首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An indoleacetic acid oxidase preparation from an acetone powder of Parthenocissus tricuspidata crown-gall tissue has been examined. An intermediate in the reaction is 3-hydroxymethyloxindole and nonenzymic conversion of it to 3-methyleneoxindole was observed. Neither reaction mixtures nor 3-methyleneoxindole have any auxin-like activity in Avena or wheat coleoptile bioassays. In vivo studies show that although 53% decarboxylation of indoleacetic acid was observed in 48 hours, only a small amount of 3-methyloxindole could be recovered from the medium. The other decarboxylated products remain to be identified but are not 3-hydroxymethyloxindole or 3-methyleneoxindole.  相似文献   

2.
Tuli V  Moyed HS 《Plant physiology》1967,42(3):425-430
Extracts of pea seedlings (Pisum sativum, variety Alaska) oxidize indole-3-acetic acid to a bacteriostatic compound which has been identified as 3-hydroxymethyloxindole. At physiological pH this compound is readily dehydrated to 3-methyleneoxindole, another bacteriostatic agent. The extracts of pea seedlings also contain a reduced triphosphopyridine nucleotide-linked enzyme which reduces 3-methyleneoxindole to 3-methyloxindole, a non-toxic compound.

These enzymatic reactions also take place in intact seedlings; thus, a pathway of indole-3-acetic acid degradation via oxindoles appears to be pertinent to plant metabolism.

The significance of such metabolism lies in the fact that a key intermediate of this pathway, 3-methyleneoxindole, is a sulfhydryl reagent capable of profound effects on metabolism and growth.

  相似文献   

3.
Auxin activity of 3-methyleneoxindole in wheat   总被引:4,自引:3,他引:1       下载免费PDF全文
Basu PS  Tuli V 《Plant physiology》1972,50(4):499-502
A product of the enzymatic oxidation of indole-3-acetic acid, 3-methyleneoxindole, is at least 50-fold more effective than indole-3-acetic acid in stimulating the growth of wheat (Triticum vulgare, red variety) coleoptiles. Ethylenediaminetetra-acetic acid can antagonize the growth-stimulating properties of the parent compound, indole-3-acetic acid, presumably by chelating Mn2+, which is required for the enzymatic oxidation of indole-3-acetic acid. The growth stimulating effect of 3-methyleneoxindole, a product of the blocked reaction, on the other hand, is still evident in the presence of ethylenedia-minetetraacetic acid. In the presence of 2-mercaptoethanol, indole-3-acetic acid fails to stimulate the elongation of wheat coleoptiles. The property of binding to sulfhydryl compounds including 2-mercaptoethanol is unique to 3-methyleneoxindole among indole-3-acetic acid and its oxidation products. These findings suggest that 3-methyleneoxindole is an obligatory intermediate in indole-3-acetic acid induced elongation of wheat coleoptiles.  相似文献   

4.
Affinity chromatography of wheat germ extracts on a chitin column increased the rate and extent of protein synthesis, programmed by rabbit globin mRNA. Addition of purified wheat germ agglutinin to the chitin-treated extract reduced the rate of protein synthesis to about the levels seen in the untreated extracts. Experiments where the ratio of messenger to extract and the ratio of supernatant to ribosomes were varied, indicated that addition of wheat germ agglutinin reduced the amount of available ribosomes. Reduced and carboxymethylated wheat germ agglutinin failed to inhibit protein synthesis and was unable to bind to the ribosomes. However, labelled intact agglutinin was found to be bound to ribosomes. The bound agglutinin was not released by acid treatment. The inhibiting effect of wheat germ, agglutinin on protein synthesis could not be counteracted by addition of N-acetyl-D-glucosamine or sialic acid, whereas thiols partially diminished the inhibition. The data indicate that wheat germ agglutinin binds reversibly to ribosomes, probably through mixed disulfide formation, and that chitin treatment increases the ability of wheat germ extracts to support protein synthesis, at least in part, by removing the wheat germ agglutinin. The possibility that chitin treatment also removed other inhibitors of protein synthesis cannot be excluded.  相似文献   

5.
Basu PS  Tuli V 《Plant physiology》1972,50(4):507-509
Homogenates of pea (Pisum sativum L., var. Alaska) seedlings exposed to 14C-indole-3-acetic acid or 14C-3-methyleneoxindole, an oxidation product of indole-3-acetic acid, were extracted with phenol. In both cases 90% of the bound radioactivity was found associated with the protein fraction and 10% with the water-soluble, ethanol-insoluble fraction. The binding of radioactivity from 14C-indole-3-acetic acid is greatly reduced by the addition of unlabeled 3-methyleneoxindole as well as by chlorogenic acid, an inhibitor of the oxidation of indole-3-acetic acid to 3-methyleneoxindole. Chlorogenic acid does not inhibit the binding of 14C-3-methyleneoxindole. The labeled protein and water-soluble, ethanol-insoluble fractions of the phenol extract were treated with an excess of 2-mercaptoethanol. Independently of whether the seedlings had been exposed to 14C-indole-3-acetic acid or 14C-3-methyleneoxindole, the radioactivity was recovered from both fractions in the form of a 2-mercaptoethanol-3-methyleneoxindole adduct. These findings indicate that 3-methyleneoxindole is an intermediate in the binding of indole-3-acetic acid to macromolecules.  相似文献   

6.
β-Ketoacyl-[acyl-carrier-protein] (ACP) reductase, β-hydroxyacyl-ACP dehydrase, and enoyl-ACP reductase have been purified to homogeneity from extracts of spinach leaves. Based on sodium dodecyl sulfate-polyacrylamide gel eletrophoresis studies, the monomeric molecular weights of the β-ketoacyl-ACP reductase, β-hydroxyacyl-ACP dehydrase, and enoyl-ACP reductase were 24,200, 19,000, and 32,500, respectively, and by gel filtration, their molecular weights were 97,000, 85,000, and 115,000, respectively, suggesting that these three enzymes exist as tetramers. The β-ketoacyl-ACP reductase, the β-hydroxyacyl-ACP dehydrase, and the enoyl-ACP reductase contained two, one, and two cystein residues per monomer. β-Ketoacyl-ACP reductase preferably utilized NADPH as the reductant, whereas enoyl-ACP reductase was absolutely specific to NADH. β-Ketoacyl-ACP reductase reversibly catalyzed the reduction of acetoacetyl-ACP to d-β-hydroxybutyryl-ACP and β-hydroxyacyl-ACP dehydrase catalyzed the dehydration of d-β-hydroxyacyl-ACP to 2-enoyl-ACP. Both β-hydroxyacyl-ACP dehydrase and enoyl-ACP reductase were active with 2-enoyl-ACPs having chain lengths from C4 to C16, with 2-hexenoyl-ACP and 2-octenoyl-ACP being the most effective substrate. CoA esters served as substrates with the β-ketoacyl-ACP reductase and the enoyl-ACP reductase but were inert with β-hydroxyacyl-ACP dehydrase. These enzymes were inhibited by p-chloromercuribenzoate but not by N-ethylmaleimide.  相似文献   

7.
The influence of varying the amount of wheat germ agglutinin immobilized on Sepharose beads on the binding of glycoproteins to these beads was investigated. A series of wheat germ agglutinin-Sepharose gels containing between 0.10 and 10.0 mg of lectin/ml of gel was prepared, and the actual lectin content was established by acid hydrolysis of the gel followed by analysis of glycine, a major amino acid in wheat germ agglutinin. Affinity chromatography of labeled glycoproteins indicated that glycophorin bound to all the wheat germ agglutinin-Sepharose preparations. Fetuin, ovomucoid, and alpha 1-acid glycoprotein bound not at all or very poorly to gels with a low content of wheat germ agglutinin (less than 0.95 mg/ml). The specific binding of these glycoproteins increased with increasing lectin content on the gels, and on gels of high content (greater than 3 mg/ml) the binding was virtually quantitative. On chromatographing a mixture of glycophorin, alpha 1-acid glycoprotein, fetuin, and ovomucoid on wheat germ agglutinin-Sepharose, containing 0.08 mg of lectin/ml of gel, glycophorin was selectively retained on the gel. It was possible to purify glycophorin from an extract of human erythrocyte membranes in one step by chromatography on the above gel. By using the series of gels, it was demonstrated that Morris hepatoma 7777 membranes contained at least 4-fold more sialoglycoproteins which bound to low density wheat germ agglutinin-Sepharose compared to rat liver membranes. These hepatoma sialoglycoproteins were isolated, purified, and partially characterized as having a high proportion of O-linked sialyloligosaccharides. Our studies illustrate the use of low density wheat germ agglutinin-Sepharose gels both for the detection and for easy isolation of mucin-type glycoproteins from crude extracts of cells or membranes.  相似文献   

8.
The activity of acetyl-CoA carboxylase of suspension-cultured cells of parsley (Petroselinum hortense Hoffm.) is greatly stimulated by light soon after transferring cells to new culture medium. Parsley acetyl-CoA carboxylase has been purified from frozen cells by treatment of the crude protein extract with Dowex 1 × 2 and polyethyleneimine, precipitation with (NH4)2SO4, chromatography on DEAE-cellulose and blue Sepharose CL-6B, and gel filtration on Sepharose 6B. A recovery of about 8% has been achieved with a 300-fold increase in specific activity. Wheat germ acetyl-CoA carboxylase has been purified 2180-fold by a similar procedure. The two carboxylases have the following characteristics: Molecular weights of 840,000 for the parsley carboxylase and 700,000 for the wheat germ carboxylase have been estimated from the elution volumes of a calibrated Sepharose 6B column. Analysis by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate showed that the carboxylases from parsley and wheat each are composed of one large subunit (Mr = 210,000 and 240,000, respectively) and possibly one smaller polypeptide component (Mr = 105,000 and 98,000, respectively). Avidin-binding experiments demonstrated that the 240,000 — Mr component of wheat germ carboxylase is the biotin-containing subunit of this enzyme. No isoenzymes of the parsley carboxylase could be demonstrated.  相似文献   

9.
The ability of 0.4 M KCl to extract over 80% of a short-chain beta-hydroxyacyl-CoA dehydrase from rat hepatic endoplasmic reticulum, while more than 80% of the long-chain beta-hydroxyacyl-CoA dehydrase component of the fatty acid chain elongation system remains intact, confirms the existence of more than one hepatic microsomal dehydrase. Following extraction from the microsomal membrane, the short-chain dehydrase undergoes, at least, a two-fold activation. Employing even-numbered trans-2-enoyl-CoA substrates ranging in carbon chain length from 4 to 16, the highest dehydrase specific activity of 16 mumol min-1 mg protein-1 was obtained with trans-2-hexenoyl-CoA; crotonyl-CoA was the second most active substrate, followed by 8 greater than 10 greater than 12 greater than 14 greater than 16. The specific activity of the short-chain dehydrase with trans-2-hexadecenoyl-CoA (C-16) was only 3% of that observed with the trans-2-hexenoyl-CoA. With crotonyl-CoA or beta-hydroxybutyryl-CoA as substrates, HPLC was employed to identify the products, beta-hydroxybutyryl-CoA, of the hydration reaction, or crotonyl-CoA, of the reverse dehydration reaction. It was also observed that the short-chain dehydrase catalyzed the formation of both D(-) and L(+) stereoisomers of beta-hydroxybutyryl-CoA. The equilibrium constant for the dehydrase-catalyzed reaction determined at pH 7.4 and 35 degrees C, was calculated to be 6.38 X 10(-2) M-1, while the standard free energy change was -775 cal/mol, results similar to those obtained with crystalline crotonase. Finally, based on membrane fraction marker enzymes, substrate specificity, and heat lability of the dehydrase, it was concluded that the microsomal membrane contains a short-chain beta-hydroxyacyl-CoA dehydrase which is separate from the mitochondrial crotonase.  相似文献   

10.
The use of affinity chromatography on wheat germ agglutinin columns to partially purify detergent extracts of muscarinic acetylcholine receptor from porcine atria is described. The procedure results in a 20-fold purification of the protein. The partially purified protein binds [3H]L-QNB (the L isomer of quinuclidinyl benzilate) with an observed association rate constant 2- to 3-fold lower than that found for the detergent extract; however, incubation with column fractions eluted prior to the receptor gives an association rate constant similar to that for detergent extracts. The component responsible for this effect is nondialyzable and protease sensitive, indicating that it may be a protein or high-molecular-weight peptide. Affinity labeling experiments with [3H]propylbenzilylcholine mustard [N. J. M. Birdsall, A. S. V. Burgen, and E. C. Hulme (1979) Brit. J. Pharmacol. 66, 337-342] show radioactivity incorporated mainly in a broad peak of apparent molecular weight 75,000 +/- 5000.  相似文献   

11.
Gonadotropin-releasing hormone (GnRH) receptors were solubilized from rat pituitary membrane preparations in an active form by using the zwitterionic detergent CHAPS (3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid). The solubilized receptor exhibits high affinity, saturability, and specificity. The soluble supernatant retained 100% of the original binding activity when stored at 4 or -20 degrees C in the presence of 10% glycerol. The receptors were resolved into two components on the basis of chromatography on wheat germ agglutinin-agarose. Homogeneous receptor preparation was obtained by two cycles of affinity chromatography on immobilized avidin column coupled to [biotinyl-D-Lys6]GnRH. The overall recovery of the purified receptor was 4-10% of the initial activity in the CHAPS extract, and the calculated purification -fold was approximately 10,000 to 15,000. Analysis of iodinated purified GnRH receptors by autoradiography indicated the presence of two bands, Mr = 59,000 and 57,000. This was confirmed by photoaffinity labeling of the partially purified receptors and suggests that both components can specifically bind the hormone.  相似文献   

12.
Raut VV  Pandey SM  Sainis JK 《Annals of botany》2011,108(7):1235-1246

Background and Scope

In eukaryotes, chromatin remodelling complexes are shown to be responsible for nucleosome mobility, leading to increased accessibility of DNA for DNA binding proteins. Although the existence of such complexes in plants has been surmised mainly at the genetic level from bioinformatics studies and analysis of mutants, the biochemical existence of such complexes has remained unexplored.

Methods

Histone H1-depleted donor chromatin was prepared by micrococcal nuclease digestion of wheat nuclei and fractionation by exclusion chromatography. Nuclear extract was partially purified by cellulose phosphate ion exchange chromatography. Histone octamer trans-transfer activity was analysed using the synthetic nucleosome positioning sequence in the absence and presence of ATP and its analogues. ATPase activity was measured as 32Pi released using liquid scintillation counting.

Key Results

ATP-dependent histone octamer trans-transfer activity, partially purified from wheat nuclei using cellulose phosphate, showed ATP-dependent octamer displacement in trans from the H1-depleted native donor chromatin of wheat to the labelled synthetic nucleosome positioning sequence. It also showed nucleosome-dependent ATPase activity. Substitution of ATP by ATP analogues, namely ATPγS, AMP-PNP and ADP abolished the octamer trans-transfer, indicating the requirement of ATP hydrolysis for this activity.

Conclusions

ATP-dependent histone octamer transfer in trans is a recognized activity of chromatin remodelling complexes required for chromatin structure dynamics in non-plant species. Our results suggested that wheat nuclei also possess a typical chromatin remodelling activity, similar to that in other eukaryotes. This is the first report on chromatin remodelling activity in vitro from plants.  相似文献   

13.
14.
The association of hyaluronate with the surface of chondrocytes was examined by several approaches using primary cultures of chondrocytes derived from the Swarm rat chondrosarcoma. In culture, chondrosarcoma chondrocytes produced large pericellular coats, which can be visualized by particle exclusion, and which can be removed by Streptomyces hyaluronidase. Exposure of chondrocytes, which had been metabolically labelled with 3H-acetate, to exogenous hyaluronate or to Streptomyces hyaluronidase resulted in the release of 36-38% of the endogenous, labelled chondroitin sulfate from the cell layer into the incubation solution. These results imply that at least 37% of the cell layer chondroitin sulfate proteoglycan is retained there by an interaction with hyaluronate. Thus membranes were prepared from cultured chondrocytes and examined for sites which bind 3H-hyaluronate. Binding was observed and found to be saturable, specific for hyaluronate, of high affinity (Kd = approximately 10(-10) M), and destroyed by treating the membranes with trypsin. The 3H-hyaluronate-binding activity was inhibited competitively by hyaluronate decasaccharides but not by hexasaccharides or octasaccharides, indicating that the binding sites recognize a sequence of hyaluronate composed of five disaccharide repeats. The binding activity was partially purified from a detergent extract of chondrocyte membranes by ion exchange chromatography on DEAE-cellulose, followed by affinity chromatography on wheat germ agglutinin-agarose. Analysis of the partially purified binding activity by SDS-PAGE revealed five protein bands of 48,000-66,000 daltons in silver-stained gels. SDS-PAGE followed by Western blotting and exposure to monoclonal antibodies which recognize epitopes present in link protein and in the hyaluronate-binding region of cartilage proteoglycan revealed no immunoreactive protein bands in the partially purified material. We conclude that one mechanism by which hyaluronate associates with the chondrocyte surface may be via interaction with a membrane-bound hyaluronate-binding protein which is distinct from link protein and proteoglycan.  相似文献   

15.
16.
A protein kinase was extensively purified to near-homogeneity from wheat germ by a procedure involving affinity chromatography on casein-Sepharose 4B, gel filtration, and repeated chromatography on carboxymethyl-Sepharose CL-6B. The protein kinase preparations have the highest specific activities (up to 656 nanomoles phosphate incorporated per minute per milligram of protein) yet reported for plant protein kinases. The major polypeptides in purified preparations were revealed as two barely-resolved bands (molecular weight 31,000) on polyacrylamide gel electrophoresis in subunit-dissociating conditions. The molecular size of the protein kinase as determined from gel filtration is 30,000. The protein kinase catalyzes the phosphorylation of casein, phosvitin, and the wheat germ cyclic AMP-binding protein cABPII but not of bovine serum albumin and histones nor of the wheat germ cytokinin-binding protein CBP. The protein kinase has a pH optimum of 7.9 and a Km value for ATP of 10 micromolar. The protein kinase differs from wheat germ CBP kinase in molecular weight, differential sensitivity to inhibitors, and in substrate specificity.  相似文献   

17.
Aspartokinase has been isolated from wheat germ and a preliminary survey made of its properties in a partially purified extract. The enzyme has an absolute requirement for ATP and a divalent metal ion. The phosphate donor can be either ATP or GTP, but other nucleotides are ineffective. Both magnesium and manganese will activate the enzyme, whereas calcium shows a trace amount of activity. The enzyme has a Km of 16.7 mm for aspartate, 1.2 mm for ATP, and 3.3 mm for MgCl2. Lysine inhibits the reaction at fairly low concentrations, and threonine inhibits at high concentrations. Other amino acids which are derived from aspartate (methionine, homoserine, threonine, and isoleucine) have little effect. When lysine and threonine are added together, they show a concerted inhibition of the reaction. The enzyme is also stabilized against heat inactivation by lysine and threonine together but not by either when added separately. It is suggested that aspartokinase from plants is a regulatory enzyme and exhibits a concerted feedback mechanism.  相似文献   

18.
We have examined the characteristics of binding to wheat germ agglutinin-Sepharose of β-N-acetylglucosaminidase and β-galactosidase from aleurone layers of resting wheat grains. Although the enzymes interacting with wheat germ agglutinin-Sepharose could be extracted by a procedure which did not involve any solubilizing treatments, the highest activity of these enzymes was obtained by extracting and sonicating the tissues in the presence of 0.5% Triton X-100. The pH optimum and time-course of binding as well as the effect of some divalent ions on the binding were studied. The largest part of the bound enzymes was eluted at low concentration of N-acetyl-D-glucosamine (0.05 M), although smaller amounts were still eluted at higher molarities (0.1 and 0.2 M). D-Mannose, D-glucose and L-fucose failed to replace N-acetyl-D-glucosamine in eluting the enzymes bound to wheat germ agglutinin-Sepharose, whereas N-acetyl-D-galactosamine was much less effective than N-acetyl-D-glucosamine. The catalytic properties of the enzymes remained unchanged after the binding to wheat germ agglutinin-Sepharose, although the Km values of the free and lectin-bound enzymes were slightly different. A rapid and easy three-step procedure of purification, mainly based on affinity chromatography on wheat germ agglutinin-Sepharose, is described. It allows purification of β-galactosidase and β-N-acetylglucosaminidase over 200-fold. β-N-Acetylglucosaminidase has been further purified to electrophoretic homogeneity and also characterized.  相似文献   

19.
Six new products of oxidation of indolyl-3-acetic add catalyzed by horseradish peroxidase were isolated, along with four known ones, 3-hydroxymethyloxindole (1), 3-methyleneoxindole (2), indolyl-3-aldehyde (4), and 3,3-diindolylmethane (10). Based on spectroscopic and chemical evidence, the new products were identified as 3-acetoxyindole (3), 3-(indol-3-ylmethyl)oxindole (6), 3-[(2-mdol-3-ylmethyl)indol-3-ylmethyl]oxindole (9), the 3-hydroxymethyl compounds of 6 and 9 (5 and 7), and 2-(indol-3-ylmethyl)indolyl-3-acetic acid (8), respectively.  相似文献   

20.
The satellite tobacco necrosis virus RNA is uncapped and requires a 3′ translational enhancer domain (TED) for translation. Both in the wheat germ extract and in tobacco, TED stimulates in cis translation of heterologous, uncapped RNAs. In this study we investigated to what extent translation stimulation by TED depends on binding to wheat germ factors. We show that in vitro TED binds at least seven wheat germ proteins. Translation and crosslinking assays, to which TED or TED derivatives with reduced functionality were included as competitor, showed that TED function correlates with binding to a 28 kDa protein (p28). One particular condition of competition revealed that p28 binding is not obligatory for TED function. Under this condition, a 30 kDa protein (p30) binds to TED. Importantly, affinity of p30 correlates with functionality of TED. These results strongly suggest that TED has the capacity to stimulate translation by recruiting the translational machinery either via binding to p28 or via binding to p30.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号