首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
How does body size affect the structure and gas exchange capacities of insect tracheae? Do insects become more oxygen-limited as they grow? We addressed these questions by measuring the dimensions of two transverse tracheae within the abdomen of American locusts of different ages, and evaluating the potential for diffusion or convection to provide adequate gas exchange. The grasshopper abdomen has longitudinal tracheae that run along the midgut, heart, nerve cord, and lateral body wall. Transverse tracheae run from each spiracle to the longitudinal tracheae. Dorsal air sacs attach near each spiracle. In both transverse tracheae studied, diffusive capacities increased more slowly than metabolic rates with age, and calculated oxygen gradients necessary to supply oxygen by diffusion increased exponentially with age. However, surgical studies demonstrated that transport of gas through these transverse tracheae occurred by convection, at least in adults. Convective capacities paralleled metabolic rates with age, and the calculated pressure gradients required to sustain oxygen consumption rates by convection were independent of age. Thus, in growing grasshoppers, tracheal capacities matched tissue oxygen needs. Our morphological and physiological data together suggest that use of convection allows older grasshoppers to overcome potential limitations on size imposed by diffusion through tracheal systems.  相似文献   

2.
How does body size affect the structure and gas exchange capacities of insect tracheae? Do insects become more oxygen-limited as they grow? We addressed these questions by measuring the dimensions of two transverse tracheae within the abdomen of American locusts of different ages, and evaluating the potential for diffusion or convection to provide adequate gas exchange. The grasshopper abdomen has longitudinal tracheae that run along the midgut, heart, nerve cord, and lateral body wall. Transverse tracheae run from each spiracle to the longitudinal tracheae. Dorsal air sacs attach near each spiracle. In both transverse tracheae studied, diffusive capacities increased more slowly than metabolic rates with age, and calculated oxygen gradients necessary to supply oxygen by diffusion increased exponentially with age. However, surgical studies demonstrated that transport of gas through these transverse tracheae occurred by convection, at least in adults. Convective capacities paralleled metabolic rates with age, and the calculated pressure gradients required to sustain oxygen consumption rates by convection were independent of age. Thus, in growing grasshoppers, tracheal capacities matched tissue oxygen needs. Our morphological and physiological data together suggest that use of convection allows older grasshoppers to overcome potential limitations on size imposed by diffusion through tracheal systems.  相似文献   

3.
Among animals, insects have the highest mass-specific metabolic rates; yet, during intermolt development the tracheal respiratory system cannot meet the increased oxygen demand of older stage insects. Using locomotory performance indices, whole body respirometry, and X-ray imaging to visualize the respiratory system, we tested the hypothesis that due to the rigid exoskeleton, an increase in body mass during the intermolt period compresses the air-filled tracheal system, thereby, reducing oxygen delivery capacity in late stage insects. Specifically, we measured air sac ventilation frequency, size, and compressibility in both the abdomen and femur of early, middle, and late stage sixth instar Schistocerca americana grasshoppers. Our results show that late stage grasshoppers have a reduced air sac ventilation frequency in the femur and decreased convective capacities in the abdomen and femur. We also used X-ray images of the abdomen and femur to calculate the total proportion of tissue dedicated to respiratory structure during the intermolt period. We found that late stage grasshoppers had a lower proportion of their body dedicated to respiratory structures, especially air sacs, which convectively ventilate the tracheal system. These intermolt changes make oxygen delivery more challenging to the tissues, especially critical ones such as the jumping muscle. Indeed, late stage grasshoppers showed reduced jump frequencies compared to early stage grasshoppers, as well as decreased mass-specific CO2 emission rates at 3 kPa PO2. Our findings provide a mechanism to explain how body mass changes during the intermolt period reduce oxygen delivery capacity and alter an insect’s life history.  相似文献   

4.
Brent D. Opell 《Zoomorphology》1987,107(5):255-259
Summary Uloborids that spin reduced webs more actively monitor them than those that construct orb webs. Hyptiotes use both their first and fourth legs to tense their triangle-webs, whereas Miagrammopes rely principally on their first legs to monitor and jerk the threads of their irregular webs. The respiratory systems of these spiders include tracheae that extend into the prosoma, bifurcate, and enter the legs. To determine if the legs responsible for active web-monitoring tactics have more extensive tracheal supplies, the total cross sectional area has been computed of the tracheae entering the legs of mature female orb web and reduced web uloborids. Each leg's value has been divided by the cross sectional area of the tracheal trunks that enter the prosoma. These indexes reveal no significant differences between the relative tracheal supplies of the orb weavers investigated (Waitkera waitkerensis, Tangaroa beattyi, Uloborus glomosus). But the first, third, and fourth legs of H. cavatus and the first legs of M. animotus and M. pinopus have greater relative tracheal supplies than those of the three orb weaving species. Relative to leg volume, the first and fourth legs of H. cavatus have the greatest and the first legs of Miagrammopes species the next greatest tracheal supplies. When tracheal lengths are considered, these differences in potential oxygen supplies remain, showing that area differences do not simply compensate for differences in the distances over which oxygen must diffuse. These differences are leg-specific and not species-specific, and uloborids with the most extensive tracheal supplies are found in moist habitats. Thus the observed differences are best explained as adaptations to meet the greater oxygen demands of legs responsible for active web-monitoring tactics and not as adaptations to reduce respiratory water loss.  相似文献   

5.
First instars of Carausius morosus provide a good model for morphometric evaluation of the diffusing capacity between the tracheal system and hemolymph: air sacs are lacking, tracheoles do not penetrate the organs and muscles, and entire animals can be evaluated electron microscopically without subsampling. The tracheal volume makes up 1.3% of the volume of the whole insect excluding appendages. We calculated the lateral diffusing capacity for oxygen and carbon dioxide for five classes of tracheae according to their diameters, from 0.2 microm to 35 microm. The harmonic mean thickness of the tracheal epithelium is lowest in smallest tracheae and increases with increasing tracheal diameter. Although the smallest tracheae make up 70% (O2) and 60% (CO2) of the total diffusing capacity, the proximal four classes may also be significant in diffusion of oxygen and particularly of carbon dioxide. The suppression of the development of respiratory pigments in the evolution of terrestrial insects may have increased the relative importance of small tracheal elements for local oxygen consumption.  相似文献   

6.
The tracheal system of harvestmen consists of two stem tracheae, which give rise to higher order tracheae that supply the extremities and internal organs. In this study, we used stereological morphometric methods to investigate diffusing capacities of the walls ('lateral diffusing capacity') of the tracheae of adult males and females of Nemastoma lugubre. Diffusing barriers of the tracheal walls tend to be thinnest (0.17-0.19 microm) for the smallest tracheae (inner diameter 0.5-2 microm). In other tracheal classes the diffusing barriers increase with increasing diameters. Calculation of the mass-specific diffusing capacity for oxygen (D(O2)) of the walls of all higher order tracheae revealed 10.57 microl min(-1)g(-1)kPa(-1) for the females (mean body mass 3.8 mg) and 25.23 microl min(-1)g(-1)kPa(-1) for the males (mean body mass 1.4 mg). In both animal groups, the main D(O2) (58-67%) lies in the tracheae with an inner diameter of 0.5-2 microm, but also tracheae up to an inner diameter of 20 microm allow gas exchange via the tracheal walls. Stem tracheae are of no importance for lateral diffusion. Our results are consistent with the hypothesis that the functional morphology of the tracheal system of harvestmen represents an 'intermediate state' between the tracheal system of insects in which gas exchange is focused on the distal portions and that of spiders, in which the walls of all tracheae serve in gas exchange.  相似文献   

7.
Summary The anatomy of the complex tibial organs in the pro-, meso- and metathoracic legs of adults and larvae of the bushcricketEphippiger ephippiger is described comparatively. The subgenual organ and the intermediate organ are differentiated in the same way in legs I, II and III; the anatomy of the crista acustica and the tracheal morphology are significantly different. The final number of scolopidia in the tibial organ of each leg is present at the time of hatching. In the subgenual organ, the number of scolopidia is the same in all legs; in the intermediate organ, and especially in the crista acustica, the number of scolopidia decreases from leg I to legs II and III. In the first larval instar, the morphology of the tibia, the course of the trachea and the anatomy of accessory structures are developed in the same way in each leg. The specific differentiations forming the auditory receptor organ in leg I, such as the acoustic trachea, the tympana and tympanal cavities, develop step by step in subsequent instars. The auditory threshold recorded from the tympanal nerve in the prothoracic leg of adults is remarkably lower than in the meso- and metathoracic legs. Morphometrical analyses of structures that are suggested to play a role in stimulus transduction on scolopidia of the crista acustica reveal significant differences in the three legs.  相似文献   

8.
Explanations for the hypoallometric scaling of metabolic rate through ontogeny generally fall into two categories: supply-side constraints on delivery of oxygen, or decreased mass-specific intrinsic demand for oxygen. In many animals, supply and demand increase together as the body grows, thus making it impossible to tease apart the relative contributions of changing supply and demand to the observed scaling of metabolic rate. In larval insects, the large components of the tracheal system are set in size at each molt, but then remain constant in size until the next molt. Larvae of Manduca sexta increase up to ten-fold in mass between molts, leading to increased oxygen need without a concomitant increase in supply. At the molt, the tracheal system is shed and replaced with a new, larger one. Due to this discontinuous growth of the tracheal system, insect larvae present an ideal system in which to examine the relative contributions of supply and demand of oxygen to the ontogenetic scaling of metabolic rate. We observed that the metabolic rate at the beginning of successive instars scales hypoallometrically. This decrease in specific intrinsic demand could be due to a decrease in the proportion of highly metabolically active tissues (the midgut) or to a decrease in mitochondrial activity in individual cells. We found that decreased intrinsic demand, mediated by a decrease in the proportion of highly metabolically active tissues in the fifth instar, along with a decrease in the specific mitochondrial activity, contribute to the hypoallometric scaling of metabolic rate.  相似文献   

9.
Insect wings consist almost entirely of lifeless cuticle; yet their veins host a complex multimodal sensory apparatus and other tissues that require a continuous supply of water, nutrients and oxygen. This review provides a survey of the various living components in insect wings, as well as the specific contribution of the circulatory and tracheal systems to provide all essential substances. In most insects, hemolymph circulates through the veinal network in a loop flow caused by the contraction of accessory pulsatile organs in the thorax. In other insects, hemolymph oscillates into and out of the wings due to the complex interaction of several factors, such as heartbeat reversal, intermittent pumping of the accessory pulsatile organs in the thorax, and the elasticity of the wall of a special type of tracheae. A practically unexplored subject is the need for continuous hydration of the wing cuticle to retain its flexibility and toughness, including the associated problem of water loss due to evaporation. Also, widely neglected is the influence of the hemolymph mass and the circulating flow in the veins on the aerodynamic properties of insect wings during flight. Ventilation of the extraordinarily long wing tracheae is probably accomplished by intricate interactions with the circulatory system, and by the exchange of oxygen via cutaneous respiration.  相似文献   

10.
The tracheal apical extracellular matrix (aECM) is vital for expansion of the tracheal lumen and supports the normal structure of the lumen to guarantee air entry and circulation in insects. Although it has been found that some cuticular proteins are involved in the organization of the aECM, unidentified factors still exist. Here, we found that mind the gap (Mtg), a predicted chitin‐binding protein, is required for the normal formation of the apical chitin matrix of airway tubes in the model holometabolous insect Drosophila melanogaster. Similar to chitin, the Mtg protein was linearly arranged in the tracheal dorsal trunk of the tracheae in Drosophila. Decreased mtg expression in the tracheae seriously affected the viability of larvae and caused tracheal chitin spiral defects in some larvae. Analysis of mtg mutant showed that mtg was required for normal development of tracheae in embryos. Irregular taenidial folds of some mtg mutant embryos were found on either lateral view of tracheal dorsal trunk or internal view of transmission electron microscopy analysis. These abnormal tracheae were not fully filled with gas and accompanied by a reduction in tracheal width, which are characteristic phenotypes of tracheal aECM defects. Furthermore, in the hemimetabolous brown planthopper (BPH) Nilaparvata lugens, downregulation of NlCPAP1‐N (a homolog of mtg) also led to the formation of abnormal tracheal chitin spirals and death. These results suggest that mtg and its homolog are involved in the proper organization of the tracheal aECMs in flies and BPH, and that this function may be conserved in insects.  相似文献   

11.
Like most spiders, members of the orb-weaving family Uloboridae have a dual respiratory system. Book lungs oxygenate the hemolymph and tracheae carry oxygen directly to tissues. Most members of the family are characterized by an extensive tracheal system that extends into the prosoma, where branches enter the legs. A comparison of both absolute and size-specific indices of these two respiratory components in six uloborid species using the independent contrast method shows that their development is inversely related and indicates that these two systems are complementary. Species that more actively monitor reduced webs have tracheae with greater cross sectional areas and book lungs with smaller areas than do orb-weaving species that less aggressively manipulate their webs. Thus, the acuteness of a spider's oxygen demands appears to influence the development of its respiratory components. As the tracheae assume more responsibility for providing oxygen the book lungs become less well developed and vice versa. J. Morphol. 236:57–64, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

12.
Adaptation to diverse habitats has prompted the development of distinct organs in different animals to better exploit their living conditions. This is the case for the respiratory organs of arthropods, ranging from tracheae in terrestrial insects to gills in aquatic crustaceans. Although Drosophila tracheal development has been studied extensively, the origin of the tracheal system has been a long-standing mystery. Here, we show that tracheal placodes and leg primordia arise from a common pool of cells in Drosophila, with differences in their fate controlled by the activation state of the wingless signalling pathway. We have also been able to elucidate early events that trigger leg specification and to show that cryptic appendage primordia are associated with the tracheal placodes even in abdominal segments. The association between tracheal and appendage primordia in Drosophila is reminiscent of the association between gills and appendages in crustaceans. This similarity is strengthened by the finding that homologues of tracheal inducer genes are specifically expressed in the gills of crustaceans. We conclude that crustacean gills and insect tracheae share a number of features that raise the possibility of an evolutionary relationship between these structures. We propose an evolutionary scenario that accommodates the available data.  相似文献   

13.
Bromhall C 《Tissue & cell》1987,19(6):793-807
1. The tracheal structures of spiders belonging to 15 families were investigated. Techniques developed primarily for use with insects were used to visualize spider tracheae. The tracheae were investigated in whole spiders and with serial sections. A macerating agent is described which dissolves the soft-tissues of the spiders without harming the tracheae, or decolourizing the injected dye. 2. A variety of tracheal systems are illustrated using diagrammatic line-drawings and photographs. 3. The variation in the tracheal structures of the spiders investigated in this study is discussed, as well as the use of tracheal structures in spider classification. Spider tracheae are compared with those of insects. 4. A list is given of the major investigations into spider tracheal systems this century.  相似文献   

14.
The tracheal system of two species of harvestmen with different life styles was investigated: the long-legged, Leiobunum rotundum (Phalangioidea, Phalangiidae) and the short-legged Nemastoma lugubre (Troguloidea, Nemastomatidae). The morphology of the tracheae is very similar in both species: The branching pattern is basically asymmetric and dichotomous, and the tracheae taper between branching points. The tracheal diameters range from 160 to 0.3 mum in L. rotundum (mean body mass 25.3 mg), and from 70 to 0.5 mum in N. lugubre (mean body mass 3.8 mg). Ultrastructurally, the tracheal walls are similar to those of insects, consisting of an outer hypodermal layer and an inner cuticular layer with taenidial structures. Tracheae of all diameters have close contact with organs and muscles, indicating that diffusive gas exchange may take place through the walls of all tracheae. The finest tracheae end freely in the hemolymph or at the surface of organs and muscles. Exceptions are tracheal penetration of the central nerve mass in the prosoma in both species, and of the muscles in L. rotundum. The latter may correlate with the active perambulatory life style of L. rotundum.  相似文献   

15.
Insects are small relative to vertebrates, possibly owing to limitations or costs associated with their blind-ended tracheal respiratory system. The giant insects of the late Palaeozoic occurred when atmospheric PO2 (aPO2) was hyperoxic, supporting a role for oxygen in the evolution of insect body size. The paucity of the insect fossil record and the complex interactions between atmospheric oxygen level, organisms and their communities makes it impossible to definitively accept or reject the historical oxygen-size link, and multiple alternative hypotheses exist. However, a variety of recent empirical findings support a link between oxygen and insect size, including: (i) most insects develop smaller body sizes in hypoxia, and some develop and evolve larger sizes in hyperoxia; (ii) insects developmentally and evolutionarily reduce their proportional investment in the tracheal system when living in higher aPO2, suggesting that there are significant costs associated with tracheal system structure and function; and (iii) larger insects invest more of their body in the tracheal system, potentially leading to greater effects of aPO2 on larger insects. Together, these provide a wealth of plausible mechanisms by which tracheal oxygen delivery may be centrally involved in setting the relatively small size of insects and for hyperoxia-enabled Palaeozoic gigantism.  相似文献   

16.
Fast axon activity and the motor pattern in cockroach legs during swimming   总被引:1,自引:0,他引:1  
Abstract Electromyographic recordings were made from muscles that extend the trochanter/femur of each of the six legs of American cockroaches, Periplaneta americana (L.), while the insects swam in water. The recordings showed two novel features. (1) During swimming, muscle activity in different legs was coordinated in the alternating tripod pattern commonly seen during free walking on land, not in the pattern of synchronous leg pairs common to other large terrestrial insects in water. (2) Fast axons were usually recruited along with slow axons, even when the insect swam at a moderate pace. Fast axon activity always started after the middle of the slow axon burst in intact insects, but vanished from most bursts in the stump of the leg after amputation of the femur. The alternating tripod pattern was maintained even after amputation. Possible causes of fast axon recruitment are discussed.  相似文献   

17.
  • 1 The size–grain hypothesis ( Kaspari & Weiser, 1999 ) states that (1) as organisms decrease in size, they perceive their environment as being more rugose; (2) long legs allow organisms to step over obstacles but hinder them from entering small gaps; and (3) as the size of an organism decreases, the benefits of long legs begin to be outweighed by the costs of construction. Natural selection should therefore favour proportionally longer legs in larger organisms, thereby leading to a positive allometry between leg and body length (scaling exponent b > 1).
  • 2 Here we compare the scaling exponent of leg‐to‐body length relationships among insects that walk, walk and fly, and predominantly fly. We measured the lengths of the hind tibia, hind femur, and body length of each species.
  • 3 The taxa varied considerably in the scaling exponent b. In seven out of ten groups (Formicidae, Isoptera, Carabidae, Pentatomidae, Apidae, Lepidoptera, Odonata adult), b was significantly greater than one. However, there was no gradual decrease in b from walking to walking/flying to flying insects.
  • 4 The results of the present study provide no support for the size–grain hypothesis. We propose that leg length is not only affected by the rugosity of the environment, but also by (1) functional adaptations, (2) phylogeny, (3) lifestyle, (4) the type of insect development (hemimetabolism or holometabolism), and (5) constraints of gas exchange.
  相似文献   

18.
The invasive brown marmorated stink bug, Halyomorpha halys (Stål) (Hemiptera: Pentatomidae), is a highly polyphagous and mobile pest causing crop damage aggregated at the perimeters of crop fields. Understanding the dispersal biology of H. halys is critical for the development of reliable monitoring and management strategies. In this study, dispersal ecology of H. halys nymphs was studied under laboratory and field conditions. In the laboratory, horizontal and vertical walking capacity was quantified for mobile nymphal stages (i.e., 2nd through 5th instars) and compared with adults. There was a significant difference in the horizontal distance moved by H. halys among the life stages tested. Third instars exhibited significantly greater walking distances compared with adults; horizontal walking distances by other nymphal stages were not significantly different from adults. A similar pattern was observed from vertical climbing tests of H. halys. Third and 4th instars climbed significantly greater distances compared with 2nd instars and adults, while distances climbed by 5th instars were intermediate. In the field, the walking distance of 3rd and 5th instar nymphs on mowed grass was quantified based on direct observation of individuals for 30 min. Under these conditions, 5th instars moved nearly two-fold greater distances compared with 3rd instars, but surface temperature affected both nymphal stages similarly. Shorter bouts of movement were common at surface temperatures below 25 °C, whereas individuals showed longer walking distances above 25 °C. In mark-release-recapture studies, 4th and 5th instars were released and recaptured in traps baited with attractive pheromonal-based stimuli to estimate dispersal rates under field conditions. When insects were released 5 m from traps, both instars were first recaptured within 2 h after release, with the recapture rates of 54 and 69 % for 4th and 5th instars over 24 h, respectively. When insects were released 20 m from traps, 4th and 5th instars were first recaptured in less than 5 h, with the recapture rates of 27 and 51 %, respectively. The results of this study indicate that H. halys nymphs have strong dispersal capacity with which populations can easily move among host plants and other attractive stimuli at farmscape levels.  相似文献   

19.
The presence of chelate and subchelate fore legs in Phymatinae (Hemiptera: Reduviidae), or ambush bugs, provides a unique opportunity to study the evolution of different types of raptorial legs in a closely related group of arthropods. Themonocorini have simple, possibly raptorial legs, Phymatini and Macrocephalini distinct subchelate fore legs, and the charismatic Carcinocorini are the only insects with a chelate fore leg apart from female dryinid Chysidoidea (Hymenoptera). Relationships between the four phymatine tribes are here analyzed in a cladistic framework thus permitting testable hypotheses on the evolution of raptorial legs. The presented analysis of phymatine tribal level relationships is based on a dataset comprising 11 species of Phymatinae and 54 non‐phymatine Reduviidae and Heteroptera. The molecular data set consists of ~3500 MAFFT aligned bases of 16S, 28S D2–D3, and 18S ribosomal genes. Parsimony and maximum likelihood analyses resulted in identical topologies for the ingroup with the relationships Themonocorini + (Phymatini + (Carcinocorini + Macrocephalini)) receiving high support values. Eleven morphological characters, eight of them derived from fore leg morphology, were optimized on the parsimony analysis. These optimizations indicate that the ancestral ambush bug had a simple raptorial leg; that size reduction of the tarsus, enlargement of the femur, curvature of the fore tibia, armature of tibia and femur with rows of tiny tubercles that allow for gripping of a prey insect, and the large process on the ventral surface of the femur arose in the common ancestor of Carcinocorini + Macrocephalini + Phymatini. The chelate leg in Carcinocorini is likely derived from a subchelate precursor similar to the one seen in recent Macrocephalini and may have evolved through elongation of the ventral, proximal portion of the fore femur and modification of the median process to form part of the digitus fixus. © The Willi Hennig Society 2010.  相似文献   

20.
三种华枝断肢再生的研究   总被引:4,自引:1,他引:3  
目(竹节虫目)的昆虫具有很强的断肢再生能力。该文通过对华枝属(Sinophasma spp)三种昆虫的实验,表明其再生能力与断肢发生的时间及数量有关。断肢1只或2只的1~4龄虫体发育至成虫期或至若虫末龄时,其再生足的长度与相应的正常足长度相近。若在5龄初时断肢1~2只,也具有再生能力,但至成虫期其再生足的长度则短于相对应的正常足。若在6龄及成虫时断肢,则无再生能力(若6龄时出现断肢再生,则若虫期多为7龄)。实验结果还表明,若断肢为3只或3只以上,则虫体不能存活,且多在断肢后2~3 d内死亡。观察中尚发现,再生足生长速度明显高于正常足。而且,断肢的龄期越高,再生足生长速度越快。再生足的伸长生长与正常足一样,均出现于虫体蜕皮时。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号