 20 h (DO, 3.30; PG, 0.26 U x mL(-1)) for Rhodotorula sp. ONRh9 and 10 h (DO, 2.84; PG, 0.17 U x mL(-1)) for Leuconostoc sp. LLn1.  相似文献   

20.
Immunoaffinity-purified human 25S [U4/U6.U5] tri-snRNPs harbor a set of polypeptides, termed the tri-snRNP proteins, that are not present in Mono Q-purified 20S U5 snRNPs or 10S U4/U6 snRNPs and that are important for tri-snRNP complex formation (Behrens SE, Lührmann R, 1991, Genes & Dev 5:1439-1452). Biochemical and immunological characterization of HeLa [U4/U6.U5] tri-snRNPs led to the identification of two novel proteins with molecular weights of 61 and 63kD that are distinct from the previously described 15.5, 20, 27, 60, and 90kD tri-snRNP proteins. For the initial characterization of tri-snRNP proteins that interact directly with U4/U6 snRNPs, immunoaffinity chromatography with an antibody directed against the 60kD protein was performed. We demonstrate that the 60 and 90kD tri-snRNP proteins specifically associate with the U4/U6 snRNP at salt concentrations where the tri-snRNP complex has dissociated. The primary structures of the 60kD and 90kD proteins were determined by cloning and sequencing their respective cDNAs. The U4/U6-60kD protein possesses a C-terminal WD domain that contains seven WD repeats and thus belongs to the WD-protein family, whose best-characterized members include the Gbeta subunits of heterotrimeric G proteins. A database homology search revealed a significant degree of overall homology (57.8% similarity, 33.9% identity) between the human 60kD protein and the Saccharomyces cerevisiae U4/U6 snRNP protein Prp4p. Two additional, previously undetected WD repeats (with seven in total) were also identified in Prp4p, consistent with the possibility that 60kD/Prp4p, like beta-transducin, may adopt a propeller-like structure. The U4/U6-90kD protein was shown to exhibit significant homology, particularly in its C-terminal half, with the S. cerevisiae splicing factor Prp3p, which also associates with the yeast U4/U6 snRNP. Interestingly, U4/U6-90kD shares short regions of homology with E. coli RNase III, including a region encompassing its double-stranded RNA binding domain. Based on their structural similarity with essential splicing factors in yeast, the human U4/U6-60kD and 90kD proteins are likely also to play important roles in the mammalian splicing process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号