首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
At mechanical equilibrium, articular cartilage is usually characterized as an isotropic elastic material with no interstitial fluid flow. In this study, the equilibrium properties (Young's modulus, aggregate modulus and Poisson's ratio) of bovine humeral, patellar and femoral cartilage specimens (n=26) were investigated using unconfined compression, confined compression, and indentation tests. Optical measurements of the Poisson's ratio of cartilage were also carried out. Mean values of the Young's modulus (assessed from the unconfined compression test) were 0.80+/-0.33, 0.57+/-0.17 and 0.31+/-0.18MPa and of the Poisson's ratio (assessed from the optical test) 0.15+/-0.06, 0.16+/-0.05 and 0.21+/-0.05 for humeral, patellar, and femoral cartilages, respectively. The indentation tests showed 30-79% (p<0.01) higher Young's modulus values than the unconfined compression tests. In indentation, values of the Young's modulus were independent of the indenter diameter only in the humeral cartilage. The mean values of the Poisson's ratio, obtained indirectly using the mathematical relation between the Young's modulus and the aggregate modulus in isotropic material, were 0.16+/-0.06, 0.21+/-0.05, and 0.26+/-0.08 for humeral, patellar, and femoral cartilages, respectively. We conclude that the values of the elastic parameters of the cartilage are dependent on the measurement technique in use. Based on the similar values of Poisson's ratios, as determined directly or indirectly, the equilibrium response of articular cartilage under unconfined and confined compression is satisfactorily described by the isotropic elastic model. However, values of the isotropic Young's modulus obtained from the in situ indentation tests are higher than those obtained from the in vitro unconfined or confined compression tests and may depend on the indenter size in use.  相似文献   

2.
Young's modulus, elastic and plastic deformation, mechanical hardness and load at failure were determined for low-grade degenerated hyaline cartilage in a porcine model. Osteochondral plugs from the medial condyle of 30 female pigs were used. Cartilage defects were classified using the International Cartilage Repair Society (ICRS) protocol. Mechanical hardness was measured using a Shore A testing device. Total stiffness and plastic deformation was evaluated in the range 50-200 N using a 5-mm indenter. The load at failure was then determined. ICRS grade I specimens showed significantly lower stiffness than grade 0 specimens. ICRS grade 0 specimen showed no significant plastic deformation within the load range 25-100 N. In degenerated cartilage, plastic deformation started at a significantly lower load (50 N). The Young's modulus at 25 N in ICRS grade 0 specimens (18.8 MPa) was significantly higher than in grade I (11.1 MPa) or grade II (10.5 MPa) specimens. Intact cartilage showed significantly higher tension at failure and mechanical Shore A hardness. Young's modulus and tension at failure showed strong correlation. Cartilage degeneration is associated with a significant loss of elasticity and mechanical stress resistance. Shore hardness measurement is an adequate method for rapid biomechanical evaluation of cartilage specimens.  相似文献   

3.
The effect of specimen geometry on the mechanical behaviour of trabecular bone specimens was studied by non-destructive uniaxial compression to 0.4% strain using cylindrical specimens with different sizes and length-to-diameter ratios, and by comparing cubic and cylindrical specimens with the same cross-sectional area. Both the length and the cross-sectional area of the specimen had a highly significant influence on the mechanical behaviour (p less than 0.0001). Within the actual range of length (2.75-11.0 mm) the normalized stiffness (Young's modulus) was related nearly linearly to the specimen length. This dependency on specimen length is suggested to be caused mainly by structural disintegrity of the trabecular specimens near the surface. The normalized stiffness (Young's modulus) was also positively correlated to the cross-sectional area. This dependency on cross-sectional area is probably due to friction-induced stress inhomogeneity at the platen-specimen interface. A cube with side length 6.5 mm or a cylindrical specimen with 7.5 mm diameter and 6.5 mm length are suggested as standard specimens for comparative studies on trabecular bone mechanics.  相似文献   

4.
Up to now, due to cortical thickness and imaging resolution, it is not possible to derive subject-specific mechanical properties on the 'vertebral shell' from imaging modalities applicable in vivo. As a first step, the goal of this study was to assess the apparent Young's modulus of vertebral cortico-cancellous bone specimens using an inverse method. A total of 22 cortico-cancellous specimens were harvested from 22 vertebral bodies. All specimens were tested in compression until failure. To compute the apparent Young's modulus of the specimen from the inverse method, the boundary conditions of the biomechanical experiments were faithfully reproduced in a finite element model (FEM), and an optimisation routine was used. The results showed a mean of the apparent Young's modulus of 374?±?208?MPa, ranging from 87 to 791?MPa. By computing an apparent Young's modulus of a cortico-cancellous medium, this study gives mechanical data for an FEM of an entire vertebra including an external shell combining both bone tissues.  相似文献   

5.
Tensile and compressive properties of cancellous bone   总被引:3,自引:0,他引:3  
The relationship between the mechanical properties of trabecular bone in tension and compression was investigated by non-destructive testing of the same specimens in tension and compression, followed by random allocation to a destructive test in either tension or compression. There was no difference between Young's modulus in tension and compression, and there was a strong positive correlation between the values (R = 0.97). Strength, ultimate strain and work to failure was significantly higher in tensile testing than in compressive testing.  相似文献   

6.
The anatomical variation of orthotropic elastic moduli of the cancellous bone from three human proximal tibiae was investigated using an ultrasonic technique. With this technique, it was possible to measure three orthogonal elastic moduli and three shear moduli from cubic specimens of cancellous bone as small as 8 mm per side. Correlation with mechanical tensile testing has shown this technique to offer a precise measure of cancellous modulus (Eten = 0.94Eult + 144.6 MPa, r2 = 0.96, n = 34). The cancellous bone of the proximal tibia was found to be very inhomogeneous, with the axial modulus ranging between 340 and 3350 MPa. A course map is presented, showing measured Young's moduli as a function of anatomical position. The anisotropy of the cancellous bone, determined by the relative differences between the three orthogonal moduli, was shown to be relatively constant over the entire range of cancellous densities tested. The relationship between the axial elastic modulus and the apparent density was found to be approximately linear, as reported by others for proximal tibial cancellous bone.  相似文献   

7.
Compressive axial strain distributions in cancellous bone specimens   总被引:1,自引:0,他引:1  
The compressive axial strain distribution in cylindrical trabecular bone specimens was studied using digitized images of the specimen surface. Specimens were tested with strain rate 0.00015 s-1. Images were taken at 0, 1, 2, 3, 4, 6, 8 and 10% strain. Using an optical illusion of movement by rapidly changing succeeding images, failures were classified as transverse (33%) or oblique collapses (67%). The location of failure was not determined by the specimen density gradient. Local axial strain in the distal, intermediate and proximal third was measured throughout the compression in the transversely failing specimens, whereas local strain in the obliquely failing specimens was measured in the pre-failure phase only. Axial strain inhomogeneity was observed in the pre-failure as well as in the post-failure phase. In the pre-failure phase the intermediate third was strained significantly less than the thirds near the ends. In the post-failure phase specimen strain occurred solely in the collapsed part. Ultimate strain of the transversely failing specimens was 2.5% and ultimate strain of the failing third was 3.7%. At failure less than 1% strain was observed in the intermediate third and at 10% specimen strain 1.5% local strain was found in the intermediate third. The results indicate unreliability of conventional stiffness and strain measurements in trabecular bone specimens probably due to lack of trabecular constraint at the end surfaces. Conventional measurements tend to underestimate stiffness and, by giving an average value of strain in spite of considerable strain inhomogeneity, to underestimate failure strain.  相似文献   

8.
This study was designed to compare the compressive mechanical properties of filler materials, Wood's metal, dental stone, and polymethylmethacrylate (PMMA), which are widely used for performing structural testing of whole vertebrae. The effect of strain rate and specimen size on the mechanical properties of the filler materials was examined using standardized specimens and mechanical testing. Because Wood's metal can be reused after remelting, the effect of remelting on the mechanical properties was tested by comparing them before and after remelting. Finite element (FE) models were built to simulate the effect of filler material size and properties on the stiffness of vertebral body construct in compression. Modulus, yield strain, and yield strength were not different between batches (melt-remelt) of Wood's metal. Strain rate had no effect on the modulus of Wood's metal, however, Young's modulus decreased with increasing strain rate in dental stone whereas increased in PMMA. Both Wood's metal and dental stone were significantly stiffer than PMMA (12.7 +/- 1.8 GPa, 10.4 +/- 3.4 GPa, and 2.9 +/- 0.4 GPa, respectively). PMMA had greater yield strength than Wood's metal (62.9 +/- 8.7 MPa and 26.2 +/- 2.6 MPa). All materials exhibited size-dependent modulus values. The FE results indicated that filler materials, if not accounted for, could cause more than 9% variation in vertebral body stiffness. We conclude that Wood's metal is a superior moldable bonding material for biomechanical testing of whole bones, especially whole vertebrae, compared to the other candidate materials.  相似文献   

9.
The compressive stiffness of an elastic material is traditionally characterized by its Young's modulus. Young's modulus of articular cartilage can be directly measured using unconfined compression geometry by assuming the cartilage to be homogeneous and isotropic. In isotropic materials, Young's modulus can also be determined acoustically by the measurement of sound speed and density of the material. In the present study, acoustic and mechanical techniques, feasible for in vivo measurements, were investigated to quantify the static and dynamic compressive stiffness of bovine articular cartilage in situ. Ultrasound reflection from the cartilage surface, as well as the dynamic modulus were determined with the recently developed ultrasound indentation instrument and compared with the reference mechanical and ultrasound speed measurements in unconfined compression (n=72). In addition, the applicability of manual creep measurements with the ultrasound indentation instrument was evaluated both experimentally and numerically. Our experimental results indicated that the sound speed could predict 47% and 53% of the variation in the Young's modulus and dynamic modulus of cartilage, respectively. The dynamic modulus, as determined manually with the ultrasound indentation instrument, showed significant linear correlations with the reference Young's modulus (r(2)=0.445, p<0.01, n=70) and dynamic modulus (r(2)=0.779, p<0.01, n=70) of the cartilage. Numerical analyses indicated that the creep measurements, conducted manually with the ultrasound indentation instrument, were sensitive to changes in Young's modulus and permeability of the tissue, and were significantly influenced by the tissue thickness. We conclude that acoustic parameters, i.e. ultrasound speed and reflection, are indicative to the intrinsic mechanical properties of the articular cartilage. Ultrasound indentation instrument, when further developed, provides an applicable tool for the in vivo detection of cartilage mechano-acoustic properties. These techniques could promote the diagnostics of osteoarthrosis.  相似文献   

10.
A novel method is described to synthesize quaternary salts of chitosan with dimethylsulfate and subsequently cast films. In an attempt to improve both mechanical and hydrophobic characteristics, the chitosan was previously modified by N-alkylation, introducing 4, 8 and 12 carbons moieties into the polymeric chain. Analysis by FTIR and solid-state CP-MAS (13)C NMR spectroscopy confirmed the success of both alkylation and quaternization processes. The average degree of quaternization of these N-methylated derivatives was calculated to be 35%. DMA measurements indicated that chitosan and its derivative films are typically brittle materials, exhibiting similar non-linear viscoelastic behaviors. The films of unmodified chitosan have a very small strain (approximately 2.8%), though they were the most resistant films (Young's modulus=2283 MPa; tensile strength >44.0 MPa). In general, the alkyl-chitosan derivatives appear to be more plastic than chitosan films but less resistant, e.g., for butyl chitosan: maximum strain=13.1%; tensile strength=13.4 MPa and Young's modulus=171 MPa. Conversely the quaternization reaction increased the hardness of the parent sample, viz. for quaternary salt of dodecyl chitosan: maximum strain=2.6%; tensile strength=38.3 MPa and Young's modulus=1792 MPa.  相似文献   

11.
Mechanical properties of twenty human os calcanei were determined by uniaxial compression testing of bone specimens from facies articularis talaris posterior, facies articularis cuboidea, and tuber calcanei. Specimens were taken oriented perpendicular to the planes of the facies articularis, and in tuber along the presumed loading axis throughout the gait cycle. Young's modulus and strength at facies articularis cuboidea and facies articularis talaris posterior were about three times those at the tuber calcanei. The variation of the relationship between Young's modulus and apparent density indicated differences in the orientation of the trabecula, in relation to the direction of evaluation between these locations. A more detailed analysis of the topographical variation of strength within each location was made using penetration testing of a further nineteen specimens. The results of both types of measurements indicated that the major part of the load during walking is carried by facies articularis talaris posterior and facies articularis cuboidea.  相似文献   

12.
The Young's modulus of multilayer films containing nanofibrillated cellulose (NFC) and polyethyleneimine (PEI) was determined using the strain-induced elastic buckling instability for mechanical measurements (SIEBIMM) technique. (1) Multilayer films were built up on polydimethylsiloxane substrates using electrostatic layer-by-layer assembly. At 50% relative humidity, SIEBIMM gave a constant Young's modulus of 1.5 ± 0.2 GPa for 35-75 nm thick films. Conversely, in vacuum, the Young's modulus was 10 times larger, at 17.2 ± 1.2 GPa. A slight decrease in buckling wavelength with increasing strain was observed by scanning electron microscopy with in situ compression, and above 10% strain, extensive cracking parallel to the compressive direction occurred. We conclude that whereas PEI acts as a "glue" to hold multiple layers of NFC together, it prevents full development of hydrogen bonding and specific fibril-fibril interactions, and at high humidity, its hygroscopic nature decreases the elastic modulus when compared with pure NFC films.  相似文献   

13.
The Hopkinson bar stress technique and a universal testing machine (Instron 1125) have been used to investigate the dynamic and static mechanical properties of cortical bone taken from a human femur respectively. We found that the average dynamic Young's modulus value (Ed = 19.9 GPa) to be 23% higher than the average static Young's modulus value (Ed = 16.2 GPa). Furthermore, the Poisson's ratio did not exhibit any significant variation for the two different types of loading. No difference was observed between the values of the dynamic Young's modulus in tension and those found in compression. A comparison was made of the results of this study with those found by other researchers using different techniques, such as ultrasonics, and it was found that they agree well with most of the results of previous studies. Finally, the viscosity for cortical bone found in this study correlates with viscosity reported by Tennyson et al. [Expl Mech. 12, 502-507 (1972)] for ten days post mortem age specimens.  相似文献   

14.
Tensile experiments and SEM fractography on bovine subchondral bone   总被引:4,自引:0,他引:4  
Subchondral bone undecalcified samples, extracted from bovine femoral heads, are subjected to a direct tensile load. The Young's modulus of each sample is determined from repeated tests within the elastic limit. In a last test, the tensile load is increased up to the specimen failure, determining the ultimate tensile strength. The investigation is performed on both dry and wet specimens. The measured Young's modulus for dry samples is 10.3+/-2.5GPa, while that of wet samples is 3.5+/-1.2GPa. The ultimate tensile strengths are 36+/-10 and 30+/-7.5MPa for dry and wet specimens, respectively. SEM micrographs of failure surfaces show characteristic lamellar bone structures, with lamellae composed of calcified collagen fibers. Rudimentary osteon-like structures are also observed. Failure surfaces of wet samples show a marked fiber pull-out, while delamination predominates in dry samples. The obtained results are interpreted on the basis of the deformation mechanisms typical of fiber-reinforced laminated composite materials.  相似文献   

15.
We evaluated whether the use of cartilage thickness measurement would improve the ability of the arthroscopic indentation technique to estimate the intrinsic stiffness of articular cartilage. First, cartilage thickness and ultrasound reflection from the surface of bovine humeral head were registered in situ using a high-frequency ultrasound probe. Subsequently, cartilage was indented in situ at the sites of the ultrasound measurements using arthroscopic instruments with plane-ended and spherical-ended indenters. Finally, full-thickness cartilage disks (n=30) were extracted from the indented sites (thickness=799-1654microm) and the equilibrium Young's modulus was determined with a material testing device in unconfined compression geometry. We applied analytical and numerical indentation models for the theoretical correction of experimental indentation measurements. An aspect-ratio (the ratio of indenter radius to cartilage thickness) correction improved the correlation of the indenter force with the equilibrium Young's modulus from r(2)=0.488 to r(2)=0.642-0.648 (n=30) for the plane-ended indenter (diameter=1.000mm, height=0.300mm) and from r(2)=0.654 to r(2)=0.684-0.692 (n=30) for the spherical-ended indenter (diameter=0.500mm, height=0.100mm), depending on the indentation model used for the correction. The linear correlation between the ultrasound reflection and the Young's modulus was r(2)=0.400 (n=30). These results suggest that with large indenters, knowledge of the cartilage thickness improves the reliability of the indentation measurements, especially in pathological situations where cartilage thickness may be significantly lower than normal. Ultrasound measurements also provide diagnostically important information about cartilage thickness as well as knowledge of the integrity of the superficial zone of cartilage.  相似文献   

16.
An accurate estimation of tympanic membrane stiffness is important for realistic modelling of middle ear mechanics. Tympanic membrane stiffness has been investigated extensively under either quasi-static or dynamic loading conditions. It is known that biological tissues are sensitive to strain rate. Therefore, in this work, the mechanical behaviour of the tympanic membrane was studied under both quasi-static and dynamic loading conditions. Experiments were performed on the pars tensa of four gerbil tympanic membranes. A custom-built indentation apparatus was used to perform in situ tissue indentations and testing was done applying both quasi-static and dynamic sinusoidal indentations up to 8.2?Hz. The unloaded shape of the tympanic membrane was measured and used to create specimen-specific finite element models to simulate the experiments. The frequency dependent Young's modulus of each specimen was then estimated by an inverse analysis in which the error between experimental and simulated indentation data was optimised for each indentation frequency separately. Using an 8?μm central region thickness, we found Young's moduli between 71 and 106?MPa (n = 4) at 0.2?Hz indentation frequency. A standard linear viscoelastic model and a viscoelastic model with a continuous relaxation spectrum were used to derive a complex modulus in the frequency domain. Due to experimental limitations, the indentation frequency upper limit was 8.2?Hz. The average relative modulus increase in this domain was 14% and the increase was the strongest below 6?Hz.  相似文献   

17.
Cylindrical bone specimens from the proximal epiphysis of ten normal human proximal tibiae were randomly assigned to a destructive axial compression test-series (N = 94) or to a protocol of standardized mechanical conditioning followed by non-destructive repeated testing to 0.6% strain and a final destructive test (N = 121). Specimen X-ray quantitative computed tomography (QCT) obtained at different scanning energies (100, 120 and 140 kVp) yielded closely related results (r = 1.00). Accordingly, predictions of physically measured densities or mechanical properties were not improved by using more than one scanning energy. QCT and physically measured densities were intimately related (QCT at 140 kVp to apparent density using linear regression: r = 0.94, and to apparent ash density: r = 0.95) and did not differ significantly in their ability to predict the mechanical properties, thus favouring the more easily implemented QCT for routine work. Evaluation of the relation of apparent density to Young's modulus and ultimate strength suggested that a power law regression model is preferable to a linear model, although linear model prediction of mechanical properties does not have significantly worse accuracy within the narrow density range investigated. The effect of conditioning on the behaviour of bone specimens subjected to destructive compression tests was to increase the stiffness and strength by approximately 50 and 20% respectively.  相似文献   

18.
Articular cartilage is often characterized as an isotropic elastic material with no interstitial fluid flow during instantaneous and equilibrium conditions, and indentation testing commonly used to deduce material properties of Young's modulus and Poisson's ratio. Since only one elastic parameter can be deduced from a single indentation test, some other test method is often used to allow separate measurement of both parameters. In this study, a new method is introduced by which the two material parameters can be obtained using indentation tests alone, without requiring a secondary different type of test. This feature makes the method more suitable for testing small samples in situ. The method takes advantages of the finite layer effect. By indenting the sample twice with different-sized indenters, a nonlinear equation with the Poisson's ratio as the only unknown can be formed and Poisson's ratio obtained by solving the nonlinear equation. The method was validated by comparing the predicted Poisson's ratio for urethane rubber with the manufacturer's supplied value, and comparing the predicted Young's modulus for urethane rubber and an elastic foam material with modulii measured by unconfined compression. Anisotropic and nonhomogeneous finite-element (FE) models of the indentation were developed to aid in data interpretation. Applying the method to bovine patellar cartilage, the tissue Young's modulus was found to be 1.79 +/- 0.59 MPa in instantaneous response and 0.45 +/- 0.26 MPa in equilibrium, and the Poisson's ratio 0.503 +/- 0.028 and 0.463 +/- 0.073 in instantaneous and equilibrium, respectively. The equilibrium Poisson's ratio obtained in our work was substantially higher than those derived from biphasic indentation theory and those optically measured in an unconfined compression test. The finite element model results and examination of viscoelastic-biphasic models suggest this could be due to viscoelastic, inhomogeneity, and anisotropy effects.  相似文献   

19.
The high degree of porosity of cancellous bone makes elastic property measurement difficult by traditional mechanical testing methods. An ultrasonic technique is described with which mechanical properties of anisotropic, rigid, porous materials, such as cancellous bone, can be measured. The technique utilizes unique piezoelectric transducers operated in a continuous wave mode at a frequency of approximately 50 kHz. Both longitudinal and shear waves can be propagated and received with the transducers allowing both Young's moduli and shear moduli to be determined with the technique. A comparison between moduli measured with the ultrasonic technique and moduli measured with traditional mechanical testing shows the new method to be quite accurate in elastic property determination, (r2 = 0.935, Emech = 1.00E1dt + 23.3 MPa) (r2 = 0.656, Gmech = 1.08 Gult--3.3MPa).  相似文献   

20.
The purpose of this study was to determine the effect of Haversian remodeling on the tensile properties of human cortical bone by testing specimens containing, as far a possible, a single type of bone tissue. Fifty-one specimens were prepared from sixteen fresh tibias, removed at autopsy. Age range was 19-35. Regions were selected so that the specimens would consist almost exclusively of either primary bone or Haversian bone. The ultimate tensile strength, ultimate strain and Young's modulus of elasticity were determined at a loading rate of 0.05 mm s-1. The primary bone specimens were found to have a significantly higher ultimate tensile strength and modulus of elasticity than those formed of Haversian bone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号